
LOCAL B-MODEL AND MIXED HODGE STRUCTURE

YUKIKO KONISHI

Abstract. In this note, we explain the definition of the Yukawa coupling for the local

B-model proposed in [KM].

1. Introduction

Local mirror symmetry (LMS) is a variant of mirror symmetry found by Katz–Klemm–

Vafa and Chiang–Klemm–Yau–Zaslow. Each example of LMS corresponds to a two di-

mensional reflexive polyhedron1. Although LMS was derived from (the ordinary) mirror

symmetry of toric Calabi–Yau hypersurfaces, its main statement can be addressed in

terms of the reflexive polyhedron, without referring to the Calabi–Yau threefolds.

Take a two dimensional reflexive polyhedron ∆. To this ∆, three objects can be associ-

ated. The first is a toric surface whose fan is generated by integral points of ∆. The local

A-model deals with its local Gromov–Witten invariants. The second is an affine curve

C◦a (or a family of affine curves) in the two dimensional algebraic torus T2 whose defining

equation is the sum of Laurent monomials corresponding to integral points of ∆. The

local B-model is about the variation of mixed Hodge structures on the relative cohomol-

ogy group H2(T2, C◦a) with C-coefficients. The third is a system of differential equations

called the A-hypergeometric system introduced by Gel’fand, Kapranov and Zelevinsky

[GKZ]. The statement of local mirror symmetry is that the local A and B-models are

related via this system. The overview is summarized in Figure 1.

The goal of this note is to explain the definition of the Yukawa coupling for the local

B-model which Satoshi Minabe and I have proposed in [KM]. The Yukawa coupling is

one of the most important ingredients in mirror symmetry: it is the third derivative of

the generating function of genus zero Gromov–Witten invariants (the prepotential) in the

A-model, and it is the third derivative of the period map for the family of mirror Calabi–

Yau threefolds in the B-model. As to our knowledge, there has been no direct definition

of the Yukawa coupling for the local B-model although physicists computed it in several

cases. Our definition is based on Batyrev’s and Stienstra’s results [B, S] on the variation

of mixed Hodge structures on H2(T2, C◦a) and it agrees with the previous computations

by physicists.

1In [CKYZ], wider class of two dimensional convex polyhedra are also considered. But in this article,

we restrict to the reflexive case.
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Figure 1. Overview of Local mirror symmetry.

Notations: For any variable x, θx := x ∂
∂x

is the logarithmic derivative by x. For m =

(m1,m2) ∈ Z2 and variables t1, t2, tm1
1 tm2

2 is denoted by the shorthand notation tm. For a

connection ∇ on a vector bundle and a vector field ∂x, ∇x := ∇∂x .

2. “Jacobian ring”

For the materials in Sections §2– §4, see [B] for details.

A two dimensional polyhedron ∆ ⊂ Z2 ⊗R is a reflexive polyhedron if it is the convex

hull of a finite number of integral points; the origin 0 is contained in ∆; and the distance

between 0 and every edge is one, i.e. every edge is written as

{(m1,m2) ∈ ∆ | c1m1 + c2m2 = 1}

with some integers c1, c2 prime to each other. There are 16 such polyhedra.

Let ∆ ⊂ Z2 ⊗ R be a two dimensional reflexive polyhedron. By associating to each

integral point m = (m1,m2) ∈ ∆ the Laurent monomial tm = tm1
1 tm2

2 , we have the Laurent

polynomial

Fa(t1, t2) :=
∑

m∈∆∩Z2

amt
m ∈ C[t±1

1 , t±1
2 ] .
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Figure 2. An example of reflexive polyhedron ∆P2 (left) and ∆P2(2) (right).

Here a = {am} are complex parameters. This F (t) is said to be ∆-regular if for every

l-dimensional face ∆′ ⊂ ∆ (l = 0, 1, 2), the equations

F∆′ :=
∑

m∈∆′∩Z2

amt
m = 0 ,

∂F∆′

∂t1
= 0 ,

∂F∆′

∂t2
= 0

have no common solutions in T2. The space of complex parameters a satisfying the

∆-regularity condition is denoted by Lreg:

(2.1) Lreg := {(am)m∈∆∩Z2 ∈ C#(∆∩Z2) | Fa is ∆-regular} .

Let ∆(k) (k ∈ Z≥0) be the polytope obtained from ∆ by enlarging k-times:

∆(k) :=
{
m ∈ R2

∣∣∣ m
k
∈ ∆

}
(k ≥ 1) , ∆(0) := {0} .

Let Sk (k ∈ Z≥0) be the vector space spanned by the Laurent monomials corresponding

to integral points of ∆(k), i.e.

Sk =
⊕

m∈∆(k)∩Z2

C tk0tm .

Define S∆ as the direct sum of Sk (k ≥ 0):

S∆ =
⊕

k≥0

Sk ⊂ C[t0, t
±1
1 , t±1

2 ] .

Consider the derivations D0, D1, D2 acting on S∆ in the following way:

D0(tk0t
m) := (k + t0Fa)t

k
0t
m ,

Di(t
k
0t
m) :=

(
mi + t0(θtiFa)

)
tk0t

m (i = 1, 2) .

The quotient vector space which we introduce in the next definition will play a key role.

Definition 2.1.

RFa := S∆/

2∑
i=0

DiS∆ .

For a ∈ Lreg, RFa is a finite dimensional vector space and its dimension is equal to the

volume of ∆.
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Example 2.2. Let ∆P2 be the convex hull of (1, 0), (0, 1), (−1,−1) shown in Figure 2.

This is the two dimensional reflexive polyhedron with the least number of integral points.

(The reason for the subscript P2 is because the corresponding toric surface in the local

A-model is the complex projective plane P2.) The associated Laurent polynomial is

Fa = a0 + a1t1 + a2t2 +
a3

t1t2
,

and the ∆-regularity condition is the following:

Lreg = {(a0, a1, a2, a3) ∈ C4 | a1a2a3 6= 0 , a3
0 + 27a1a2a3 6= 0} .

A basis of RFa can be found by studying the subspace
∑

iDiS∆ closely. We write α ≡ β

if α− β ∈∑iDiS∆ for α, β ∈ S∆. First, by operating D0, D1, D2 on 1 ∈ S∆, we have

0 ≡ D01 = t0Fa = a0t0 + a1t0t1 + a2t0t2 + a3
t0
t1t2

,

0 ≡ D11 = t0θt1Fa = a1t0t1 − a3
t0
t1t2

,

0 ≡ D21 = t0θt2Fa = a2t0t2 − a3
t0
t1t2

.

These imply that any t0-degree one monomial in S∆ is equal to a multiple of t0 in RFa :

a1t0t1 ≡ a2t0t2 ≡ a3
t0
t1t2
≡ −1

3
a0t0 .

Next operating D0, D1, D2 on degree one monomials t0, t0t1, t0t2, t0/t1t2, we can easily see

that any degree two monomial is equivalent to a linear combination of t0 and t20 mod∑
iDiS∆. Similarly, by operating D0, D1, D2 on monomials with t0 degree ≥ 2, we see

that any monomial of t0-degree ≥ 3 is also expressed in terms of t0, t
2
0. For example,

t20t1 ≡ −
1

3a1

t0 − a0

3a1

t20 , t20t
2
1 ≡

4a0

9a2
1

t0 +
a2

0

9a2
1

t20 , t20t1t2 ≡
a0

9a1a2

t0 +
a2

0

9a1a2

t20 ,

t30 ≡
−1

δ
(a0t0 + 3a2

0t
2
0) , t30t1 ≡

a2
0

3a1δ
t0 +

a3
0 − 54a1a2a3

3a1δ
t20,

(2.2)

where δ := a3
0 + 27a1a2a3. Thus for ∆P2 , we obtain

RFa
∼= C1⊕ Ct0 ⊕ Ct20 .

In Section 4, we will see that RFa is isomorphic to the relative cohomology group

H2(T2, C◦a). In this sense, RFa is an analog of the Jacobian ring for the cohomology

group of hypersurfaces in projective spaces, hence comes the title of this section.

Remark 2.3. Although S∆ is a ring, RFa does not inherit the ring structure since the

subspace
∑2

i=0DiS∆ is not an ideal. If we consider the ideal JFa of S∆ generated by

t0Fa, t0θt1Fa, t0θt2Fa instead of
∑2

i=0DiS∆, we obtain the ring S∆/JFa . This is isomorphic

to RFa as a vector space.
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3. “Gauss–Manin connection”

So far, the complex parameter a is fixed. From now on, we move a in Lreg (defined in

(2.1)) and consider the family R of RFa ’s:

R :=
⋃

a∈Lreg

RFa → Lreg

This is a vector bundle over Lreg of rank vol(∆).

We define a connection on R as follows. Consider the trivial (infinite dimensional)

vector bundle S∆ × Lreg → Lreg with the nontrivial connection D given by

Dam = ∂am + t0t
m (m ∈ ∆ ∩ Z2) .

Since DamDi = DiDam (m ∈ ∆ ∩ Z2, i = 0, 1, 2), D induces the connection ∇R on R
given by

∇Ram [tk0t
m] := [Damtk0tm] .

Here [α] denotes the image of α ∈ S∆ in RFa .

Example 3.1. For ∆P2 ,

∇Ra0
(1, t0, t

2
0) = (t0, t

2
0, t

3
0)

eq.(2.2)
= (1, t0, t

2
0)A0 ,

∇Rai(1, t0, t20) = (t0ti, t
2
0ti, t

3
0ti)

eq.(2.2)
= (1, t0, t

2
0)Ai (i = 1, 2, 3) ,

where the matrices A0, A1, A2, A3 are given by

A0 =




0 0 0

1 0 −a0

δ

0 1
−3a2

0

δ


 , Ai =




0 0 0
−a0

3ai

−1
3ai

a2
0

aiδ

0 −a0

3ai

a3
0−54a1a2a3

3aiδ


 (i = 1, 2, 3) .

In Section 4, we will see that RFa is isomorphic to the relative cohomology group

H2(T2, C◦a) and that the connection ∇R is nothing but the Gauss–Manin connection.

4. Geometric meaning of RFa and ∇R

Consider the affine curve

C◦a = {(t1, t2) ∈ T2 | Fa(t1, t2) = 0} .

The ∆-regularity condition (i.e. a ∈ Lreg) implies that C◦a and its compactification2

Ca are both smooth. It is not difficult to see that the genus of Ca is one, and that

C◦a = Ca \ {vol(∆)-points}.
2There exists a canonical compactification of C◦a in a certain toric surface determined by the polyhedron

∆.
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Consider the relative cohomology group H2(T2, C◦a) of the pair (T2, C◦a). Note that

there is an exact sequence of the mixed Hodge structures

0 −→ H1(C◦a)/H1(T2) −→ H2(T2, C◦a) −→ H2(T2)︸ ︷︷ ︸
∼=C dt1t1 ∧

dt2
t2

−→ 0 .

Therefore H2(T2, C◦a) is an extension of H2(T2) by PH1(C◦a) := H1(C◦a)/H1(T2).

4.1. Mixed Hodge structure on H2(T2, C◦a). For a ∈ Lreg, it is known that RFa is

isomorphic to H2(T2, C◦a) [B, S]. The isomorphism is given by

(4.1)

1 7→
(dt1
t1
∧ dt2
t2
, 0
)

=: ω ,

tk0t
m 7→

(
0,ResFa=0

(−1)k−1(k − 1)!tm

F k
a

dt1
t1
∧ dt2
t2

)
(k ≥ 1,m ∈ ∆(k)) .

They also showed that both the Hodge and the weight filtrations on H2(T2, C◦a) are

given by two filtrations of RFa .

• Hodge filtration: Let E−i (i = 0, 1, 2, 3, . . .) be the subspace of S∆ spanned by

all monomials tk0t
m with t0-degree ≤ i:

E−i :=
i⊕

k=0

Sk .

Then the filtration 0 ⊂ E0 ⊂ E−1 ⊂ E−2 ⊂ · · · on S∆ induces the filtration on RFa

(which is also denoted by E•):

0 ⊂ E0 ⊂ E−1 ⊂ E−2 = RFa .

The Hodge filtration F 2 ⊂ F 1 ⊂ F 0 = H2(T2, C◦a) corresponds to this filtration

by the isomorphism (4.1).

• Weight filtration: Let I1 be the subspace of S∆ spanned by all monomials tk0t
m

(k ≥ 1, m ∈ ∆(k)) such that m is an interior points of ∆(k). Let I3 be the

subspace of S∆ spanned by all monomials with t0-degree ≥ 1. (So S∆ = C 1⊕ I3.)

The filtration

0 ⊂ I1 ⊂ I3 ⊂ S∆

induces a filtration on RFa . This corresponds to the weight filtration

W1 ⊂ W2 =W3 ⊂ W4 = H2(T2, C◦a) .

Example 4.1. For ∆P2 , the Hodge and weight filtrations are summarized in Figure 3.
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(t0-deg.) (0) (1) (2)

Hodge filt. F 2 F 1/F 2 F 0/F 1

Weight filt.

W1

W2/W1

0 = W3/W2

W4/W3

(I-filt.)

(I1)

(I3/I1)

(I4/I3) C1 -� dt1
t1
∧ dt2

t2
on T2

Ct0
��	

-(1, 0)-form on Ca

Ct20 -� (0, 1)-form on Ca

∗ -� (1, 0)-form on Ca

with poles at Ca \ C◦a

H1(Ca) ∼=

Figure 3. The mixed Hodge structures on H2(T2, C◦a) for the case of ∆P2 .

Note that ∗ is zero dimensional for this case, but for other two dimensional

reflexive polyhedra ∆, ∗ is (vol(∆)− 3)-dimensional.

4.2. Gauss–Manin connection. Batyrev’s and Stienstra’s results also include results

on the Gauss–Manin connection of H2(T2, C◦a) for the family of affine curves

C◦ :=
⋃

a∈Lreg

C◦a → Lreg .

The Gauss–Manin connection ∇ corresponds to the connection ∇R of R under the iso-

morphism (4.1).

Example 4.2. Consider the case of ∆P2 . Let ω ∈ H2(T2, C◦a) be the element correspond-

ing to 1 ∈ RFa . Recall that RFa is spanned by

1 , t0 = ∇Ra0
1 , t20 = (∇Ra0

)21 .

This fact implies that H2(T2, C◦a) is spanned by the corresponding elements ω, ∇a0ω and

(∇a0)2ω. The action of the Gauss–Manin connection is the same as Example 3.1:

∇ai(ω,∇a0ω, (∇a0)2ω) = (ω,∇a0ω, (∇a0)2ω)Ai (i = 0, 1, 2, 3) .

5. Yukawa coupling for local B-model

Now we are ready to give a definition of the Yukawa coupling.

Let ω ∈ H2(T2, C◦a) be the element corresponding to 1 ∈ RFa by the isomorphism (4.1).

Let T 0Lreg be the subbundle of holomorphic tangent bundle TLreg generated by the vector

field ∂a0 .
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Definition 5.1. The local B-model Yukawa coupling is the OLreg-multilinear map

Yuk : T 0Lreg × TLreg × TLreg −→ OLreg ;

(∂a0 , ∂am , ∂an) 7→ −√−1

∫

Ca

∇a0ω ∧∇am∇anω .

Here Ca is the compactification of the affine curve C◦a .

That the right hand side is well-defined can be shown by looking at the Hodge and the

weight filtrations. First, note that∇a0ω ∈ F 1∩W1, or in other words, ∇a0ω is a (1, 0)-form

on Ca. This is because it corresponds to∇Ra0
1 = t0 ∈ RFa , which has the t0-degree one and

lies in the interior of ∆(1). Second, note that ∇am∇anω ∈ F 0∩W2, or in other words, it is

the sum of a (0, 1)-form on Ca and a (1, 0)-form on Ca which may have poles on Ca \C◦a .

This is because it corresponds to ∇Ram∇Ran1 = t20t
m+n = f(a)t20 + g(a)t0t

l ∈ RFa (here

f(a), g(a) are some functions in a and l ∈ ∆(1)). Therefore the integrand is a (1, 1)-form

on Ca which does not have poles on Ca, and hence the integration is well-defined.

Example 5.2. An easiest way to calculate the Yukawa coupling is to derive differen-

tial equations it satisfies. We demonstrate the computation of the Yukawa coupling

Yuk(θa0 , θa0 , θa0) for the case of ∆P2 .

For the sake of simplicity, we write Y for Yuk(θa0 , θa0 , θa0). First note that the equality

(Da1 − Da3)1 = t0θt1Fa ≡ 0 in S∆ implies the equality (∇a1 − ∇a3)ω = 0 in H2(T2, C◦a)

under the isomorphism (4.1). Therefore we have the equation

(θa1 − θa3)Y =

∫

Ca

∇a0(∇a1 −∇a3)ω ∧ (∇a0)2ω +

∫

Ca

∇a0ω ∧ (∇a0)2(∇a1 −∇a3)ω = 0 .

Similarly, the equations (θa0 + θa1 + θa2 + θa3)Y = (θa2 − θa3)Y = 0 hold. These three

equations together imply that Y depends on a0, a1, a2, a3 only through the combination

(5.1) z :=
a1a2a3

a3
0

.

Next note the equality in S∆:

(a0Da0)31 = a3
0t

3
0 + 3a2

0t
2
0 + a0t0

eq.(2.2)≡ 3 · 27z

1 + 27z
a2

0t
2
0 +

27z

1 + 27z
a0t0 .

The corresponding equation in H2(T2, C◦a) is

(a0∇a0)3ω =
3 · 27z

1 + 27z
(a0∇a0)2ω − 2 · 27z

1 + 27z
· a0∇a0ω .

Therefore we have

θa0Y =

∫

Ca

(a0∇a0)2ω ∧ (a0∇a0)2ω

︸ ︷︷ ︸
=0

+

∫

Ca

a0∇a0ω ∧ (a0∇a0)3ω =
3 · 27z

1 + 27z
Y .
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By (5.1), we have θa0Y = −3θzY. Therefore the above equation becomes the ordinary

differential equation d
dz

Y = −27Y/(1 + 27z). Thus we obtain

Yuk(θa0 , θa0 , θa0) =
const.

1 + 27z
.
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