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ABsTxAcT. Vector bwndles of cgRfoTmal blQcks, oR suitable mod-
gli spaces ef geRus zero curves witk marked poiRts, for arb2trary
simple Lie algebras and arbitrary integral levels, are shown in i2] to

carry nnitary metrics of geometric origin which are preserved by
the Kxxizhnik-Zamolodchikov/Hitchin connection (as conjectured
by Gawedzki et al. in [41). The proof builds upon the work of
Ramadas l14] who proved this uRkarity statement in the case of
the Lie algeb\a s{2 Åqand genus g). Tkis is aR exposkery paper de-
voted to the context and resolution (in genus O) of such unitarity

statements.

1. Introduction

   Consider a finite dimensional simple Lie algebra g, a non-negative
                                   -Iinteger k called the level and a N-tuple A = (Ai,...,AN) of dominant
weights of g of level k. The raathematica} theory ef Tsuchiya-]Kanie Il7]

and Tsuckiya-Uelie-\amada I18], associates to this data a vector bun-

dle V = Vx,fo on EMg,N, the moduli stack of stable N-pointed curves of

genuS 9•
   On the open part Åí!ng,N of smooth pointed curves, V carries a flat
pfejective connectioit V, vvhich is the restriction oÅí a snitab}e KRizhRik-

Zamelgdckikov (KZ) comaectigR wkek g = g. Tke WZW connec-
tion [18] generalizes the KZ connection to ali genera.
   The fibers of V on ÅíMg,N can also be described in terms of sections
of natural lixxe bundles on suitable moduli stacks of parabolic princi-.
pal bundles (fer the simply conRected group G correspoxxding to g) oa
N-pciEted curves of geftu$ g. These sectiexxs gemera!ize classiÅíBkketa
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functions, and are hence called non-abelian or generalized theta func-
tions (see the survey [16]). The connection on V was described from
the above algebro-geometric point of view by Hitchin [8].
   One of the basic questions, especially from an algebraic geometry
view point, is whether the Hitchin/KZ connection can be realized in
the cohomology of smooth projective varieties.

   QuEsTIoN 1.1.
Is there a family of smooth prol'ective algebraic varieties f : A - Åí!Jtg,N

and an inclusion i. : V. g HM(A.,C) forx E SMg,N which is consis-
tent with connections (Hitchin/KZ on one side and Gauss-Manin on
the other, A. = f"(x)?9

   (Since the Hitchin connection is only a projective connectien, one
may have to work over a cover of EMg,N, these subtleties wil} be ignored
in the introduction.)

   One could ask for more: (a) a characterization of the image of the
inclusion, (b) same question with relaxed conditions on f (to allow
families of open varieties). Perhaps one may hope that the varieties
A. turn out to be interesting in their own right, and that counting
points of these varieties over finite fields, or their periods, give us in-

teresting functions. More importantly for us, if the image of i. Iands
in HM,O(A.,C) with M relative dimension of f then the Hodge met-
ric on HM,O will restrict to a unitary metric on V. Ieft invariant by

the KZ/Hitchin connection (we will call this the Ramadas-Gawedzki
method for a unitary metric).
   Question 1.1 is related to a basic conjecture in the subject, with
origins in physics, which asserts that Y carries a projective unitary
metric preserved (projectively) by the connection V. It was pointed out

to us by A. Kirillov that the combined work of Kirillov and Wenzl [10,
11, 21] (Theorem 10.9 in [11] and Theorem 3.7 in [21]) implies this
conjecture for all genera including genus O. There is also a recent
preprint of Andersen and Ueno [1], where this unitarity conjecture is
proved for the special linear groups G = SL(n) for all genera. The
unitary metrics obtained via these approaches are not (a priori) of
Hodge-theoretic origin, and do not answer Question 1.1.
   In the 90's Gawedzki and collaborators [7, 4] proposed a conjec-
tural, explicit construction of the unitary metric via integration of the
Schechtman-Varchenko forms [15]. Recently the case g == st2 and genus
O of Gawedzki's proposal was rigorously proved by Ramadas [14], lead-
ing to a positive answer to Question 1.1 in this case. In fact Ramadas'
map in cohomology lands in HM'O, and hence a unitary metric can be
obtained by restricting the Hodge metric.
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   Following Ramadas' general strategy, we prove the (geometric) uni-
tarity conjecture, as proposed by Gawedzki et al. [4] for arbitrary
simple Lie algebras g in genus O. As in Ramadas' work, the unitary
metric is obtained by rea}}ziRg the buRd}e of conforma} blocks iRside
a Gagss-Makin sy$tem of cekomology ef sreooth prejective vayieties
(thus aRswering Questioxx 1.1 ik the afirmative ik gekgs C). The map
to cohomology again lands in ffM,O:

   THEoREM 1.2. The KZ/Hitchin connection on bundles of confor-
mal blocks over configuration spaces of distinct points on Ai is unitary,

with the unitary metwic of geometric ontgin, for angy simple Lie algebra
g and any integral level k.

   1.1. Acknowledgements. I would like to thank the organizers
of the KiResaki sympesium for invitiRg me to this cellfereBce, aBd
Professer Takeshi Abe for hi$ kind kgspkality.

                      2. Seme basics

   There are two approaches to non-abelian theta functions: via rep-
resentation theory of Kac-Moody lie algebras , and as global sections of
line bundles over moduli spaces (moduli-theoretic). These approaches
are equivalent (see the survey [16]).

   Recall that finite dimensional irreducible repre$entations of g are
parameterized by the set of dominarLt integral weights P+ considered a
$ubset of h'. To A ff P."., the cerresponding irreducible representatiolt
VA cegtains a nexx-zero vector v E Yx (Ske highest weigkt vecter) sgck
that (where Ai- is the $et ef pcsitive roots):

                     ffv -A(H)v,HEh

                 X.v = O, X. E g.,Va e A.F.

We will fix a level ic in the sequel. Let Pk denote the set of dominant
integral weights of level k. More precisely

                  Pk -- {AE P+ 1 (A, e) f{ k}

where e is the highest (longest positive) root, and(,) is a normalized
Killing form ((e, e) me 2).

   [l]he afi=e Me a}gebra g i$ defiRed So be

                     g-= gx Åë((e)oÅëe i
where c is an element in the center ofg and the Lie algebra structure
is defined by

   [X x f(C),Y cg) g(e)] := [X,Y] Q f(C)g(C) + c(X, Y) ResE=o(gdf)
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where f, g E C((C)) and X, Y E g.
   For each A E Pk there is a unique "integrable" irreducible repre-
sentation 7tA of g which contains VA and such that the central element
c of g aÅíts on it by multiplication by k. The representation 7tA when
A = O (still at level k) is called the vacuum representation at level k.

   2.1. Conformal blocks. Fix a stable IV-pointed curve of genus
g with formal neighborhoods EE = (C;Pi,•••,PN)ni,•••,nN) where
ni : Oc,p, - 5- C[[Ci]], i = 1,...,N as isomorphisms.

                                -   Let ec and be as above, and choose A == (Ai,...,AN) E PleN.

   Set
                   7tx = '"A, X...X 7-tA..

   DEFINITIoN 2.1. Define the space of conformal blocks

               Vxt(ec) == Homc(7tx/g(ec)7tx, C)

   where g(ec) = g Xc r(C - {Pi,..., PN}, O) which acts on 7tx by
power series expansion around each Pi (see [2] and the references there
in).

    REMARK 2.2. In the case ofg == O, conformal blocks naturally
embed in the vector space dual of VA,X...XVA.. The KZ connection is
actually defined on this larger space (the connection operator is V-an =
                                                    azi
6I.I;. +2 2#i .,st.2'.' j, where 9ij is the Casimir acting on the io' factors and

K = k+g'?. In general the Hitchin/KZ connection has two definitions:
one as heat operators (Hitchin?, and the second uses the representation

theor3t of Virasoro algebras.

   Following Dirac's bra-ket conventions, elements of Vxt(ec) (or 7tk)

are frequently denoted by ÅqWl and those of Vx(ac) (or of 7tx) by 10År
and the pairing by ÅqgllÅëÅr.

   2.2. Relations to non-abelian theta functions. Let us con-
sider a (simply connected) semisimple lie group G with Lie algebra
g, and no parabolic structures. The starting point is an observation
(made rigorous by many authors, see the survey [16]) that since princi-
pal bundles on C minus a point p are trivial, the moduli stack MG(X)
of principal C-bundles is a double quotient (where z is a formal coor-
dinate at p)

              G(O(X - p))XG(C((z)))/G(C[[z]])

   The moduli-stack has Picard group = Z if G is simple. Let L be
the positive generator of the Picard group. We can go about trying to
calculate the space of generalized theta functions HO(MG(X)(r),Lk)
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as fo}lows: Let 2 ww G(Åë((z)))!G(Åë[[z]]) and C' the pull back of Lk

"nder the natural map from 2 te the deuble quetient The space
llO(Mc(X)(r),Åík) is the subspace of sections of HO(2,Åí') invariant
under the action of C(C[[zl]). However the bundle L' is linearized not
for the actioR ef G(Åë((z))), bgt ratker, fer a central exteitsioit ef it, aRd

the space ilO(2,L') is the dual Vk' of an irreducible representatioxx of

this central extension (Vle is the same as 7tA defined above for A= O).
Passing to Lie algehras, oRe obtaiRs that HO(MG(X), Åík) i$ isomorphic
to the space ef ceRformal b}ocks asseciated to the poiBted curve (C, p, z)

with the vacuum representation (at level k) attached at p. There is a
generalization of this picture to the case of "insertions" (i.e. parabolic

strgctgres).

   2.3. Propagation ofvacua. Add anewpoint PN+i together with
the vacuum representation Vo of level k, at PN"!. Also fix a formal
neigkbgyhoed at ji)N"i. We therefore kave a Rew poigeed exrve ec', axxd
           -an extended X = (Ai,...,AN,AN+i nm O). There is an isomorphism
("propagation of vacua")

                 V,-,i,(i;;f) -dr5F Vxt(ec), Åq{i}l - ÅqWl.

   2.4. Correlation functions. Suppose fl; G ÅíMg,N. Let ÅqWl E
Vxt (SEÅr, (2,, . . . , QM G C - {P,, . . . , PN}, IÅëÅr E 7tx, {?,, . . . , qM E C -

{Pi, . . . , PN}, (?S ([?j,i Åq j' and corresponding elements Xi, . . . , XM E

g. There is a very important differential called a correlation functioma

                                           M
        st == Åq$IXi(Åq[?i)X2(Q2) •`-XM(QM)lÅëÅr G (8) skb,q,•

                                           i=1
   Here stb is the vector bundle of holomorphic oneforms on C. One
way to defue st is via prepagatieR by vacua: gdd peiRts Qi, . . . QM with
formal coordinates ipi,...,ipM and consider the elements X.(-1)10År in
the vacuum representation at those points where Xa(n) : X. X C".
ClrheR

       A  st - ÅqWiX,(-1)iOÅr c2b X,(-1)10År ... .XM(-1)iOÅr XiÅëÅrdÅë, ...dthM.

The differential form 9 is independent of the chosen coordinates and
caR be tkogght cf a sgkable ragltideyivative of a theta fuxctigR.

                       3, In genusO

   We wM hegceforth consider the ease C = ewi, wkh a chosek oo
axxd a coordinate z on Ai ur Pi - {oo}. Comsider distinct points
Pi , . . . , PN E Ai c Pi with z-coordinat es zi , . . . , zN resp Gctively. The
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standard coordinate z endows each Pi with a formal coordinate. Let
X == ec(g) be tke resgltiRg N-pointed curve witk fgyraal coordiRates.
   For every positive roet 6, make a choice of a noR-zero elemeRt f6
in g.6. Suppose Ai,...,AN ff Pk, such that Jtt == ÅíÅí•.I.i Ai is in the root

lattice. Write pa = 2npcMp, where ap are the simple positive roots,
where np E Zko•
       .   ]Let IAÅr ww iAiÅr X...& IANÅr be the pro{ilgct ef the ccryespegd-
ing highest weight vectors. I ow consider and fix a map B : [M] ::
{1,...,M} --År R (R is the set of simple positive roots), so that pa :=
Åígt=, fi(a) (where M is M = Åín,).
   Introduce variables ti,...,tM considered points on Pi-{oo, Pi,..., PN}
Coitsider, for every Åqigl E Vx*(ss), the correlatiex fuRctlok

                                                 ---        s-) mx S)p(ÅqglD - Åqg]rlfB(i)(ti)fp(2)(t2)-..fB(M)(tM)IAÅr•

   REMARK 3.1. There is an explicit formula (see [2]? for SH2 in terms
of Åqgll E (VA, X . . . Q Vx.)* (a Schechtman- Varchenko form?.

   The above correlation fuxxctioR cafi be cemsidered as a suitable "Ror-

mal" multiderivative of the corresponding theta function on a Harder-
Narasimhan stratum (the theta function vanishes on the $tratum).
   Let rc == ic+g* where g' is the dual Coxeter number of g. The follow-
ing "master function" was discovered by Schechtman-VarcheRko [15]:
(3.l)

                       MNR== ll (xi-zo)=S(tfMLA A)llll(t.-zj)M(:X"ii5k:LLA rs(a)) " (t.-tb)op

    ISiÅqj -Åq N awwl j'=1 ISaÅqbSM
   3.1. [l]he exteRsion tkeorem. Sljppose M = 2 np (aRd heRce
S; [Ml .Rs A+). Let
   Xz- -- {(ti, • • - , tM) E AM : ta l tb, ta g(1 Xi, i E [Nl , a ptl b E [M] }.

   Consider axx unramified (possibly disconnected) cover of X.- given
by Yx- -- {(ti,...,tM,y) l yrc : Rrc}, (where assume for simplicity that
the expcReRt$ ik 7ZK are iRtegers).
   Now fix Åqillrl G Vxt(ec(zri)) and set SH} =: S"}p(ÅqWi). The following exten-

sion result was shown recently in [2]:

   THEoREM 3.2. (1) The multi-valued meromorphic form Rst
       en Xi is sg#are integra5ge.
    (2) The differentiag form 71st extends to an eyerywhere reg#IGr,
       single valued, differential form of the top order on any smooth
       and proo'ective compactiflcation Yx-- ) Yz-.
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   Tke abeve theorem was proved earlier by Ramadas I14] , for g xe gl2.
Ramadas' strategy [14] is to prove this kind of theorem by showing that

tke legarithmic degxee of Rst alekg aRy "abllormal $tratum" for 71st
is positive (see [2] and references therein). These abnormal strata are

of th:ee kiRd$:

   (Sl) A certain subset of the t's come together (to an arbitrary mov--

       ing poikt). That is ti = t2 -- ••• = tL aÅíter rexxumbering
       (possibly changing 6).
   (S2) A cert&iR sgbset ef eke t's cerae tegether to elte of tke z's.
       That is ti ww t2 xe ••• =tL :zi after renumbering (possibly
       chaRging S)•
   (S3) A certain subset of the t's come together to oo. That is ti =
       t2 = • • • = tL = oo after reRgg}bering (possibly chaRgixg f3).

    REMARK 3.3. The loganthmic degree dS(RS"l) along a stratum S
is the foISeujing. Blow up (Pi)M along S and let E be the exeeptionat
divisor. Then, dS(Rst) -1 is the order of vani$hing of 71st along E.
Note that "erder ef vanishing" is an additive functien and the order ef
vanishing of7l is zl)i times the order of vanishing of the single valued

functien fiICK (fer a sufiicientgy divi$ibge integer C).

MoTe precisely, we prove the following theourem.

   THEoREM 3.4. The loganthmic degree of RS) along each of the
strata (Sl), (S2) and (S3) is positive.

   The author while followiRg Ramadas' overall strategy, yeplaced the
used of quot schemes by Kac-Moody algebras. The following were
crucial

     e R is at correlatiorm function in the language of [18]. It is a
       !og ferm in the sense of Hodge theory, which has a pole aloRg
       ta = tb only if 6(a) + fi(b) is a root, and the residue is again a

       correlation functioR.
     e Correiation functions have explicit power series expansions as
       collections of points come together - For example on the stra-
       tum ti == t2 = ••• == tll = ii, we have a formula (oxx suitable
       angular sectors)

                 S'2= 2 cvbr2Li-biwwi...uE• bLwwi

                     bl,".bL

       where wg equals

  Åqgl lfB(ll+i) (tL+i) • • • ffi(M) (tM) lp, (fp(,) (C9Z )) . . . p, (ffi(.) (C9n))I A-År dtt
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       (du-' = dui,..dttL, zLi == ti - zi and pi acts on the the first
               wh+       factor of IAÅr•)

     e rl]he legarithmic ordeT ef S} are controlled by its power-series
       ceeficleBts. Tke agthef shewed ix [21 that the power series
       cceficieRt$ have to vaRish a$ "tge maRy points ccme tegetker" -
       this vanishikg pattern is showlt to adequately t`compeRsate"
       the (zero and) pole producing pattems of the master function
       R. For example
                 ffi(,) (C9i)... fp(.) (C9L)IA,År - o

       if
(3'2) Åíb.År2(Ai''Y}k-, (7'7)

       where ty == Åí,mu•wwi S(i). Note that k &ppears in tke deRemikater

       of (3.2) a#d xxot K.
     . VaRishing statemeRts of power series coeficiekts aye ait essen-
       tial consequence of the integrability assumption on the repre-
       sentations of 9 (see Theorem 12.5, part (d) of [9]). In geomet-

       ric terms these vanishings occur because of the compactness
       of the moduli of semi-stable bundles. The finite dimensional
       analogue is the following: the vanishing fk-Fiv = O where v is
       the highest weight of an irreducible finite dimensional SL2(C)
       representatioxx of dimension k (with f ff st2 as usual).

   3.2. Gawedzki's propgsal ift geRus C. Theorem 3.2 leads to a
gRitary metric axd axx axswer to QgestieR 1.1 ift genits g. Befgre we
do this, it is instructive to step back and take a look at the geReral
Gawedzki proposal (infuenced by Ramadas' work):

    (1) Conformal bloÅëks can be viewed as sections of line bundles on
       moduli of parabolic bundles on the curve. In this setting, ac-
       cording to Ramadas, one should first find derivatives of theta
       functions on reIarder-Narasimhan strata, which can be taken
       as a suggestiorm to look at correlation functions. Roughly
       speaking, one modifies the corresponding C-bundles (in the
       Harder-NarasimhaB stTatum, aÅíÅíua}ly the part where the ex-
       tegsioR data are Srivial) aregRcl a fiRite set of additieRal peiRts,

       aRd then takes a suitable g}ixed partial derivative of the (ReR-
       abelian) theta fultctien (ÅqigD in the directioxx of these changes

       to obtain a correlation function st(ÅqWi), The next step is
       multiplication by a Schechtman-Varchenko master function R,
       available only in genus O and perhaps in genus 1 (in genus 1,
       in terms of classical theta functions [51), but in principle one
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       should be able to guess the form ef the Schechtman-Vaxchenko
       functieB by prescribing its local behavior.
    (2) This should lead to a "generalized Schechtman-VaTchenko form" :
       A form on a cover of CM (C is the curve), with local coefli-
       cieRts (of clas$icaKhetas with fiRite moRodremy).
    (3) There will then be the diMcult task of showing that the as-
       signment of a conformal block to an element in a cohomology
       greup: Åqg}l - 71tS)(ÅqWD is fiat for connectioRs (as the marked
       curve varies)- which is available in genus g thaRk$ to [15].

   We will now describe the genus O resolution of this proposal. Instead
of the moduli of N poiRts on gei, we will work over the configuratioR
space e of N points in Ai (whick will then lead to a projeÅëtive metric
over the moduli space, see [2]), The varieties A. from the imtroduction

are Y.-, which are smooth projective compactifications of the canonical
Y.-•. Tke mest important }cca} $ystem ik this picture is the image Hif of
the cohomology of Yif in that of Y.- (which is independent of the choice

of the smooth compactification Y.-, by mixed Hodge theory):

H,- me Im : llM(Y'7, C) -" HM(Ys, Åë)

(an isomorphism on (M, O) parts)
   ORe ebtaiRs aR inc}gsigft (from Theorem 3.2):

(3.3) V,"t. (ec(zl) c-År HM•O(Y'7, c)

taking to ÅqWl to 71stB(ÅqigD, and where the last group is i$oraorphic to
the (M, O) part of ".-•.

   It follows from the work of Schechtman and Varchenko that the
above iRcigsiens preseyve coRxxectioRs (raore precisely, they preve ehat
Vxt(ec(z)) - llM(Y,-,Åë) preserves connections, by some arguments in

Hodge theory this implies that Vxt(ac(zl) -År HM(Y.-•, C) preserves con-

nectieRs as we}}).
   Note that the HM,g part of a variation of Hodge structure is, in

general, not preserved by the Gauss-Manin connection, the failure is
measured by GriMths' transversality. However in our situation there is
a lecai $"b$ysÅíem of HM(l7i,Åë) which lives iR HM'e. k is meakikgful

to study the entire Hodge structure "ff, not just its (M, O) part.
   The Hodge metric on HM'O(Y'7, C) restricts to a unitary (and non-

degegeyaee) metyic e" the space gf coxxformal blocks; it is preserved
by the KZ-connection. Given a conformal block ÅqWI, let T(ÅqWi) =
Rst(ÅqWl) be the corresponding Schechtman-Varchenko form. Then, a
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(KZ-invariant) unitary metric (upto a
vergent integral (as conjectured in [4]):

constant) is given by the con-

fÅqwil2-(vTil)Mf x(ÅqWDA7r(ÅqWD

               k(?i)M
   AR obvious questioxx is to characterize the image of (3.3). Here are

two other questions:

   QuEsTIoN 3.5.
Consider a more general hyperplane arrangement (and a parameter
space for topologically equivalent hype7 plane arrangements, and weights?.

Can one single out a part of the corresponding variation of cohomology
groups ("those that extend to compactifications"9?: For example if in
the masterjunction (3.1) there are generag (rationag) exponents.

   QggswrcN 3.6.
(in the $pir2't ofa guestion ef NeTi te the auther) Is there a "meg%inr
intempretation" fer the entire Hodge structure H.--9. Nerhaps as sections
of suitable line bundles over moduli of Higgs bundles (with growth con-
ditions at inflnity?9 Jt will be interesting to see if this chain of thought

leads to Hitchin type connections on other spaces of global sections.
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