Algebro－geometric characterization of Cayley polytopes

Atsushi Ito
itoatsu＠ms．u－tokyo．ac．jp
University of Tokyo
October， 2011

1 Cayley polytopes

Definition 1．1．$P_{0}, \ldots, P_{\mathrm{r}} \subset \mathbb{R}^{s}$ ：lattice polytopes，$e_{1}, \ldots, e_{\Gamma}$ ：the standard basis of \mathbb{Z}^{r} ．

The Cayley sum $P_{0} * \cdots * P_{T} \subset \mathbb{R}^{s} \times \mathbb{R}^{r}$ is

$$
P_{0} * \cdots * P_{r}:=\operatorname{conv}\left\{\left(P_{0} \times 0\right) \cup\left(P_{1} \times e_{1}\right) \cup \ldots \cup\left(P_{\tau} \times e_{r}\right)\right\}
$$

where conv $\{\cdot\}$ means the convex hull of ．
For a lattice polytope $P \subset \mathbb{R}^{n}$ ，
P is a Cayley polytope of length $r+1$
$\stackrel{\text { def }}{\Longleftrightarrow} P$ is identified with $P_{0} * \cdots * P_{\mathrm{r}}$
by an affine isomorphism $\mathbb{Z}^{n} \cong \mathbb{Z}^{n-r} \times \mathbb{Z}^{r}$ for some $P_{0}, \ldots, P_{r} \subset \mathbb{R}^{n-r}$ ．
In other words，P is a Cayley polytope of length $r+1$ if and only if $\pi(P)$ is a unimodular r－simplex for some lattice projection $\pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{r}$（i．e．the linear map induced by a surjective group homomorpfism $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{r}$ ）．

Figure 1．$r=1$ case

2 Main theorem

Definition 2．1．For a polarized variety (X, L) ， （ X, L ）is covered by r－planes

$$
\stackrel{\text { def }}{\Longleftrightarrow} \forall p \in X, \exists Z \subset X \text { s.t. } p \in Z \text { and }\left(Z,\left.L\right|_{Z}\right) \cong\left(\mathbb{P}^{r}, \mathcal{O}(1)\right) .
$$

When $r=1$ ，we say that（ X, L ）is covered by lines．
For any lattice polytope $P \subset \mathbb{R}^{n}$ of dimension n ，we can define the polarized toric variety $\left(X_{P}, L_{P}\right)$ as

$$
\left(X_{P}, L_{P}\right):=\left(\operatorname{Proj} \mathbb{C}\left[\Gamma_{P} \mid, \mathcal{O}(1)\right)\right.
$$

where $\Gamma_{\boldsymbol{P}}:=\bigoplus_{k \in \mathbb{N}}\{k\} \times\left(k P \cap \mathbb{Z}^{n}\right)$ is a semigroup in $\mathbb{N} \times \mathbb{Z}^{n}$ ．
We give a characterization of $\left(X_{P}, L_{P}\right)$ for a Cayley polytope P of length $r+1$ ．The main theorem is following；
Theorem 2．2．$P \subset \mathbb{R}^{n}$ ：a lattice polytope， $\operatorname{dim} P=n$ ．Then， P is a Cayley polytope of length $r+1 \Leftrightarrow\left(X_{P}, L_{P}\right)$ is covered by r－planes．

3 Cayley polytopes of length 2 and Se－ shadri constants

Definition 3．1．(X, L) ：a polarized variety，$p \in X$ ．
The Seshadri constant $\varepsilon(X, L ; p)$ of L at p is

$$
\begin{aligned}
\varepsilon(X, L ; p) & :=\inf \left\{\left.\frac{C . L}{\operatorname{mult}_{p}(C)} \right\rvert\, C \subset X ; \text { a curve containing } p\right\} \\
& =\max \left\{t>0 \mid \mu^{*} L-t E \text { is nef }\right\}
\end{aligned}
$$

where μ is the blowing up of X at p and E is the exceptional divisor．

The Seshadri constant $\varepsilon(X, L ; p)$ is an invariant measuring the local positivity of the line bundle L at p ．
Example 3．2．（1）$\varepsilon\left(\mathbb{P}^{n}, \mathcal{O}(k) ; p\right)=k$ for any $p \in \mathbb{P}^{p n}$ ．
（2）$\varepsilon\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(a, b) ; p\right)=\min \{a, b\}$ for $p \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $a, b \in \mathbb{N}$ ．
（3）For a smooth cubic surface $S \subset \mathbb{P}^{3}$ ，

$$
\varepsilon\left(S, \mathcal{O}_{S}(1) ; p\right)=\left\{\begin{array}{cl}
1 & \text { if } p \in l \text { for a line } l \subset S \\
3 / 2 & \text { otherwise }
\end{array}\right.
$$

We can also characterize Cayley polytopes of length 2 by using Seshadri constants；
Theorem 3．3．$P \subset \mathbb{R}^{n}$ ：a lattice polytope， $\operatorname{dim} P=n$ ．Then the following statements are equivalent；
i）P is a Cayley polytope of length 2，
ii）$\left(X_{P}, L_{P}\right)$ is covered by lines，
iii）$E\left(X_{P}, L_{P} ; p\right)=1$ for any $p \in X_{P}$ ，
iv）$\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)=1$ for the identity of the torus $1_{P} \in\left(\mathbb{C}^{\times}\right)^{n} \subset$ X_{P} ．

Remark 3．4．In fact，ii）\Leftrightarrow iii）\Leftrightarrow iv）＇$\varepsilon(X, L ; p)=1$ for a very general point $p \in X$ ，always hold if (X, L) is a polarized variety such that $|L|$ is base point free．i）$\Leftrightarrow \mathrm{ii}$ ）is nothing but Theorem 2.2 for $r=1$ ．

In general，it is very difficult to compute Seshadri constants，even in toric cases．Theorem 3.3 gives an explicit description for which lattice polytope P the Seshadri constant $\varepsilon\left(X_{P}, L_{P} ; 1_{P}\right)$ is one．

4 Dual defects

Cayley polytopes are related to dual defects；
Definition 4．1．$X \subset \mathbb{P}^{N}$ ：a projective variety．The dual variety $X^{*} \subset\left(\mathbb{P}^{N}\right)^{\vee}$ of X is

$$
X^{*}:=\overline{\left\{H \in\left(\mathbb{P}^{N}\right)^{\vee} \mid \exists p \in \overline{\left.X_{\text {reg }}, T_{X, p} \subset H\right\}}, ~\right.}
$$

where $\left(\mathbb{P}^{N}\right)^{v}:=\left\{H\right.$ ：a hyperplane in $\left.\mathbb{P}^{N}\right\}$ ．The dual defect $\operatorname{def}(X)$ of X is $\operatorname{def}(X):=N-1-\operatorname{dim} X^{*}$ ．
Remark 4．2．By dimension counts，we find that the expected di－ mension of $\operatorname{dim} X^{*}$ is $N-1$ ．It is known that $X \subset \mathbb{P}^{N}$ is covered by r－planes if $\operatorname{def}(X)=r$ ．

The following is an easy corollary of Theorem 2．2；
Corollary 4．3．$P \subset \mathbb{R}^{n}$ ：an n－dimensional lattice polytope s．t． $P \cap \mathbb{Z}^{n}$ spans the lattice \mathbb{Z}^{n} ，i．e．，the morphism $\phi_{P}: X_{P} \rightarrow \mathbb{P}^{\text {dim }\left|L_{P}\right|}$ defined by $\left|L_{P}\right|$ is birational onto the image．

Then， $\operatorname{def}\left(\phi_{P}\left(X_{P}\right)\right)=r \Rightarrow P$ is a Cayley polytope of length $r+1$ ．
Remark 4．4．（1）In Corollary 4．3，the assumption that $P \cap \mathbb{Z}^{n}$ spans \mathbb{Z}^{n} is necessary．For example，let $P \subset \mathbb{R}^{3}$ be the convex hull of $(0,0,0),(1,1,0),(1,0,1)$ and $(0,1,1)$ ．Then the image $\phi_{P}\left(X_{P}\right) \subset \mathbb{P}^{3}$ is \mathbb{P}^{3} ，so $\operatorname{def}\left(\phi_{P}\left(X_{P}\right)\right)=3$ ．But P is not a Cayley polytope of length 4.
（2）The converse of Corollary 4.3 does not hold．For example，let $P \subset \mathbb{R}^{2}$ be the convex hull of $(0,0),(1,0),(0,1)$ ，and $(1,1)$ ．Then P is a Cayley polytope of length 2．But $\phi_{P}\left(X_{P}\right)=X_{P} \subset \mathbb{P}^{3}$ is a smooth quadric surface，whose defect is 0 ．

