On projective space bundles with nef normalized tautological divisor

Kazunori Yasutake (Kyushu University, D3)

Abstract

In this poster, I explain about the structure of projective bundles with nef normalized tautological divisor.

- Definition of normalized tautological divisor

X: sm. proj. var. / $k=\bar{k},~\mathcal{E}:$ vect. bdle of rank r,

 $\pi: \mathbb{P}_X(\mathcal{E}) \to X: projectivization, \ \xi_{\mathcal{E}}: tautol. \ div.$

 (\lozenge) $\Lambda_{\mathcal{E}} := \xi_{\mathcal{E}} - \frac{1}{2}\pi^*(\det(\mathcal{E})) : norm. \ taut. \ div.$

 $r\Lambda_{\mathcal{E}} = r\xi_{\mathcal{E}} - \pi^*(det(\mathcal{E})) = -K_{\pi} : rel.anti-can.div.$

Problem

Study the structure of projective space bundles with nef normalized tautological divisor.

– Ample case, Kollár-Miyaoka-Mori [KMM] —

 $\pi: Y \to X$: gen.smooth mor. $\Rightarrow -K_{\pi}$: not ample In particular, $\Lambda_{\mathcal{E}}$ cannot be ample.

- Nef and big case, Theorem1

If $\Lambda_{\mathcal{E}}$ is nef $\Rightarrow \Lambda_{\mathcal{E}}$ cannot be big.

Trivial example ($\Lambda_{\mathcal{E}}$ is semiample)

If $\mathcal{E} \cong \mathcal{O}_X^r$, then $r\Lambda_{\mathcal{E}} = p^*(-K_{\mathbb{P}^{r-1}})$ is basepoint-free where $p: \mathbb{P}_X(\mathcal{E}) \cong X \times \mathbb{P}^{r-1} \to \mathbb{P}^{r-1}$ is the second projection.

- Semiample case, Theoremf 2 –

- 1. char(k) = 0 and $\Lambda_{\mathcal{E}}$ is semiample $\Rightarrow \exists f: X' \to X$; finite étale morphism s.t. $f^*\mathcal{E}$ is trivial up to twist by some line bundle.
- 2. char(k) > 0 and $\Lambda_{\mathcal{E}}$ is semiample $\Rightarrow \exists f: X' \to X$; finite surj. mor. from normal var.
 - s.t. $f^*\mathcal{E}$ is trivial up to twist by some line bundle.

– Nef case 1, Miyaoka [M], Nakayama [N] -

 $X: d\text{-}dim. \ sm. \ proj. \ var. \ / \ \mathbb{C}, \ \mathcal{E}: vect. \ bdle \ of \ rank \ r,$ Then the following conditions are equivalent:

- 1. $\Lambda_{\mathcal{E}}$ is nef;
- 2. \mathcal{E} is A-semistable and

$$(c_2(\mathcal{E}) - \frac{2r}{r-1}c_1^2(\mathcal{E})).A^{d-2} = 0$$

for an ample divisor A;

3.

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l = \mathcal{E}$$
: filt.of subbdles.

s.t. $\mathcal{E}_i/\mathcal{E}_{i-1}$ are induced from a repre. $\pi_1(X) \to PU(r)$ and $\mu(\mathcal{E}_i/\mathcal{E}_{i-1})$ are num. equiv. to $\mu(\mathcal{E}) := c_1(\mathcal{E})/rank(\mathcal{E})$ for any i.

Corollary. X, \mathcal{E} as above.

- 1. Assume that X is simply connected and $\Lambda_{\mathcal{E}}$ is nef. Then \mathcal{E} is trivial up to twist by a line bundle.
- 2. Assume that $\mathbb{P}_X(\mathcal{E})$ is log Fano and $\Lambda_{\mathcal{E}}$ is nef. Then X is log Fano and $\mathbb{P}_X(\mathcal{E}) \cong X \times \mathbb{P}^{n-1}$.

- Nef case 2, Theorem3 -

 $X: d\text{-}dim. \ sm. \ proj. \ var. of \ pos. char.$

 \mathcal{E} : vect. bdle of rank r,

Then the following conditions are equivalent:

- 1. $\Lambda_{\mathcal{E}}$ is nef;
- 2. \mathcal{E} is strongly A-semistable and

$$(c_2(\mathcal{E}) - \frac{2r}{r-1}c_1^2(\mathcal{E})).A^{d-2} = 0$$

for an ample divisor A;

Remark. This is proved by Y. Miyaoka[M] in the curve case and A. Langer[L] in the case where $det(\mathcal{E})$ is trivial.

Corollary. Let S be a K3 surface or an Enriques surface then Ω_S is not nef.

— Tangent bundle, Theorem4 -

- 1. $\Lambda_{\mathcal{T}_X}$ is nef \Rightarrow X contains no rational curve;
- 2. S: sm. proj. surf. $/ \mathbb{C}$. If $\Lambda_{\mathcal{T}_S}$ nef $\Rightarrow \exists f: A \to S$: étale covering from abelian surface A.

Remark. This is proved by I. Biswas[B] independently and recently proved by P. Jahnke and I. Radloff in arbitrary dimension.

References

- [B] I. Biswas, Semistability and Restrictions of tangent bundle to curves, Geom. Dedicata 142, (2009), 37-46.
- [KMM] J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom. 36 (1992), 765–769.
- [L] A. Langer, On the S-fundamental group scheme, to apper in Ann. Inst. Fourier.
- [M] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Advanced Studies in Pure Math. 10 (1987) 449–476.
- [N] N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004.
- [Y] K. Yasutake, On projective space bundles with nef normalized tautological divisor, preprint.