Inductive construction of \log flips in terms of division algorithms，part I

Tomohiro IWAMI（Fukuoka Institute of Technolgy）

The Symposium on Algebraic Geometry，Kinosaki，Oct．24－Oct．28．2011

1．Introduction Let $f: X \longrightarrow Y$ be o projective mor－ phism from a threefold X with only terminal singu－ larities to a normal threefold Y and $Q \in Y$ such that $C=f^{-1}(Q)$ is a curve and $-K_{X}$ is f－ample．
1．For arbitrary small opne set $U \ni Q$ ，call $f^{-1}(U) \supset$ $C \rightarrow U \ni Q$ an extremal neighborhood（or，extremal $n b d$ ，for short）．It is said to be flipping（resp．divisorial） if the exceptional setb is a curve（resp．a divisor）．An extremal nbd is said to be irreducible if C id irre－ ducible．
2．Fact：a general member D of $\left|-K_{X}\right|$ has only Du Val singularities．The 6 types of irreducible extremal nbd are $k 1 A, k 2 A, c D / 3, I I A, I C, k A D$ according to the singularities of $D([1],(2.2))$ ．The first two（or ，the last four）are said to be semistable（resp．exceptional）．
3．（V．V．Shokurov，［3］）Reduction from the existence of the limitting or special log flips with indices greater than two or with the＂types＂to the existence of the in－ dex two exceptional special log flips in order to prove the existence of 3 －fold \log flips：
i）（［3］，（6．1））A small projective birational contraction f of a connected curve is limitting for a log canonical divisor $K+S+B$ if the following conditions hold：
a）$K+S$ is stricly \log terminal；
b）S is an irreducible surface that intersects the con－ nected curve and is nonpositive relative to f ；
c）every irreducible components of the fractional part $\{B\}$ is negative relative to f ；
d）the \log divisor $K+S+B$ is negative to f ；
e）in a neiborghhood of the contrcted curve，$K+S+B^{\prime}$ is not \log canonical for any $B^{\prime}>B$ with the same support as B ．
Moreover，f is called special if in additon f is ex－ tremal，and
f）B is integral，that is，$\{B\}=0$ ；
g）$K+S+B$ is stricly \log terminal．
ii）（［3］，（1．10）；weak form）A small proper morhphism $f: X \rightarrow Z$ of an algebraic 3 －fold X that is finite ober the generic point of Z ，has a stricly \log terminal model for $K+B$ ，even if X is not \mathbb{Q}－factorial and $K+S+B$ not \log canonical．
iii）Reduction（（［3］，（6．5））．The above ii）are implied by the existence of special flips，and even by the existence of special flips of the types（1），（2）as below．
iv）Types of special flips（［3］，（6．6））：
（1）$B=0$ and S is an irreducible sirface negative rela－ tive to f ．
（2）$S+B=S_{1}+S_{2}$ is the sum of two irreducible surfaces S_{1} and S_{2} negative relative to f ．
v）（［3］，（6．7））Flips of type（2）exit．

Note：Reduction iii）\Longleftrightarrow the existence of two irre－ ducible divisors in the non－log case（［1］，（3．12））．

2．Division algorithm（partly）$([1],(2.8),(2.9))$
Example（［1］，（2．1））：Let $f: X \supset C\left(\simeq \mathbb{P}^{1}\right) \rightarrow Y \ni$ Q be an extremal nbd of type k 2 A with two terminal singular points P_{1}, P_{2} of indices $m_{1}, m_{2}>1$ and axial mutiplicities $\alpha_{1}, \alpha_{2} \geq 1$ ，respectively．
Theorem 1 （ $[1],(2.2)$ ）：Let U_{i} be the $\mathbb{Z}_{m_{i}}$－quotient of a＂hypersurface＂of $\mathbb{C}^{4}, U_{i}:=\left(\xi_{i}, \eta_{i}, \zeta_{i}, u ; \xi_{i} \eta_{i}=\right.$ $\left.g_{i}\left(\xi_{i}^{m_{i}}, u\right)\right) / \mathbb{Z}_{m_{i}}\left(1,-1, a_{i}, 0\right)$ ，where a_{i} is an integer ϵ $\left[1, m_{i}\right]$ prime to m_{i} ，and $g_{i}(T, u) \in \mathbb{C}[[u]][T]$ is a monic polynnomial in T of degree（ $=: \rho_{i}$ ），such that $g_{i}\left(\xi_{i}^{m_{i}}, u\right.$ ） is square－free．Let $P_{i}:=0$ and $C_{i}:=\xi_{i}-\operatorname{axis} / \mathbb{Z}_{m_{i}}$ ，
$\Longrightarrow U_{i}$ is defined to be a formal scheme along $C_{i} \simeq$ \mathbb{C}^{1} with only terminal singularities and the associated some patching conditions hold．
Note：A critrion for a divisorial contration in di－ vision algorithm \Longleftrightarrow permissible pencils of excep－ tional rational curves，alternatively．（M．Miyanishi and S．Tsunoda，［2］，or Y．Kawamata）．
3．Reduction by division algorithm to the exceptional cases from semistable cases
Proposition 1．As the notations and conditions as The－ orem1．Let（ $\mathrm{X}, \mathrm{S}+\mathrm{B}$ ）the log pair satisfying（excep－ tional）special flip conditions，S ths sub－boundary con－ sits with irreducible and reduced prime divisors，B the subboundary consists with prime divisors with multi－ plicities <1 ，and $B=B_{1}+B_{2}$（type $t=2$ ）．
Moreover，the intersection of B_{1}, B_{2} contains an ex－ tremal curve C ．And C has two terminal singular points P_{1}, P_{2} of indicies $m_{1}, m_{2}>1$ and $n_{1}, n_{2}>1$ ，and axial multiplicities $\alpha_{1}, \alpha_{2} \geq 1, \beta_{1}, \beta_{2} \geq 1$ along $\left(B_{1}\right)_{\mid C},\left(B_{2}\right)_{\mid C}$ ，respectively，as cited section2，
Then $D \in\left|-K_{X}\right|$ be a Du Val member，with similar datum as Theorem 1.
Moreover，consider the＂ $\mathbb{Z}_{m_{i}} \times \mathbb{Z}_{n_{i}}$＂－quotient of＂hyper－ surface＂of \mathbb{C}^{4} as follows：
$U_{i}:=\frac{\left(\xi_{i}, \eta_{i}, \zeta_{i}, u ; \xi_{i} \eta_{i}=g_{i}\left(\zeta_{i}^{m_{i}}, u\right) h_{i}\left(\zeta_{i}^{n_{i}}, u\right)\right)}{\mathbb{Z}_{m_{i}}\left(1,-1, a_{i}, 0\right) \times \mathbb{Z}_{n_{i}}\left(1,-1, b_{i}, 0\right)}$ ，then the similar patching conditions as Thereom 1 are hold．（to be continued．）

References

［1］S．Mori，On semistable extremal neighborhoods， Adv．Stud．Pure Math．v．35（2002），157－184．
［2］M．Miyanishi and S．Tsunoda，Logarithmic del Pezzo surfaces of rank one with non－contractible bound－ aries，Jap．J．of Math．， 10 （1984），271－319．
［3］V．V．Shokurov，3－fold log flips，Math．USSR Izv．， 26 （1993），95－202．

