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Unitarity of the KZ/Hitchin connection in
genus 0

Prakash Belkale

ABSTRACT. Vector bundles of conformal blocks, on suitable mod-
uli spaces of genus zero curves with marked points, for arbitrary
simple Lie algebras and arbitrary integral levels, are shown in [2] to
carry unitary metrics of geometric origin which are preserved by
the Knizhnik-Zamolodchikov/Hitchin connection (as conjectured
by Gawedzki et al. in [4]). The proof builds upon the work of
Ramadas [14] who proved this unitarity statement in the case of
the Lie algebra sl; (and genus 0). This is an expository paper de-
voted to the context and resolution (in genus 0) of such unitarity
statements.

1. Introduction

Consider a finite dimensional simple Lie algebra g, a non-negative
integer k called the level and a N-tuple X = (A1,-..,An) of dominant
weights of g of level k. The mathematical theory of Tsuchiya-Kanie [17]
and Tsuchiya-Ueno-Yamada [18], associates to this data a vector bun-
dle V = V5, on 9, v, the moduli stack of stable N-pointed curves of
genus g.

On the open part MM, y of smooth pointed curves, V carries a flat
projective connection V, which is the restriction of a suitable Knizhnik-
Zamolodchikov (KZ) connection when g = 0. The WZW connec-
tion [18] generalizes the KZ connection to all genera.

The fibers of V on My x can also be described in terms of sections
of natural line bundles on suitable moduli stacks of parabolic princi-
pal bundles (for the simply connected group G corresponding to g) on
N-pointed curves of genus g. These sections generalize classical theta
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functions, and are hence called non-abelian or generalized theta func-
tions (see the survey [16]). The connection on V was described from
the above algebro-geometric point of view by Hitchin [8].

One of the basic questions, especially from an algebraic geometry
view point, is whether the Hitchin/KZ connection can be realized in
the cohomology of smooth projective varieties.

QUESTION 1.1.
Is there a family of smooth projective algebraic varieties f : A — My N
and an inclusion iz : V, — HM(A,,C) for x € M,y which is consis-
tent with connections (Hitchin/KZ on one side and Gauss-Manin on
the other, A, = f~1(z))?

(Since the Hitchin connection is only a projective connection, one
may have to work over a cover of 9, v, these subtleties will be ignored
in the introduction.)

One could ask for more: (a) a characterization of the image of the
inclusion, (b) same question with relaxed conditions on f (to allow
families of open varieties). Perhaps one may hope that the varieties
A, turn out to be interesting in their own right, and that counting
points of these varieties over finite fields, or their periods, give us in-
teresting functions. More importantly for us, if the image of i, lands
in HM9(A,,C) with M relative dimension of f then the Hodge met-
ric on HM? will restrict to a unitary metric on V, left invariant by
the KZ/Hitchin connection (we will call this the Ramadas-Gawedzki
method for a unitary metric).

Question 1.1 is related to a basic conjecture in the subject, with
origins in physics, which asserts that V carries a projective unitary
metric preserved (projectively) by the connection V. It was pointed out
to us by A. Kirillov that the combined work of Kirillov and Wenzl [10,
11, 21] (Theorem 10.9 in [11] and Theorem 3.7 in [{21]) implies this
conjecture for all genera including genus 0. There is also a recent
preprint of Andersen and Ueno [1], where this unitarity conjecture is
proved for the special linear groups G = SL(n) for all genera. The
unitary metrics obtained via these approaches are not (a priori) of
Hodge-theoretic origin, and do not answer Question 1.1.

In the 90’s Gawedzki and collaborators [7, 4] proposed a conjec-
tural, explicit construction of the unitary metric via integration of the
Schechtman-Varchenko forms [15]. Recently the case g = s!; and genus
0 of Gawedzki’s proposal was rigorously proved by Ramadas [14], lead-
ing to a positive answer to Question 1.1 in this case. In fact Ramadas’
map in cohomology lands in H*?, and hence a unitary metric can be
obtained by restricting the Hodge metric.
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Following Ramadas’ general strategy, we prove the (geometric) uni-
tarity conjecture, as proposed by Gawedzki et al. [4] for arbitrary
simple Lie algebras g in genus 0. As in Ramadas’ work, the unitary
metric is obtained by realizing the bundle of conformal blocks inside
a Gauss-Manin system of cohomology of smooth projective varieties
(thus answering Question 1.1 in the affirmative in genus 0). The map
to cohomology again lands in HM:0;

THEOREM 1.2. The KZ/Hitchin connection on bundles of confor-
mal blocks over configuration spaces of distinct points on Al is unitary,
with the unitary metric of geometric origin, for any simple Lie algebra
g and any integral level k.
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2. Some basics

There are two approaches to non-abelian theta functions: via rep-
resentation theory of Kac-Moody lie algebras , and as global sections of
line bundles over moduli spaces (moduli-theoretic). These approaches
are equivalent (see the survey [16]).

Recall that finite dimensional irreducible representations of g are
parameterized by the set of dominant integral weights P, considered a
subset of h*. To A € P,, the corresponding irreducible representation
V) contains a non-zero vector v € V) (the highest weight vector) such
that (where A, is the set of positive roots):

Hv=AH)v,Heh
Xav =0,X4 € go, Vo € A

We will fix a level k£ in the sequel. Let P denote the set of dominant
integral weights of level k. More precisely

Pe={ e P | (\0) <k}

where 6 is the highest (longest positive) root, and ( , ) is a normalized
Killing form ((8, 8) = 2).
The affine Lie algebra g is defined to be

1=9gC((§)®Cc

where c is an element in the center of § and the Lie algebra structure
is defined by

(X ®F(£),Y ®9(5)) = [X, Y] ® f(£)g(£) + (X, Y) Rese=o(gdf)
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where f,g € C((¢)) and X,Y € g.

For each A € P, there is a unique “integrable” irreducible repre-
sentation H, of @ which contains V) and such that the central element
c of g acts on it by multiplication by k. The representation H, when
A = 0 (still at level k) is called the vacuum representation at level k.

2.1. Conformal blocks. Fix a stable N-pointed curve of genus
g with formal neighborhoods X = (C;P,..., Pn,m,...,nn) where
i:Ocp, S Cl&], i=1,...,N as isomorphisms.
Let X and be as above, and choose A = (A1, ..., An) € PN.
Set
7‘[;\':7'[,\1(8...@7'[,\1\,.

DEFINITION 2.1. Define the space of conformal blocks
VI(%) = Home(H5/9(%)H;, C)

where g(X) = g ®c I'(C — {Py,..., Pn},O) which acts on Hy by
power series expansion around each P; (see [2] and the references there
in).

REMARK 2.2. In the case of ¢ = 0, conformal blocks naturally
embed in the vector space dual of VA, ®...®Vy,. The KZ connection is
actually deﬁned on this larger space (the connection operator is V 2=

9z;

az, + 1 z#l Py where Q;; is the Casimir acting on the ij factors and
K= k +g*). In geneml the Hitchin/KZ connection has two definitions:
one as heat operators (Hitchin), and the second uses the representation
theory of Virasoro algebras.

Following Dirac’s bra-ket conventions, elements of VXT(X) (or H3)

are frequently denoted by (¥| and those of Vi(X) (or of #5) by |®)
and the pairing by (¥|®).

2.2. Relations to non-abelian theta functions. Let us con-
sider a (simply connected) semisimple lie group G with Lie algebra
g, and no parabolic structures. The starting point is an observation
(made rigorous by many authors, see the survey [16]) that since princi-
pal bundles on C minus a point p are trivial, the moduli stack Mg (X)
of principal G-bundles is a double quotient (where z is a formal coor-

dinate at p)
G(O(X — p)\G(C((2)))/G(Cl[2]])
The moduli-stack has Picard group = Z if G is simple. Let L be
the positive generator of the Picard group. We can go about trying to
calculate the space of generalized theta functions HO(Mg(X)(r), LF)
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as follows: Let @ = G(C((2)))/G(C|[[2]]) and L' the pull back of L£*
under the natural map from @ to the double quotient. The space
HO(Mg(X)(r), L) is the subspace of sections of H°(Q, £') invariant
under the action of G(C[[2]]). However the bundle £’ is linearized not
for the action of G(C((z))), but rather, for a central extension of it, and
the space H°(Q, L') is the dual V¥ of an irreducible representation of
this central extension (V} is the same as H, defined above for A = 0).
Passing to Lie algebras, one obtains that H%(Mg(X), £*) is isomorphic
to the space of conformal blocks associated to the pointed curve (C, p, z)
with the vacuum representation (at level k) attached at p. There is a
generalization of this picture to the case of “insertions” (i.e. parabolic
structures).

2.3. Propagation of vacua. Add a new point Py, together with
the vacuum representation V; of level k, at Pyy;. Also fix a formal
neighborhood at Py,;. We therefore have a new pointed curve X', and
an extended X = (A1,---, AN, AN41 = 0). There is an isomorphism
(“propagation of vacua”)

VI(®) 5 Vi), (] (2],

2.4. Correlation functions. Suppose X € My y. Let (¥| €
V;(x): Ql)"':QM GC_{PI)”'apN}a ch) GHX) Ql)"')QM €C—
{P,..., Pn}, Qi # Q4,7 < j and corresponding elements X1, ..., Xy €
g. There is a very important differential called a correlation function

M
2 = (TX1(Q1)X2(Q2) .- Xnr(@10)[2) € Q) o,

Here )}, is the vector bundle of holomorphic one-forms on C. One
way to define {2 is via propagation by vacua: add points Q1, . . . @ with
formal coordinates 1, . .., and consider the elements X,(—1)|0) in
the vacuum representation at those points where X,(n) = X, ® £
Then

Q = (U] X1 (-1)|0) ® Xo(—1)|0) ... Xpr(—1)|0) ® |®)dr . .. depns.

The differential form Q is independent of the chosen coordinates and
can be thought of a suitable multiderivative of a theta function.

3. In genus 0

We will henceforth consider the case C = P!, with a chosen oo
and a coordinate z on A! = P! — {co}. Consider distinct points
Pi,...,Py € Al C P! with z-coordinates zi, ..., 2y respectively. The
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standard coordinate z endows each P, with a formal coordinate. Let
X = %(2) be the resulting N-pointed curve with formal coordinates.

For every positive root 4, make a choice of a non-zero element f;s
in g_s. Suppose Ay,..., Ay € P, such that y = Zf_’__l A; is in the root
lattice. Write y = Y npa,, where a4 are the simple positive roots,
where n, € Zxo.

Let [A) = |A) ® ... ® [Ay) be the product of the correspond-
ing highest weight vectors. Now consider and fix a map 8 : [M] =
{1,...,M} = R (R is the set of simple positive roots), so that y =
224:1 B(a) (where M is M = )" n,).

Introduce variablesty, ... ,ta considered points on P!—{o0, P, ..., Py}
Consider, for every (¥| € V; (%), the correlation function

Q = Qp((T]) = (¥ fa)(tr) foe) (t2) - - - Fon (tar)|X)-

REMARK 3.1. There is an ezplicit formula (see [2]) for Q in terms
of (¥l € (Va, ®...®@ Vay)* (a Schechtman-Varchenko form,).

The above correlation function can be considered as a suitable “nor-
mal” multiderivative of the corresponding theta function on a Harder-
Narasimhan stratum (the theta function vanishes on the stratum).

Let k = k+4g* where g* is the dual Coxeter number of g. The follow-
ing “master function” was discovered by Schechtman-Varchenko [15]:

(3.1)
—op) AN (A;.8(a)) —(8(a),5(%)
R = H (zi—25) = HH(ta—Zj) % H (ta—ts)” =

1<i<j<N a=1 j=1 1<a<b<M

3.1. The extension theorem. Suppose M = ) n, (and hence
B:[M]—> RCA). Let

Xz={(ts,...,tu) € AM 1 ta # ty,ta # 21,1 € [N],a £ b € [M]}.

Consider an unramified (possibly disconnected) cover of X given
by Yz = {(t1,...,tm,y) | ¥° = R"}, (where assume for simplicity that
the exponents in R* are integers).

Now fix (¥| € V;(%(E')) and set 2 = Qg((¥]). The following exten-

sion result was shown recently in [2]:

THEOREM 3.2. (1) The multi-valued meromorphic form RS
on Xy is square integrable.
(2) The differential form RS extends to an everywhere regular,
single valued, differential form of the top order on any smooth
and projective compactification Yz D Y.
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The above theorem was proved earlier by Ramadas [14], for g = sl,.
Ramadas’ strategy [14] is to prove this kind of theorem by showing that
the logarithmic degree of RS} along any “abnormal stratum” for Rf2
is positive (see [2] and references therein). These abnormal strata are
of three kinds:

(S1) A certain subset of the t's come together (to an arbitrary mov-
ing point). That is t; = t; = --- = tp after renumbering
(possibly changing 3).

(S2) A certain subset of the t's come together to one of the z’s.
That is t; = t, = -+ = tp = 2; after renumbering (possibly
changing 5).

(S3) A certain subset of the t's come together to co. That is t; =
te = --- = tr = oo after renumbering (possibly changing 3).

REMARK 3.3. The logarithmic degree d°(RSY) along a stratum S
is the following. Blow up (P')™ along S and let E be the exceptional
divisor. Then, d5(RQ) — 1 is the order of vanishing of RQ along E.
Note that “order of vanishing” is an additive function and the order of
vanishing of R 1is 51; times the order of vanishing of the single valued
function RC* (for a sufficiently divisible integer C).

More precisely, we prove the following theorem.

THEOREM 3.4. The logarithmic degree of R along each of the
strata (S1), (S2) and (S3) is positive.

The author while following Ramadas’ overall strategy, replaced the
used of quot schemes by Kac-Moody algebras. The following were
crucial

e (2 is a correlation function in the language of [18]. It is a
log form in the sense of Hodge theory, which has a pole along
to = tp only if B(a) + B(b) is a root, and the residue is again a
correlation function.

e Correlation functions have explicit power series expansions as
collections of points come together - For example on the stra-
tum t; = t, = .-+ =t = 21, we have a formula (on suitable
angular sectors)

— —bl*l ,—bL-"-l
Q= E wyy LU
b1,bL

where wj; equals

(O fawrny(trn) - - foan(tan)lp (fay (E) - . . pr(facry (€2)) |1 XV da
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(di = duy...dur, u; = t; — 21 and p; acts on the the first
factor of |X).)

e The logarithmic order of 2 are controlled by its power-series
coefficients. The author showed in [2] that the power series
coefficients have to vanish as “too many points come together”-
this vanishing pattern is shown to adequately “compensate”
the (zero and) pole producing patterns of the master function
R. For example

Fay (M) ... fary (€)M =0
if

200,7) = (1,7)
(3.2) > b > o

where y = S_& | B(i). Note that k appears in the denominator
of (3.2) and not x.

e Vanishing statements of power series coefficients are an essen-
tial consequence of the integrability assumption on the repre-
sentations of g (see Theorem 12.5, part (d) of [9]). In geomet-
ric terms these vanishings occur because of the compactness
of the moduli of semi-stable bundles. The finite dimensional
analogue is the following: the vanishing f**!v = 0 where v is
the highest weight of an irreducible finite dimensional SLy(C)
representation of dimension k (with f € sl; as usual).

3.2. Gawedzki’s proposal in genus 0. Theorem 3.2 leads to a
unitary metric and an answer to Question 1.1 in genus 0. Before we
do this, it is instructive to step back and take a look at the general
Gawedzki proposal (influenced by Ramadas’ work):

(1) Conformal blocks can be viewed as sections of line bundles on
moduli of parabolic bundles on the curve. In this setting, ac-
cording to Ramadas, one should first find derivatives of theta
functions on Harder-Narasimhan strata, which can be taken
as a suggestion to look at correlation functions. Roughly
speaking, one modifies the corresponding G-bundles (in the
Harder-Narasimhan stratum, actually the part where the ex-
tension data are trivial) around a finite set of additional points,
and then takes a suitable mixed partial derivative of the (non-
abelian) theta function ({(¥|) in the direction of these changes
to obtain a correlation function Q((¥|). The next step is
multiplication by a Schechtman-Varchenko master function R,
available only in genus 0 and perhaps in genus 1 (in genus 1,
in terms of classical theta functions [5]), but in principle one
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should be able to guess the form of the Schechtman-Varchenko
function by prescribing its local behavior.

(2) Thisshould lead to a “generalized Schechtman-Varchenko form”:
A form on a cover of CM (C is the curve), with local coeffi-
cients (of classical thetas with finite monodromy).

(3) There will then be the difficult task of showing that the as-
signment of a conformal block to an element in a cohomology
group: (V]| — RQ((¥]) is flat for connections (as the marked
curve varies) - which is available in genus 0 thanks to [15].

We will now describe the genus 0 resolution of this proposal. Instead
of the moduli of N points on P!, we will work over the configuration
space C of N points in A' (which will then lead to a projective metric
over the moduli space, see [2]). The varieties A, from the introduction
are Y z, which are smooth projective compactifications of the canonical
Y;. The most important local system in this picture is the image Hy of
the cohomology of Y in that of Yz (which is independent of the choice
of the smooth compactification Yz, by mixed Hodge theory):

H;=1Im: HM(Y;C) - HY(Y;C)

(an isomorphism on (M, 0) parts)
One obtains an inclusion (from Theorem 3.2):

(3.3) Vi(%(2) = HM°(Y;,C)

taking to (¥| to RQs((¥|), and where the last group is isomorphic to
the (M, 0) part of Hj.

It follows from the work of Schechtman and Varchenko that the
above inclusions preserve connections (more precisely, they prove that
VXJr (X(2)) — HM(Y;, C) preserves connections, by some arguments in
Hodge theory this implies that VS:’ (%(2)) - HM(Y 7, C) preserves con-
nections as well).

Note that the HM? part of a variation of Hodge structure is, in
general, not preserved by the Gauss-Manin connection, the failure is
measured by Griffiths’ transversality. However in our situation there is
a local subsystem of HM (Y z, C) which lives in M. It is meaningful
to study the entire Hodge structure Hyz, not just its (M,0) part.

The Hodge metric on HM2(Y ;, C) restricts to a unitary (and non-
degenerate) metric on the space of conformal blocks; it is preserved
by the KZ-connection. Given a conformal block (|, let #((¥|) =
RQ(¥]) be the corresponding Schechtman-Varchenko form. Then, a
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(KZ-invariant) unitary metric (upto a constant) is given by the con-
vergent integral (as conjectured in [4]):

(P = (VD [ () AT

(P1)M

An obvious question is to characterize the image of (3.3). Here are
two other questions:

QUESTION 3.5.
Consider a more general hyperplane arrangement (and a parameter

space for topologically equivalent hyperplane arrangements, and weights).

Can one single out a part of the corresponding variation of cohomology
groups (“those that extend to compactifications”?): For ezample if in
the master function (3.1) there are general (rational) exponents.

QUESTION 3.6.
(In the spirit of a question of Nori to the author) Is there a “modular
interpretation” for the entire Hodge structure Hz? Perhaps as sections
of suitable line bundles over moduli of Higgs bundles (with growth con-
ditions at infinity)? It will be interesting to see if this chain of thought
leads to Hitchin type connections on other spaces of global sections.
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