LOCAL B－MODEL AND MIXED HODGE STRUCTURE

YUKIKO KONISHI

Abstract．In this note，we explain the definition of the Yukawa coupling for the local B－model proposed in［KM］．

1．Introduction

Local mirror symmetry（LMS）is a variant of mirror symmetry found by Katz－Klemm－ Vafa and Chiang－Klemm－Yau－Zaslow．Each example of LMS corresponds to a two di－ mensional reflexive polyhedron ${ }^{1}$ ．Although LMS was derived from（the ordinary）mirror symmetry of toric Calabi－Yau hypersurfaces，its main statement can be addressed in terms of the reflexive polyhedron，without referring to the Calabi－Yau threefolds．

Take a two dimensional reflexive polyhedron Δ ．To this Δ ，three objects can be associ－ ated．The first is a toric surface whose fan is generated by integral points of Δ ．The local A－model deals with its local Gromov－Witten invariants．The second is an affine curve C_{a}°（or a family of affine curves）in the two dimensional algebraic torus \mathbb{T}^{2} whose defining equation is the sum of Laurent monomials corresponding to integral points of Δ ．The local B－model is about the variation of mixed Hodge structures on the relative cohomol－ ogy group $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ with \mathbb{C}－coefficients．The third is a system of differential equations called the A－hypergeometric system introduced by Gel＇fand，Kapranov and Zelevinsky ［GKZ］．The statement of local mirror symmetry is that the local A and B－models are related via this system．The overview is summarized in Figure 1.

The goal of this note is to explain the definition of the Yukawa coupling for the local B－model which Satoshi Minabe and I have proposed in $[\mathrm{KM}]$ ．The Yukawa coupling is one of the most important ingredients in mirror symmetry：it is the third derivative of the generating function of genus zero Gromov－Witten invariants（the prepotential）in the A－model，and it is the third derivative of the period map for the family of mirror Calabi－ Yau threefolds in the B－model．As to our knowledge，there has been no direct definition of the Yukawa coupling for the local B－model although physicists computed it in several cases．Our definition is based on Batyrev＇s and Stienstra＇s results $[B, S]$ on the variation of mixed Hodge structures on $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ and it agrees with the previous computations by physicists．

[^0]

Figure 1. Overview of Local mirror symmetry.

Notations: For any variable $x, \theta_{x}:=x \frac{\partial}{\partial x}$ is the logarithmic derivative by x. For $m=$ $\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}$ and variables $t_{1}, t_{2}, t_{1}^{m_{1}} t_{2}^{m_{2}}$ is denoted by the shorthand notation t^{m}. For a connection ∇ on a vector bundle and a vector field $\partial_{x}, \nabla_{x}:=\nabla_{\partial_{x}}$.

2. "Jacobian Ring"

For the materials in Sections $\S 2-\S 4$, see $[B]$ for details.
A two dimensional polyhedron $\Delta \subset \mathbb{Z}^{2} \otimes \mathbb{R}$ is a reflexive polyhedron if it is convex hull of a finite number of integral points; the origin 0 is contained in Δ; and the distance between 0 and every edge is one, i.e. every edge is written as

$$
\left\{\left(m_{1}, m_{2}\right) \in \Delta \mid c_{1} m_{1}+c_{2} m_{2}=1\right\}
$$

with some integers c_{1}, c_{2} prime to each other. There are 16 such polyhedra.
Let $\Delta \subset \mathbb{Z}^{2} \otimes \mathbb{R}$ be a two dimensional reflexive polyhedron. By associating to each integral point $m=\left(m_{1}, m_{2}\right) \in \Delta$ the Laurent monomial $t^{m}=t_{1}^{m_{1}} t_{2}^{m_{2}}$, we have the Laurent polynomial

$$
F_{a}\left(t_{1}, t_{2}\right):=\sum_{m \in \Delta \cap \mathbb{Z}^{2}} a_{m} t^{m} \quad \in \mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}\right]
$$

Figure 2. An example of reflexive polyhedron $\Delta_{\mathbb{P}^{2}}$ (left) and $\Delta_{\mathbb{P}^{2}}(2)$ (right).
Here $a=\left\{a_{m}\right\}$ are complex parameters. This $F(t)$ is said to be Δ-regular if for every l-dimensional face $\Delta^{\prime} \subset \Delta(l=0,1,2)$, the equations

$$
F^{\Delta^{\prime}}:=\sum_{m \in \Delta^{\prime} \cap \mathbb{Z}^{2}} a_{m} t^{m}=0, \quad \frac{\partial F^{\Delta^{\prime}}}{\partial t_{1}}=0, \quad \frac{\partial F^{\Delta^{\prime}}}{\partial t_{2}}=0
$$

have no common solutions in \mathbb{T}^{2}. The space of complex parameters a satisfying the Δ-regularity condition is denoted by $\mathbb{L}_{\text {reg }}$:

$$
\begin{equation*}
\mathbb{L}_{\mathrm{reg}}:=\left\{\left(a_{m}\right)_{m \in \Delta \cap \mathbb{Z}^{2}} \in \mathbb{C}^{\#\left(\Delta \cap \mathbb{Z}^{2}\right)} \mid F_{a} \text { is } \Delta \text {-regular }\right\} \tag{2.1}
\end{equation*}
$$

Let $\Delta(k)\left(k \in \mathbb{Z}_{\geq 0}\right)$ be the polytope obtained from Δ by enlarging k-times:

$$
\Delta(k):=\left\{m \in \mathbb{R}^{2} \left\lvert\, \frac{m}{k} \in \Delta\right.\right\}(k \geq 1), \quad \Delta(0):=\{0\}
$$

Let $S_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$ be the vector space spanned by the Laurent monomials corresponding to integral points of $\Delta(k)$, i.e.

$$
S_{k}=\bigoplus_{m \in \Delta(k) \cap \mathbb{Z}^{2}} \mathbb{C} t_{0}^{k} t^{m}
$$

Define S_{Δ} as the direct sum of $S_{k}(k \geq 0)$:

$$
S_{\Delta}=\bigoplus_{k \geq 0} S_{k} \quad \subset \mathbb{C}\left[t_{0}, t_{1}^{ \pm 1}, t_{2}^{ \pm 1}\right]
$$

Consider the derivations D_{0}, D_{1}, D_{2} acting on S_{Δ} in the following way:

$$
\begin{aligned}
& D_{0}\left(t_{0}^{k} t^{m}\right):=\left(k+t_{0} F_{a}\right) t_{0}^{k} t^{m} \\
& D_{i}\left(t_{0}^{k} t^{m}\right):=\left(m_{i}+t_{0}\left(\theta_{t_{i}} F_{a}\right)\right) t_{0}^{k} t^{m} \quad(i=1,2)
\end{aligned}
$$

The quotient vector space which we introduce in the next definition will play a key role.

Definition 2.1.

$$
\mathcal{R}_{F_{a}}:=S_{\Delta} / \sum_{i=0}^{2} D_{i} S_{\Delta}
$$

For $a \in \mathbb{L}_{\mathrm{reg}}, \mathcal{R}_{F_{a}}$ is a finite dimensional vector space and its dimension is equal to the volume of Δ.

Example 2.2. Let $\Delta_{\mathbb{P}^{2}}$ be the convex hull of $(1,0),(0,1),(-1,-1)$ shown in Figure 2. This is the two dimensional reflexive polyhedron with the least number of integral points. (The reason for the subscript \mathbb{P}^{2} is because the corresponding toric surface in the local A-model is the complex projective plane \mathbb{P}^{2}.) The associated Laurent polynomial is

$$
F_{a}=a_{0}+a_{1} t_{1}+a_{2} t_{2}+\frac{a_{3}}{t_{1} t_{2}},
$$

and the Δ-regularity condition is the following:

$$
\mathbb{L}_{\mathrm{reg}}=\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathbb{C}^{4} \mid a_{1} a_{2} a_{3} \neq 0, a_{0}^{3}+27 a_{1} a_{2} a_{3} \neq 0\right\}
$$

A basis of $\mathcal{R}_{F_{a}}$ can be found by studying the subspace $\sum_{i} D_{i} S_{\Delta}$ closely. We write $\alpha \equiv \beta$ if $\alpha-\beta \in \sum_{i} D_{i} S_{\Delta}$ for $\alpha, \beta \in S_{\Delta}$. First, by operating D_{0}, D_{1}, D_{2} on $1 \in S_{\Delta}$, we have

$$
\begin{aligned}
& 0 \equiv D_{0} 1=t_{0} F_{a}=a_{0} t_{0}+a_{1} t_{0} t_{1}+a_{2} t_{0} t_{2}+a_{3} \frac{t_{0}}{t_{1} t_{2}}, \\
& 0 \equiv D_{1} 1=t_{0} \theta_{t_{1}} F_{a}=a_{1} t_{0} t_{1}-a_{3} \frac{t_{0}}{t_{1} t_{2}}, \\
& 0 \equiv D_{2} 1=t_{0} \theta_{t_{2}} F_{a}=a_{2} t_{0} t_{2}-a_{3} \frac{t_{0}}{t_{1} t_{2}} .
\end{aligned}
$$

These imply that any t_{0}-degree one monomial in S_{Δ} is equal to a multiple of t_{0} in $\mathcal{R}_{F_{a}}$:

$$
a_{1} t_{0} t_{1} \equiv a_{2} t_{0} t_{2} \equiv a_{3} \frac{t_{0}}{t_{1} t_{2}} \equiv-\frac{1}{3} a_{0} t_{0} .
$$

Next operating D_{0}, D_{1}, D_{2} on degree one monomials $t_{0}, t_{0} t_{1}, t_{0} t_{2}, t_{0} / t_{1} t_{2}$, we can easily see that any degree two monomial is equivalent to a linear combination of t_{0} and $t_{0}^{2} \bmod$ $\sum_{i} D_{i} S_{\Delta}$. Similarly, by operating D_{0}, D_{1}, D_{2} on monomials with t_{0} degree ≥ 2, we see that any monomial of t_{0}-degree ≥ 3 is also expressed in terms of t_{0}, t_{0}^{2}. For example,

$$
\begin{align*}
t_{0}^{2} t_{1} & \equiv-\frac{1}{3 a_{1}} t_{0}-\frac{a_{0}}{3 a_{1}} t_{0}^{2}, \quad t_{0}^{2} t_{1}^{2} \equiv \frac{4 a_{0}}{9 a_{1}^{2}} t_{0}+\frac{a_{0}^{2}}{9 a_{1}^{2}} t_{0}^{2}, \quad t_{0}^{2} t_{1} t_{2} \equiv \frac{a_{0}}{9 a_{1} a_{2}} t_{0}+\frac{a_{0}^{2}}{9 a_{1} a_{2}} t_{0}^{2}, \tag{2.2}\\
t_{0}^{3} & \equiv \frac{-1}{\delta}\left(a_{0} t_{0}+3 a_{0}^{2} t_{0}^{2}\right), \quad t_{0}^{3} t_{1} \equiv \frac{a_{0}^{2}}{3 a_{1} \delta} t_{0}+\frac{a_{0}^{3}-54 a_{1} a_{2} a_{3}}{3 a_{1} \delta} t_{0}^{2},
\end{align*}
$$

where $\delta:=a_{0}^{3}+27 a_{1} a_{2} a_{3}$. Thus for $\Delta_{\mathbb{P}^{2}}$, we obtain

$$
\mathcal{R}_{F_{a}} \cong \mathbb{C} 1 \oplus \mathbb{C} t_{0} \oplus \mathbb{C} t_{0}^{2}
$$

In Section 4, we will see that $\mathcal{R}_{F_{a}}$ is isomorphic to the relative cohomology group $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$. In this sense, $\mathcal{R}_{F_{a}}$ is an analog of the Jacobian ring for the cohomology group of hypersurfaces in projective spaces, hence comes the title of this section.

Remark 2.3. Although S_{Δ} is a ring, $\mathcal{R}_{F_{a}}$ does not inherit the ring structure since the subspace $\sum_{i=0}^{2} D_{i} S_{\Delta}$ is not an ideal. If we consider the ideal $J_{F_{a}}$ of S_{Δ} generated by $t_{0} F_{a}, t_{0} \theta_{t_{1}} F_{a}, t_{0} \theta_{t_{2}} F_{a}$ instead of $\sum_{i=0}^{2} D_{i} S_{\Delta}$, we obtain the ring $S_{\Delta} / J_{F_{a}}$. This is isomorphic to $\mathcal{R}_{F_{a}}$ as a vector space.

3. "Gauss-Manin connection"

So far, the complex parameter a is fixed. From now on, we move a in $\mathbb{L}_{\text {reg }}$ (defined in (2.1)) and consider the family \mathcal{R} of $\mathcal{R}_{F_{a}}$'s:

$$
\mathcal{R}:=\bigcup_{a \in \mathbb{L}_{\mathrm{reg}}} \mathcal{R}_{F_{a}} \rightarrow \mathbb{L}_{\mathrm{reg}}
$$

This is a vector bundle over $\mathbb{L}_{\text {reg }}$ of $\operatorname{rank} \operatorname{vol}(\Delta)$.
We define a connection on \mathcal{R} as follows. Consider the trivial (infinite dimensional) vector bundle $S_{\Delta} \times \mathbb{L}_{\mathrm{reg}} \rightarrow \mathbb{L}_{\text {reg }}$ with the nontrivial connection \mathcal{D} given by

$$
\mathcal{D}_{a_{m}}=\partial_{a_{m}}+t_{0} t^{m} \quad\left(m \in \Delta \cap \mathbb{Z}^{2}\right) .
$$

Since $\mathcal{D}_{a_{m}} D_{i}=D_{i} \mathcal{D}_{a_{m}}\left(m \in \Delta \cap \mathbb{Z}^{2}, i=0,1,2\right), \mathcal{D}$ induces the connection $\nabla^{\mathcal{R}}$ on \mathcal{R} given by

$$
\nabla_{a_{m}}^{\mathcal{R}}\left[t_{0}^{k} t^{m}\right]:=\left[\mathcal{D}_{a_{m}} t_{0}^{k} t^{m}\right]
$$

Here $[\alpha]$ denotes the image of $\alpha \in S_{\Delta}$ in $\mathcal{R}_{F_{a}}$.
Example 3.1. For $\Delta_{\mathbb{P}^{2}}$,

$$
\begin{aligned}
& \nabla_{a_{0}}^{\mathcal{R}}\left(1, t_{0}, t_{0}^{2}\right)=\left(t_{0}, t_{0}^{2}, t_{0}^{3}\right) \stackrel{\text { eq.(2.2) }}{=}\left(1, t_{0}, t_{0}^{2}\right) A_{0}, \\
& \nabla_{a_{i}}^{\mathcal{R}}\left(1, t_{0}, t_{0}^{2}\right)=\left(t_{0} t_{i}, t_{0}^{2} t_{i}, t_{0}^{3} t_{i}\right) \stackrel{\text { eq.(2.2) }}{=}\left(1, t_{0}, t_{0}^{2}\right) A_{i} \quad(i=1,2,3),
\end{aligned}
$$

where the matrices $A_{0}, A_{1}, A_{2}, A_{3}$ are given by

$$
A_{0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & \frac{-a_{0}}{\delta} \\
0 & 1 & \frac{-3 a_{0}^{2}}{\delta}
\end{array}\right), \quad A_{i}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\frac{-a_{0}}{3 a_{i}} & \frac{-1}{3 a_{i}} & \frac{a_{0}^{2}}{a_{i} \delta} \\
0 & \frac{-a_{0}}{3 a_{i}} & \frac{a_{0}^{3}-54 a_{1} a_{2} a_{3}}{3 a_{i} \delta}
\end{array}\right) \quad(i=1,2,3)
$$

In Section 4, we will see that $\mathcal{R}_{F_{a}}$ is isomorphic to the relative cohomology group $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ and that the connection $\nabla^{\mathcal{R}}$ is nothing but the Gauss-Manin connection.

$$
\text { 4. Geometric meaning of } \mathcal{R}_{F_{a}} \text { and } \nabla^{\mathcal{R}}
$$

Consider the affine curve

$$
C_{a}^{\circ}=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{T}^{2} \mid F_{a}\left(t_{1}, t_{2}\right)=0\right\}
$$

The Δ-regularity condition (i.e. $a \in \mathbb{L}_{\text {reg }}$) implies that C_{a}° and its compactification ${ }^{2}$ C_{a} are both smooth. It is not difficult to see that the genus of C_{a} is one, and that $C_{a}^{\circ}=C_{a} \backslash\{\operatorname{vol}(\Delta)$-points $\}$.

[^1]Consider the relative cohomology group $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ of the pair $\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$. Note that there is an exact sequence of the mixed Hodge structures

$$
0 \longrightarrow H^{1}\left(C_{a}^{\circ}\right) / H^{1}\left(\mathbb{T}^{2}\right) \longrightarrow H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right) \longrightarrow \underbrace{H^{2}\left(\mathbb{T}^{2}\right)}_{\cong \mathbb{C} \frac{d t_{1}}{t_{1}} \wedge \frac{d t_{2}}{t_{2}}} \longrightarrow 0
$$

Therefore $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ is an extension of $H^{2}\left(\mathbb{T}^{2}\right)$ by $P H^{1}\left(C_{a}^{\circ}\right):=H^{1}\left(C_{a}^{\circ}\right) / H^{1}\left(\mathbb{T}^{2}\right)$.
4.1. Mixed Hodge structure on $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$. For $a \in \mathbb{L}_{\mathrm{reg}}$, it is known that $\mathcal{R}_{F_{a}}$ is isomorphic to $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)[\mathrm{B}, \mathrm{S}]$. The isomorphism is given by

$$
\begin{align*}
1 & \mapsto\left(\frac{d t_{1}}{t_{1}} \wedge \frac{d t_{2}}{t_{2}}, 0\right)=: \omega \\
t_{0}^{k} t^{m} & \mapsto\left(0, \operatorname{Res}_{F_{a}=0} \frac{(-1)^{k-1}(k-1)!t^{m}}{F_{a}^{k}} \frac{d t_{1}}{t_{1}} \wedge \frac{d t_{2}}{t_{2}}\right) \quad(k \geq 1, m \in \Delta(k)) . \tag{4.1}
\end{align*}
$$

They also showed that both the Hodge and the weight filtrations on $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ are given by two filtrations of $\mathcal{R}_{F_{a}}$.

- Hodge filtration: Let $\mathcal{E}^{-i}(i=0,1,2,3, \ldots)$ be the subspace of S_{Δ} spanned by all monomials $t_{0}^{k} t^{m}$ with t_{0}-degree $\leq i$:

$$
\mathcal{E}^{-i}:=\bigoplus_{k=0}^{i} S_{k} .
$$

Then the filtration $0 \subset \mathcal{E}^{0} \subset \mathcal{E}^{-1} \subset \mathcal{E}^{-2} \subset \cdots$ on S_{Δ} induces the filtration on $\mathcal{R}_{F_{a}}$ (which is also denoted by \mathcal{E}^{\bullet}):

$$
0 \subset \mathcal{E}^{0} \subset \mathcal{E}^{-1} \subset \mathcal{E}^{-2}=\mathcal{R}_{F_{a}}
$$

The Hodge filtration $F^{2} \subset F^{1} \subset F^{0}=H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ corresponds to this filtration by the isomorphism (4.1).

- Weight filtration: Let I_{1} be the subspace of S_{Δ} spanned by all monomials $t_{0}^{k} t^{m}$ $(k \geq 1, m \in \Delta(k))$ such that m is an interior points of $\Delta(k)$. Let I_{3} be the subspace of S_{Δ} spanned by all monomials with t_{0}-degree ≥ 1. (So $S_{\Delta}=\mathbb{C} 1 \oplus I_{3}$.) The filtration

$$
0 \subset I_{1} \subset I_{3} \subset S_{\Delta}
$$

induces a filtration on $\mathcal{R}_{F_{a}}$. This corresponds to the weight filtration

$$
\mathcal{W}_{1} \subset \mathcal{W}_{2}=\mathcal{W}_{3} \subset \mathcal{W}_{4}=H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)
$$

Example 4.1. For $\Delta_{\mathbb{P}^{2}}$, the Hodge and weight filtrations are summarized in Figure 3.

	(t_{0}-deg.) Hodge filt.	$\begin{aligned} & (0) \\ & F^{2} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & F^{1} / F^{2} \end{aligned}$	$\begin{aligned} & (2) \\ & F^{0} / F^{1} \end{aligned}$	
(I-filt.) $\left(I_{1}\right)$	Weight filt. W_{1}	$H^{1}\left(C_{a}\right) \cong$	\mathbb{C}_{0}	$\mathbb{C} t_{0}^{2}$	$\longrightarrow(1,0) \text {-form on } C_{a}, ~(0,1) \text {-form on } C_{a}$
$\left(I_{3} / I_{1}\right)$	$\begin{array}{r} W_{2} / W_{1} \\ 0=W_{3} / W_{2} \end{array}$		*		$\rightarrow(1,0) \text {-form on } C_{a}$
$\left(I_{4} / I_{3}\right)$	W_{4} / W_{3}	$\mathbb{C} 1$	$\frac{d t_{1}}{t_{1}} \wedge$		

Figure 3. The mixed Hodge structures on $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ for the case of $\Delta_{\mathbb{P}^{2}}$. Note that $*$ is zero dimensional for this case, but for other two dimensional reflexive polyhedra $\Delta, *$ is $(\operatorname{vol}(\Delta)-3)$-dimensional.
4.2. Gauss-Manin connection. Batyrev's and Stienstra's results also include results on the Gauss-Manin connection of $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ for the family of affine curves

$$
\mathcal{C}^{\circ}:=\bigcup_{a \in \mathbb{L}_{\mathrm{reg}}} \mathcal{C}_{a}^{\circ} \rightarrow \mathbb{L}_{\mathrm{reg}}
$$

The Gauss-Manin connection ∇ corresponds to the connection $\nabla^{\mathcal{R}}$ of \mathcal{R} under the isomorphism (4.1).

Example 4.2. Consider the case of $\Delta_{\mathbb{P}^{2}}$. Let $\omega \in H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ be the element corresponding to $1 \in \mathcal{R}_{F_{a}}$. Recall that $\mathcal{R}_{F_{a}}$ is spanned by

$$
1, \quad t_{0}=\nabla_{a_{0}}^{\mathcal{R}} 1, \quad t_{0}^{2}=\left(\nabla_{a_{0}}^{\mathcal{R}}\right)^{2} 1
$$

This fact implies that $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ is spanned by the corresponding elements $\omega, \nabla_{a_{0}} \omega$ and $\left(\nabla_{a_{0}}\right)^{2} \omega$. The action of the Gauss-Manin connection is the same as Example 3.1:

$$
\nabla_{a_{i}}\left(\omega, \nabla_{a_{0}} \omega,\left(\nabla_{a_{0}}\right)^{2} \omega\right)=\left(\omega, \nabla_{a_{0}} \omega,\left(\nabla_{a_{0}}\right)^{2} \omega\right) A_{i} \quad(i=0,1,2,3) .
$$

5. Yukawa coupling for local B-model

Now we are ready to give a definition of the Yukawa coupling.
Let $\omega \in H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ be the element corresponding to $1 \in \mathcal{R}_{F_{a}}$ by the isomorphism (4.1). Let $T^{0} \mathbb{L}_{\mathrm{reg}}$ be the subbundle of holomorphic tangent bundle $T \mathbb{L}_{\mathrm{reg}}$ generated by the vector field $\partial_{a_{0}}$.

Definition 5.1. The local B-model Yukawa coupling is the $\mathcal{O}_{\mathbb{L}_{\text {reg }}}$-multilinear map

$$
\begin{aligned}
& \text { Yuk : } T^{0} \mathbb{L}_{\mathrm{reg}} \times T \mathbb{L}_{\mathrm{reg}} \times T \mathbb{L}_{\mathrm{reg}} \\
& \quad\left(\partial_{a_{0}}, \partial_{a_{m}}, \partial_{a_{n}}\right) \mapsto-\sqrt{-1} \int_{\mathbb{L}_{\mathrm{reg}}} ; \\
& \nabla_{a_{0}} \omega \wedge \nabla_{a_{m}} \nabla_{a_{n}} \omega
\end{aligned}
$$

Here C_{a} is the compactification of the affine curve C_{a}°.
That the right hand side is well-defined can be shown by looking at the Hodge and the weight filtrations. First, note that $\nabla_{a_{0}} \omega \in F^{1} \cap W_{1}$, or in other words, $\nabla_{a_{0}} \omega$ is a $(1,0)$-form on C_{a}. This is because it corresponds to $\nabla_{a_{0}}^{\mathcal{R}} 1=t_{0} \in \mathcal{R}_{F_{a}}$, which has the t_{0}-degree one and lies in the interior of $\Delta(1)$. Second, note that $\nabla_{a_{m}} \nabla_{a_{n}} \omega \in F^{0} \cap W_{2}$, or in other words, it is the sum of a $(0,1)$-form on C_{a} and a (1,0)-form on C_{a} which may have poles on $C_{a} \backslash C_{a}^{\circ}$. This is because it corresponds to $\nabla_{a_{m}}^{\mathcal{R}} \nabla_{a_{n}}^{\mathcal{R}} 1=t_{0}^{2} t^{m+n}=f(a) t_{0}^{2}+g(a) t_{0} t^{l} \in \mathcal{R}_{F_{a}}$ (here $f(a), g(a)$ are some functions in a and $l \in \Delta(1))$. Therefore the integrand is a (1,1)-form on C_{a} which does not have poles on C_{a}, and hence the integration is well-defined.

Example 5.2. An easiest way to calculate the Yukawa coupling is to derive differential equations it satisfies. We demonstrate the computation of the Yukawa coupling $\operatorname{Yuk}\left(\theta_{a_{0}}, \theta_{a_{0}}, \theta_{a_{0}}\right)$ for the case of $\Delta_{\mathbb{P}^{2}}$.

For the sake of simplicity, we write Y for $\operatorname{Yuk}\left(\theta_{a_{0}}, \theta_{a_{0}}, \theta_{a_{0}}\right)$. First note that the equality $\left(\mathcal{D}_{a_{1}}-\mathcal{D}_{a_{3}}\right) 1=t_{0} \theta_{t_{1}} F_{a} \equiv 0$ in S_{Δ} implies the equality $\left(\nabla_{a_{1}}-\nabla_{a_{3}}\right) \omega=0$ in $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ under the isomorphism (4.1). Therefore we have the equation

$$
\left(\theta_{a_{1}}-\theta_{a_{3}}\right) \mathrm{Y}=\int_{C_{a}} \nabla_{a_{0}}\left(\nabla_{a_{1}}-\nabla_{a_{3}}\right) \omega \wedge\left(\nabla_{a_{0}}\right)^{2} \omega+\int_{C_{a}} \nabla_{a_{0}} \omega \wedge\left(\nabla_{a_{0}}\right)^{2}\left(\nabla_{a_{1}}-\nabla_{a_{3}}\right) \omega=0
$$

Similarly, the equations $\left(\theta_{a_{0}}+\theta_{a_{1}}+\theta_{a_{2}}+\theta_{a_{3}}\right) \mathrm{Y}=\left(\theta_{a_{2}}-\theta_{a_{3}}\right) \mathrm{Y}=0$ hold. These three equations together imply that Y depends on $a_{0}, a_{1}, a_{2}, a_{3}$ only through the combination

$$
\begin{equation*}
z:=\frac{a_{1} a_{2} a_{3}}{a_{0}^{3}} . \tag{5.1}
\end{equation*}
$$

Next note the equality in S_{Δ} :

$$
\left(a_{0} \mathcal{D}_{a_{0}}\right)^{3} 1=a_{0}^{3} t_{0}^{3}+3 a_{0}^{2} t_{0}^{2}+a_{0} t_{0} \stackrel{\text { eq.(2.2) }}{=} \frac{3 \cdot 27 z}{1+27 z} a_{0}^{2} t_{0}^{2}+\frac{27 z}{1+27 z} a_{0} t_{0}
$$

The corresponding equation in $H^{2}\left(\mathbb{T}^{2}, C_{a}^{\circ}\right)$ is

$$
\left(a_{0} \nabla_{a_{0}}\right)^{3} \omega=\frac{3 \cdot 27 z}{1+27 z}\left(a_{0} \nabla_{a_{0}}\right)^{2} \omega-\frac{2 \cdot 27 z}{1+27 z} \cdot a_{0} \nabla_{a_{0}} \omega .
$$

Therefore we have

$$
\theta_{a_{0}} \mathrm{Y}=\underbrace{\int_{C_{a}}\left(a_{0} \nabla_{a_{0}}\right)^{2} \omega \wedge\left(a_{0} \nabla_{a_{0}}\right)^{2} \omega}_{=0}+\int_{C_{a}} a_{0} \nabla_{a_{0}} \omega \wedge\left(a_{0} \nabla_{a_{0}}\right)^{3} \omega=\frac{3 \cdot 27 z}{1+27 z} \mathrm{Y}
$$

By (5.1), we have $\theta_{a_{0}} \mathrm{Y}=-3 \theta_{z} \mathrm{Y}$. Therefore the above equation becomes the ordinary differential equation $\frac{d}{d z} \mathrm{Y}=-27 \mathrm{Y} /(1+27 z)$. Thus we obtain

$$
\operatorname{Yuk}\left(\theta_{a_{0}}, \theta_{a_{0}}, \theta_{a_{0}}\right)=\frac{\text { const. }}{1+27 z} .
$$

Acknowledgments. The author thanks the organizers of Kinosaki algebraic geometry symposium for the invitation. She also thanks S. Minabe for many comments for this note. This work is supported in part by Grant-in-Aid for Young Scientists (B 22740013).

References

[B] Victor V. Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori. Duke Math. J. 69 (1993), no. 2, 349-409.
[CKYZ] T.-M. Chiang, A. Klemm, S.-T. Yau, E. Zaslow, Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999), no. 3, 495-565.
[GKZ] I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, Hypergeometric functions and toric varieties. (Russian) Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 12-26; translation in Funct. Anal. Appl. 23 (1989), no. 2, 94-106
[KM] Yukiko Konishi and Satoshi Minabe, Local B-model and Mixed Hodge Structure, to appear in Adv. Theor. Math. Phys.; arXiv:0907.4108.
[S] Jan Stienstra, Resonant hypergeometric systems and mirror symmetry, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 412-452, World Sci. Publ., River Edge, NJ, 1998.

Department of Mathematics, Kyoto University, Kyoto 606-8502 JAPAN
E-mail address: konishi@math.kyoto-u.ac.jp

[^0]: ${ }^{1}$ In［CKYZ］，wider class of two dimensional convex polyhedra are also considered．But in this article， we restrict to the reflexive case．

[^1]: ${ }^{2}$ There exists a canonical compactification of C_{a}° in a certain toric surface determined by the polyhedron Δ.

