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SURFACES WITH p, = 0: CONSTRUCTIONS AND
MODULI SPACES, BURNIAT SURFACES AND
DEFORMATIONS OF AUTOMORPHISMS

F. CATANESE

INTRODUCTION

The following is a slightly extended version of the talk, with the same
title, which I gave at the Kinosaki Symposium on Algebraic Geometry
in October 2011, and dealing with the classification of complex pro-
jective surfaces of general type (here the reader may find a few more
references).

As mentioned in the talk, there exist two ways to do “classification
theory”:

e one is similar to the activity of collecting beautiful and/or in-
teresting objects at your home,

e the other is like planning on the onset to build a large museum,
starting by collecting financial support and experts who are
supposed to work there: in other words, giving priority to the
organizational and social aspects of your enterprise.

But even if you choose method one, your home might become a
museum after your death, so both methods could converge to the same
goal in the end; the main difference is therefore psychological, and the
choice reflects mainly personal taste.

Also, at first glance the first method seems to be simpler than the
second: still it might face you with non trivial technical problems (even
if you only collect wine labels, it is not easy to peel them off the bottle,
especially for the French wines...).

Our beloved objects are here the surfaces of general type, and inter-
esting patterns emerge while collecting examples and studying them.

So, let S be a smooth complex projective minimal surface of general
type. This means that S does not contain any rational curve of self
intersection (—1) or, equivalently, that the canonical divisor Kg of S
is nef and big (K2 > 0). Then it is well known that

KZ>1, x(8):=1-q(S)+py(S) > 1.
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Recall that the geometric genus of S:
pg(S) := h%(S, Q%) := dim H°(S, Q%) = dim H°(S, Os(K3s)),
and the #rreqularity of S:
q(S) = h}(S, Os) := dim H(S, Os) = h°(S, Q%) := dim H(S, Q}),
are birational invariants of S, as well as K%, since
K2 = P,(8) — x(S), P(S) := dim HO(S, 05(2K)).

Recall (see [Bom73]) that the canonical model of S'is X := Proj(R(S)),
where R(S) := ®,,H(S, Os(mK5)) is the canonical ring of S. X is a
normal surface with Rational Double Points as singularities, and with
Kx ample. Moreover there is a birational morphism p: S — X con-
tracting exactly the finitely many (-2)-curves (the irreducible curves C
such that Kg - C = 0, which satisfy C?> = —2, hence C = P! ).

We have a coarse moduli space for the canonical models X of surfaces
S of general type with fixed x and K? ([Gies77]).

Theorem 0.1. For each pair of natural numbers (z,y) we have the
Gieseker moduli space Dﬁfg,’;), which is a quasi projective scheme, and
whose points correspond to the isomorphism classes of minimal surfaces
S of general type with x(S) =z and K3 =y

It is a coarse moduli space for the canonical models X of minimal

surfaces S of general type with x(S) =z and K% =y.

Concerning the range attained by the pair of numerical invariants
above, an upper bound for K% is given by the Bogomolov-Miyaoka-
Yau inequality:

Theorem 0.2 ([Miy77b], [Yau77], [Yau78], [Miy82]). Let S be a smooth
surface of general type. Then

K2 < 9x(8),

and equality holds if and only if the universal covering of S is the
complez ball By := {(z,w) € C?||2|*> + |w|* < 1}.

0.1. Surfaces wih very low invariants. The above inequality is rel-
evant when one is looking at the classification of surfaces of general
type with ‘very low’ invariants, for instance with the minimal possible
value x(S) =1 for x(S).

In this case classification means therefore to "understand” the nine
moduli spaces zmcan for 1 < n < 9, in particular to describe their
connected and 1rredu01b1e components and their respective dimensions.
Observe that

x(S)=1 <= pg(S) = q(S).

Remark 0.3. If we assume that S is irregular (i.e., ¢(S) > 0), then by
a result of Debarre ([Deb82)) it follows that K2 > 2p,(S).
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Therefore in our case py(S) < 4. Moreover it was shown by Beauville
([Deb82]) that p,(S) = q(S) = 4 if and only if S is the product of two
curves of genus 2.

Also surfaces with p, = ¢ = 3 were described in [CCML98]: there
are only two families, namely, the symmetric squares of curves of genus
3 (these have K2 = 6), or the quotients of a product of curves C, x C%,
where C; has genus 2 and Cj has genus 3, by an involution of product
type, acting as the hyperelliptic involution on C, and freely on Cj
(these surfaces have K% = 8).

In [CCML98] a partial classification was shown (it was shown for
instance that 6 < K% < 9), and the classification was then finished
independently by [HaPa02], and[Pi02].

There has been lately a revival of interest for the surfaces in the
second family, from the topological side (see [Akb12]).

The case p, = g = 2 is already harder: there is a substantial lit-
erature (see [BCPO6b]), but they are still far from being classified in
spite of work by several authors: Zucconi, Ciliberto and Mendes Lopes,
Hacon and Chen, Polizzi and Penegini .

One knows that 4 < K% < 9 by the cited inequalities, but it is
unknown whether they do exist for K% = 9 (there have been repeated
but failing attempts by Yeung to show that these ball quotients cannot
occur), or whether the surfaces with p, = ¢ = 2 and K% = 4 are
all double covers of a principally polarized Abelian surface, and with
branch curve a divisor A € |20 (this was proven by Manetti in [Man03]
under the assumption that Ks is ample). There are also no examples
known with p, =q¢=2,K2 ="17.

Surfaces with p, = ¢ = 1 have 2 < K% < 9 and have been classified
for KZ = 2,3 (K% = 2 in [Cat81], K% = 3 in [CC91], [CC93], cf. also
[CatPig06] for an exact determination of the connected components of
the moduli space). Existence of the case of ball quotients (p, = ¢ =
1, K% = 9) has been announced by Cartwright and Steger. If this is
correct, there are no gaps and surfaces with p; = ¢ = 1 do exist for
each value of K2 =2,...,9.

As the reader may know or surmise, the case p, = q = 0 is the
most difficult, and also the one for which there are more examples (see
[BCP10]). Surfaces with p, = g = 0 exist for all values of K% = 1,...,9,
but only the case K% = 9 has been classified by Cartwright and Steger,
giving a precision to the fundamental work of Prasad-Yeung ([CaSt10],
[PYO07]); there are 50 fundamental groups, and 100 isolated points of
the moduli space, corresponding to 50 pairs of complex conjugate non
isomorphic surfaces ([KK02]).

Since the 1970’s there was a big revival of interest (see [Dolga8l|
for an early survey) in the construction of these surfaces and in a pos-
sible attempt to classification, and the Bloch conjecture and differen-
tial topological questions raised by Donaldson Theory were a further



reason for raising further interest about surfaces of general type with
pg = 0. There has been recent important progress in the last 5 years
(see [BCP10]) but there is no hope at the moment to even conjecturally
finish the classification. E.g., for K% = 7 there is only one family of
surfaces with p, = 0 known, constructed by Inoue (cf. {Ino94]), while
for KZ = 8 the only known examples have the bidisk as universal cover
(the reducible case has been classified in [BCGO8], and a missing case
was then added by [Frall]).

At this point it seems appropriate to stop reporting on classifica-
tion results and to concentrate on ‘philosophical’ issues. Consider the
following provocative question of D. Mumford, posed at the Montreal
Conference in 1980:

Can a computer classify all surfaces of general type with
pg =07

The meaning of the question is clear, and confirmed by recent progress:
these surfaces are so many, that it takes more than man’s power to ‘con-
quer’ their classification. And it is indeed true that a computer algebra
program is necessary to construct systematically certain surfaces, as it
was carried out in [BCGP09], [BP1la] for product-quotient surfaces
with py = 0. More generally, it is conceivable that computer programs,
may be quantum computers, may describe all the possible canonical
rings of such surfaces in some not so distant future.

There remains however a major difficulty: these rings will belong to
different families, for instance according to the several possibilities for
the degrees of a minimal system of generators, and of relations and
higher syzygies.

But, how to find out how these locally closed subsets will fit in
together inside the moduli space?

This difficulty is witnessed already by the work of Horikawa ([Hor78))
in the much simpler instance of surfaces with p,(S) = 4,K2 = 6.
Horikawa, looking at the canonical map, was able to divide these sur-
faces in 11 families, and began then to analyse the problem of incidence
among these locally closed strata of the moduli space, the question be-
ing: is stratum A in the closure of stratum B? This is a typical hard
problem in the theory of surfaces, and Horikawa showed that the corre-
sponding subset of the moduli space has 4 irreducible components, and
at most 3 connected components: leaving open the question whether
there are 1, 2, or 3 connected components. Asnwering one of these
questions turned out to be quite difficult, namely in [BCP06a] it was
shown that the number of connected components is at most 2, but it
is still open the question whether the number is 1 or 2.

One may sometimes be in a lucky situation, where it is possible to
describe completely a connected component of the moduli space.



This may happen in several ways, for instance because there is only
one mode of presentation for the canonical ring, or because this phe-
nomenon happens for some finite unramified covering S of S ( see the
next section).

Or, topology may dictate the existence of certain holomorphic maps
to Abelian varieties or products of curves, and this geometric feature
allows to determine a connected component of the moduli space.

On the other hand, if we are not in a lucky situation, or if there is
no good topological reason which determines a connected component,
it is very hard to show that an irreducible component is indeed a con-
nected component. One has to study deformations of a given family
of surfaces (determining an open set 4 in the moduli space), then one-
parameter limits of the deformed objects (degenerations of the surfaces
corresponding to points in the open set il, i.e., determine the closure
of the open set {) and then the deformations of these limits (try to see
whether the closure il is also an open set).

Together with Ingrid Bauer, also motivated by the problem of sorting
out the surfaces constructed in [BCGP09], we took as a benchmark the
problem of determining completely the connected components of the
moduli spaces containing the so called Burniat surfaces (some surfaces
with py(S) = 0 constructed in 1966 by Pol Burniat, see [Bu66]). The
problem is now solved for K% = 2,4, 5,6, but there is a single remaining
final step missing in the case K% = 3 of tertiary Burniat surfaces.

The paper is organized as follows:

In the first section we shall briefly recall some by now classical ‘lucky’
case where some connected component of the moduli space of surfaces
with p, = 0 can be determined. This part should also be seen as a
‘warm up’ for the sequel.

In section 2 we define the Burniat surfaces and in section 3 we state
the main classification theorem concerning them. In section 4 we treat
primary Burniat surfaces, which have a large fundamental group, and
we illustrate via this case the principle “topology can determine con-
nected components of the moduli space”, a phenomenon which has
been explored in various other cases.

In section 5 we introduce extended Burniat surfaces, which are de-
formations of nodal Burniat surfaces (they yield a concrete example of
an open set 4 as previously mentioned).

Finally, in section 6 we describe a pathological behaviour of the mod-
uli space, which is related to the degeneration of extended Burniat
surfaces to Burniat surfaces; namely, the fact that continuous fami-
lies of canonical models yield, at the level of minimal models, fami-
lies of branch loci which vary discontinuously. The explanation goes
through the remarkable phenomenon that, even if the automorphism
group of the minimal model is the same as the automorphism group of
the canonical model, the same does not hold for families; so that, if G



is the group of automorphisms of the general surface, then Def(S, G)
is not proper onto Def(X, G); and, for tertiary Burniat surfaces, while
Def(S) and Def(X, G) surject onto Def(X), Def(S,G) just maps to a
nowhere dense set.

For the convenience of the reader we have drawn pictures of the line
configurations in the plane corresponding to the branch divisors of the
Burniat surfaces with K2 = 2,...6. They can be found in figure 1.2
attached below.

1. LUCKY CASES

Here are two classical examples of surfaces of general type where
everything runs smoothly (see [Miy76], [Miy77a],[Rei78], [Dolga81]).

1.1. Classical Godeaux surfaces.

(1) Here G := Z/5, it acts on a 4-dimensional vector space V' via
the 4 non trivial characters, hence also on P® := P(VV) and
X = X/G is the quotient of an invariant 5-ic surface X (with
RDP’s as singularities) on which G acts freely.
Hence, if S is the minimal resolution of X, 71(S) = G = Z/5.
(2) It turns out that the representation V' is isomorphic to the rep-
resentation H°(S,O3(K3)), therefore S has py(S) = 0, and
K% = 1. Since G¥ = Z/5 is also the torsion part of H*(S,Z),
to x € GV corresponds a divisor class M,, and

V = H%(S,04(K3)) & [Oxeav xxoH(S, Os(Ks + M,))]

(3) Conversely, if S has p,(S) = 0, and K2 = 1, and torsion
T = GY = Z/5, then the subspaces H%(S,Os(Ks + M,))
haveAdimension 1, and they yield a basis for the vector space
HO(S, OS'(KS))

Let z,, € H°(S,0s(Ks + M,)) be a non zero element: then
there cannot be any relation of the form z,z, = x4z, because
the associated divisors div(z,) are irreducible on the canonical
model X of S. From this one concludes that the canonical
map of S cannot have a quadric as image, hence it induces an

isomorphism of the canonical model X with a quintic surface
in P(VV) = P3.

1.2. Standard Campedelli surfaces.
(1) These are, by definition, the Campedelli surfaces with torsion
group T = (Z/2)3.
(2) Here S is the natural unramified covering associated to the tor-
sion group (again here equal to the full first homology group
H1(S,Z) since ¢(S) = 0), and S = §/G.



(3) The best description of X is as the maximal abelian covering
of exponent 2 of the plane P? branched on 7 lines D;, one for
each g/ € GV* := G¥\ {0}. X is smooth if the 7 lines are in
linear general position.

(4) The Galois group of X — P? is the group G’ = (Z/2)°

G' = @QS/EGV'(Z/2)Q1'V/(Z/2)(Z g:)-

There is a natural surjection G’ — GV, with kernel canonically
isomorphic to G, since to each element g € G corresponds the
sum of the elements lying in its annihilator g* = Ann(g) in GV.

In this way we see that, being X = X /G, X — P? is ramified
on the 7 lines, and it has the property that the local monodromy
around the line D; is the element g € GV in the Galois group.
Instead X — X is unramified, with Galois group G.

(5) Indeed ¢,Ox = Op B Op2(—2)7, and X is contained in the rank
7 vector bundle @ ecq-L; whose sheaf of sections is isomorphic
to 0]11:2(2)7.

X maps to the fibre product of the 7 double coverings

ysi = H9}¢Anﬂ(gi)éj’

where D; = div(¢;), and is indeed defined in the above rank 7
vector bundle by the following equations (see [Par91], and also
[Cat08], page 146)

Yoi " Ya; = Yoitg; Hg}’%(Aﬂﬂ(gi)UAnn(gj))‘sj,

(6) Again we have a 7 dimensional vector space V corresponding
to the 7 non trivial characters of G,

V 2 H(8,045(Kg)) = [Byeav xro H(S, Os(Ks + My))].

Each summand has dimension 1 and a generator z, corresponds
just to an equation ¢; for a line D;, using the established nota-
tion {g'} for GV".

The bicanonical map of S is the Galois covering of P? with
group GV, and X is embedded in P® := P(VV) as the com-
plete intersection of 4 quadrics. The 4 quadrics are sums of
squares, and are easily obtained because the 7 elements zi be-
long to the 3 dimensional vector space W = H%(S, Os(2K5)) =
p*HO(P?, Op2(2)).

(7) Conversely, given a Campedelli surface S with torsion group
G = (Z/2)3, one considers the natural unramified Galois cover-
ing § — S with group G, and shows that H(S, Os(Ks + M,))
has dimension 1 for each character. Hence one has a 7 di-
mensional vector space V corresponding to the 7 non trivial
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characters of G,
V = HY(S,04(K3)) & [Byeav xpoHO(S, Os(Ks + My))).

Again, one can show that X is canonically embedded in P® :=
P(VV) as the complete intersection of 4 quadrics, and 3 of the 7
elements mi are linearly independent and yield the bicanonical
map of S. Since the 4 quadrics are sums of squares it follows
that X is also invariant by the bigger group G’ =2 (Z/2)8, and
then the bicanonical map of S factors through the projection
onto the canonical model X and the Galois cover X — P? with

Galois group G¥ = G'/G.

2. WHAT IS A ... BURNIAT SURFACE?

Burniat surfaces are surfaces of general type with geometric genus
py(S) = 0, and they were constructed by Pol Burniat in 1966 in [Bu66],
where the method of singular bidouble covers was introduced in order
to attack the geography problem for surfaces of general type.

The birational structure of Burniat surfaces is rather simple to explain:
let Py, P;, P; € P? be three non collinear points (which we assume to be
the points (1:0:0), (0:1:0) and (0:0: 1)), and let D; = {A; =0},
for i € Z/37Z, be the union of three distinct lines through F;, including
the line D;; which is the side of the triangle joining the point F; with
Pit1.

We furthermore assume that D = D;UD,U D3 consists of nine different
lines.

Definition 2.1. A Burniat surface S is the minimal model for the

function field
Al Al
CWa VA,

Proposition 2.2. Let S be a Burniat surface, and denote by m the
number of points, different from Py, Py, Ps, where the curve D has mul-
tiplicity at least 3 (hence indeed equal to 3). Then 0 < m < 4, and the
invariants of the smooth projective surface S are:

pg(S) =4q(S) =0, K%=6-m.

The heart of the calculation, based on the theory of bidouble covers,
as explained in [Cat99], is that the singularities where the three curves
have multiplicities (3,1,0) lower K? and the difference p, — g both
by 1, while the singularities where the three curves have multiplicities
(1,1,1) lower K% by 1 and leave p,—¢ unchanged (in fact, for a bidouble
cover branched on 3 smooth cubics, one has K% = 9,p, = 3).

Example 2.3. (Singularities of Galois Coverings). Take three general
lines {y,l,, 15 through a point P € S. Choosing appropriate local (in
the analytic topology) coordinates we can assume P = 0 € C? [; =
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{z =0}, ls = {y = 0} and I3 = {x — y = 0}. Taking the maximal
Abelian cover of exponent 2 branched in [y, 15, I3 we get:

2 2

W=z, viP=y w=r-—y <= u-1=uw?

i.e. we get an ordinary double point
Y = {(u,v,w) € C*: v* —v* = w’} C C,

(an A,-singularity) over 0.
Y is invariant under the involution

o: C* = C, (u,v,w) > (~u,—v,—w),

and we get a factorization of the (Z/2Z)3- Galois covering (Y,0) —

(C?,0) as
(Y,0) — (Y/0,0) — (C?,0).

Note that (Y/,0) is a 3(1,1) - singularity, which is not Gorenstein,
but %-Gorenstein. Acquiring such a singularity leaves the geometric
genus p, and the irregularity ¢ invariant, but lowers K3 by 1.

Indeed, the minimal resolution of such a singularity has an excep-
tional curve F = P! with E? = —4, hence the canonical divisor on the

resolution S is the pull back of the canonical divisor of Y diminished
by %E Because (Kg+ E)-E=-2= Kg-E = +2.

One may understand the biregular structure of a Burniat surface S
through the blow up W of the plane at the points P, Py, Ps, ... Py, of
D of multiplicity at least three.

W is a weak Del Pezzo surface of degree 6 — m (i.e., a surface with
nef and big anticanonical divisor).

Proposition 2.4. The Burniat surface S is a finite bidouble cover (a
finite Galois cover with group (Z/2Z)?) of the weak Del Pezzo surface
W. Moreover the bicanonical divisor 2Kg is the pull back of the anti-
canonical divisor —Kw. The bicanonical map of S is the composition
of the bidouble cover S — W with the anticanonical quasi-embedding of
W, as a surface of degree K% = K2, in a projective space of dimension
Ki=K%.

3. THE MAIN CLASSIFICATION THEOREM

Fixing the number K% = 6 — m, one sees immediately that the
Burniat surfaces are parametrized by a rational family of dimension
K% — 2, and that this family is irreducible except in the case K2Z=4.

Definition 3.1. The family of Burniat surfaces with K2 = 4 of nodal
type is the family where the points Py, Ps are collinear with one of the
other three points Py, P, Ps, say P;.

The family of Burniat surfaces with K% = 4 of non-nodal type is the
family where the points Py, P5 are never collinear with one of the other
three points.
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Our main classification result of Burniat surfaces is summarized in
the following table, giving information concerning the families of Bur-
niat surfaces, and where Hg denotes the quaternion group of order 8.
More information will be given in the subsequent theorems.

| K? dim | is conn. comp.? | name | T
6 4 yes primary |1— 2% - m = (2/2Z)°
5 3 yes secondary Hg & (Z/2Z)°
4 2 yes secondary Hs & (Z/2Z)*
non nodal
4 2 no: C 3-dim. irr. secondary Hs & (Z/27)
nodal conn. component D nodal
D extended Burniats
3 1 no: C 4-dim. irr. tertiary Hs ® Z/2Z
component D
D extended Burniats
2 0 |no: € conn. component | quaternary (Z)2Z)3
of standard Campedelli

Theorem 3.2. ( see [BC11b] and [BC10])

1) The three respective subsets of the moduli spaces of minimal
surfaces of general type Mg, corresponding to Burniat surfaces with
K? =6, resp. with K® =5, resp. Burniat surfaces with K? = 4 of non
nodal type, are irreducible connected components, normal, rational of
respective dimensions 4,3,2.

Moreover, the base of the Kuranishi family of such surfaces S is smooth.

Observe that the above result for K? = 6 was first proven by Mendes
Lopes and Pardini in [MLPO01]. We showed in [BC11b] the stronger
theorem

Theorem 3.3 (Primary Burniat surfaces theorem). Any surface homo-
topy equivalent to a Burniat surface with K* = 6 is a Burniat surface
with K? = 6.

Theorem 3.4 (Secondary nodal Burniat surfaces theorem). ( see
[BC10] and [BC11])

Secondary nodal Burniat surfaces, together with secondary extended
nodal Burniat surfaces form an irreducible connected component of the
moduli space.

For K% = 2 another realization of the Burniat surface is (as shown by
Kulikov in [Ku04]) as a special element of the family of Campedelli
surfaces with torsion (Z/2Z)3, considered in the previous section.

We saw that they are Galois covers of the plane with group (Z/2Z)3,
branched on seven lines. For the Burniat surface we have the spe-
cial configuration of a complete quadrilateral together with its three
diagonals.
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4. THE HOMOTOPY EQUIVALENCE METHOD

This section is devoted to the idea of the proof of theorem 3.3. There
is a general philosophy behind the method of proof which applies to
many more cases.

A Burniat surface S with K2 = 6 is called a primary Burniat surface.
Recall that by proposition 2.4 S is a finite bidouble cover of a Del Pezzo
surface Y = I@’z(Pl, P,, P;) of degree 6, which can be seen as

Y = {((y1,91), (2, 42), (w3, 43)) € (P1)° : ynyys = v19505}-
We take the (Z/2Z)3-covering of
m: P x P! x P! - P! x P! x P!,
given by
() =, ()’ =y, i€{1,2,3}.

Then 771(Y) splits as the union of two Del Pezzo surfaces of degree 6,
ZU Z', where Z := {vyvv3 = vjvhvi}, and Z' = {vivouz = —vjvhus ).
What we have done is the following: we have taken the square root
of the two points in each P! corresponding to two of the four lines
passing through each P;. Now we take the square root of the other two
lines through each of the three points P; and obtain a (Z/2Z)3-covering
&1 x Ey x E3 — P x P! x P!, where each &; is therefore an elliptic curve.
We get the following diagram:

G

X' =X/G

T

Z23 l 223 l
£ xE x & L pry prx pr Y p1 1 o 1.

X
XuXx' VASWA Y

X' is the normal (Z/2Z)?-covering of Y whose resolution is a Burniat
surface.
We have the following:

Facts 4.1. .
(1) X — X' is étale (with group G = (Z/2Z)?) += S is a
primary Burniat surface.
(2) X C & x & x & is a hypersurface of multidegrees (2,2,2).
(3) X' = X/G is the quotient of a free action except for some A;-
singularities with stabilizer Z/2Z, yielding 7(1,1) - points on
X'
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4.1. Idea of the proof of theorem 3.3. Assume that S is homotopi-
cally equivalent to a primary Burniat surface. Then S has the same
fundamental group as a primary Burniat surface. Hence there is an
étale (Z/27)3-covering X — X with ¢(X) = 3.

~

Step 1. One shows that the Albanese variety Alb(X) is the product
of three elliptic curves & x &; x &. In fact, for each ¢ € {1,2,3} there
is an intermediate cover

X=X, - X

with g(X;) = 1. By the universal property of the Albanese variety we
get a morphism

A Alb(X) — Alb(X7) x Alb(X,) x Alb(X3) = £ x £ x £,

Looking at the fundamental group m (X ), one sees that the isogeny
A is of product type, whence the claim follows.

Step 2. Consider now the Albanese map of X:
X5 fX)=Y C& x& xE&s.

Then the class of Y is the same as for the Albanese image of the
corresponding étale covering of a primary Burniat surface (since we
have a map to a K(, 1) space with fundamental group 7 equal to m (X)
hence the class of the image is invariant by homotopy equivalence).
Moreover, since this class is 2F] +2F,+ 2 F3, we see that the Albanese
map of X is birational. Finally, an argument using adjunction shows

that X @Y.

Step 3. X (the canonical model of S) is X/G, and it is a bidouble
cover of a Del Pezzo surface of degree 6 as required.
For more details we refer to [BC11b].

Remark 4.2. The same method proves similar theorems in the follow-
ing cases:
(1) Keum-Naie surfaces with K = 4 (cf. [BCl1a]).

For Keum-Naie surfaces S the key idea is to find a represen-
tation X = X /G, where G = (Z/27Z)?, acting on & x & (&,
&> being again elliptic curves). X is a double cover of & x &
branched on a G-invariant divisor A of bidegree (4,4).

Then G acts freely ori X for a suitable twist of the action.

(2) Inoue surfaces with K2 =7 (cf. [BC12)).

Inoue surfaces are of the form X = X /(Z/2Z)*, where X is a
(Z/2Z)*invariant divisor of multidegree (2,2,4) in & X £, x D,
where &£, & are again elliptic curves, while D is a curve of
genus 5 which is a maximal abelian cover of P! of exponent 2
branched on 5 points.
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(3) Kulikov surfaces (cf. {ChCo10]).
These surfaces are (Z/3Z)?-coverings of the plane branched
on the sides of a triangle and on the three medians (the lines
connecting the three vertices with the barycenter).

The above cases also show another common feature:
X has A;-singularities <=> G acts no longer freely.
This implies that then X = X /G acquires v singularities of type 1141,
and K% (S being a minimal model) drops by v. Furthermore m;(S) =
m1(X) becomes finite.
Therefore for these families the investigation of the connected com-
ponents of the moduli spaces has to be done by

(1) showing openness of the subset of the moduli space induced by
such a family using local deformation theory;
(2) investigating the closure via 1-parameter limits.

Remark 4.3. All the Burniat surfaces X we consider are G = (Z/2Z)*-
covers of a normal Del Pezzo surface Z of degree K%.

For nodal Burniat surfaces with K% = 4 and Burniat surfaces with
K% = 3, we need to introduce a larger family, including the so-called
extended Burniat surfaces. They will be introduced in the next section
in the more symmetric case of tertiary Burniat surfaces.

5. EXTENDED BURNIAT SURFACES
We recall the following definitions from [BC11]. Let P, P, P; € P?

be three non collinear points, and let Fy,..., P3ym, m = 2,3, be
further (distinct) points not lying on the sides of the triangle with
vertices Py, P, Ps.

Assume moreover that, for m = 2, the points P, F,, P5 are collinear,
while, for m = 3, we shall moreover assume that also Py, Py, Ps and
P;, Py, Ps are collinear (in particular, no four points are collinear).

Let’s denote by Y := P2(P, Py, . .. , P3+m) the weak Del Pezzo sur-
face of degree 6 — m, obtained by blowing up P2 in the 3 + m points
PI>P27"'5P3+TLL’

Saying that Y is a weak Del Pezzo surface means that the anticanon-
ical divisor —Ky is nef and big; in our case it is not ample, because of
the existence of (-2)-curves, i.e. curves N; = P!, with N; - Ky = 0.

Contracting the (-2)-curves IV; we obtain a normal singular Del Pezzo
surface Y’ with — Ky very ample. '

In order to simplify the formulae, let us treat the case m = 3, denot-
ing P := P, Py = Fs, P :== F.

Then we have that P;, P, P/, , are collinear (here i € Z/3Z).

We denote by L the divisor on Y which is the total transform of a
general line in P2, by E; the exceptional curve lying over F;, by E! the
exceptional curve lying over P/, and by D;; the unique effective divisor
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in |L — E; — E;41|, i.e., the proper transform of the side of the triangle
joining the points F;, F41.
For m = 3 we have (-2)-curves N;, Ny, N3 such that

{Ni} = IL - E; - E£+1 - E¢{+2';

Therefore the anticanonical image of Y is a normal surface Y’ C P6-™
of degree 6 — m, whose singularities are one node v (an A; singularity)
in the case m = 2, and three nodes vy, 14,3 in the case m = 3 (the
(-2)-curve N; is the total transform of the point v;).

Definition 5.1. 1) The Burniat branch divisors for m = 3 are defined
to be the divisors Dy, Dy, D3 such that:

{Di} =|L— E;— Bl + Ni+|L - E; — Ej| + E; 4,

2) The strictly extended Burniat branch divisor classes for m = 3 are
defined as follows:

Ai=D; — Ni+ Nio1 + Nigq,

3) The strictly extended Burniat branch divisors for m = 3 are defined
taking an irreducible curve

I'ye 2L - E; — B~ Ei1 ~ B
and replacing in A;
Ni——l + |L — Ei - Ei+1l + Ei—l

by I, so that
Ai = Fi+Ni+1 + |L - E,; - E{'

For each Burniat divisor, we have the option to replace it (or not)
by a strictly extended Burniat divisor. By taking the corresponding
bidouble cover, we obtain an extended Burniat surface.

Remark 5.2. 1) Observe that (D; + Dy + D3) € | — 3Ky| is a reduced
normal crossing divisor.

2) Similarly, (A1 + Az + As) € | — 3Ky + > Nj| is a reduced normal
crossing divisor.

3) On the normal Del Pezzo surface Y’, for m = 3,

A, yields a conic and one line, D; yields three lines.

In particular, if the conic corresponding to A; specializes to contain
the line corresponding to E;_;, we obtain D, subtracting the divisor
N;_1 4 N4, and adding the divisor NV;.

We can now consider (cf. [Cat84], [Cat99]) the associated bidouble
covers S — Y with branch divisors the Burniat divisors, respectively
the extended Burniat divisors.

Definition 5.3. A tertiary nodal Burniat surface is obtained, form =
3, as a bidouble cover S — Y with branch divisors the three Burniat
divisors.
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S is then a minimal surface of general type with py(S) = ¢(S) = 0,
K% =6—m (c¢f. [BC10]).

If we let some of the three branch divisors be extended Burniat divi-
sors, then we obtain a non minimal surface S’ whose minimal model S
is called a tertiary extended Burniat surface.

In [BC11] it is shown that these (discontinuous) degenerations of the
branch divisors from extended to nodal Burniat surfaces produce a flat
family of G-covers X; — Y’ of the canonical models over a normal Del
Pezzo surface of degree 6 — m (4, respectively 3).

More precisely, we have the following two auxiliary results:

Proposition 5.4. There erists a family, with connected base

where C 1s irreducible and either I'y is irreducible, or splits as Ny+FEy+
|L— Ey— E3|), parametrizing a flat family of canonical models, including
exactly all the nodal Burniat surfaces and the extended Burniat surfaces
with K% = 4.

Proposition 5.5. There exists a family, with connected base
Tc {(F1>F23F3)}

where I'1,T3, T3 are as in Definition 5.1, parametrizing a flat family of
canonical models, including ezactly all the nodal Burniat surfaces and
the extended Burniat surfaces with K% = 3.

Remark 5.6. 1) In the nodal Burniat case the surface S does not
have an ample canonical divisor K, due to the existence of (-2)-curves,
which are exactly the inverse images of the (-2)-curves N; C Y.

For this reason we call the above Burniat surfaces of nodal type. We
denote their canonical model by X, and observe that X is a finite
bidouble cover of the normal Del Pezzo surface Y.

For m = 2 X has precisely one node (an A;-singularity, correspond-
ing to the contraction of the (-2)-curve) as singularity. While, for
m = 3, X has exactly three nodes as singularities.

2) In the extended Burniat case S’ is not minimal. In the strictly
extended Burniat case the inverse image of each N; splits as the union
of two disjoint (-1)-curves. In this latter case S has ample canonical
divisor, hence S = X.

3) In all cases, the morphism X — Y’ is exactly the bicanonical map
of X (see [BC10]. [BC11]).

4) Nodal Burniat surfaces are parametrized by a family with smooth
base of dimension 2 for m = 2, of dimension 1 for m = 3.

Strictly extended Burniat surfaces are parametrized by a family with
smooth base of dimension 3 for m = 2, of dimension 4 for m = 3.

The key feature is that, both for nodal Burniat surfaces, and for
extended Burniat surfaces, the canonical model X is a finite bidouble
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cover of a singular Del Pezzo surface Y, which has one node in the case
m = 2, and three nodes for m = 3 (in this case Y is a cubic surface in
P3).

In this case the direct image p.(Ox) splits as a direct sum of four
reflexive character sheaves of generic rank 1.
For K? = 3 it is shown in [BC11] that a small deformation of a Burniat
surface or of an extended Burniat surface is a Galois covering with
group (Z/27)? of a cubic surface with three singular points, and with
branch locus equal to three plane sections. Hence one sees that the
locus of Burniat and extended Burniat surfaces is open. Moreover in
loc.cit. it is shown that the closure of the subset corresponding to
extended Burniat surfaces with K% = 3 contains G-covers of cubic
surfaces with a D4-singularity, and G-covers of the four nodal cubic.

Yifan Chen shows in his Bayreuth Ph.D. thesis that there are no
further degenerations.

Summarizing, we have the following theorem

Theorem 5.7 (Bauer,Catanese, Chen). The irreducible component N
of the moduli space containing the Burniat surfaces with K2 = 3 con-
sists exactly of

(1) Burniat surfaces,

(2) extended Burniat surfaces,

(3) G-covers of a normal cubic with a Dy-singularity,

(4) G-covers of the four nodal cubic, which are étale exactly over
one of the four nodes.

Moreover, 1),2),3) are contained in N\ ON .

The key technique used in the above theorem (developed in [BC11])
is the one of blowing up and down logarithmic sheaves in order to
calculate the tangent cohomology. It would take too long to explain
this technique in detail here.

There remains the challenging

Question 5.8. Is N a connected component of the moduli space?

Another approach was proposed to construct a family of surfaces
including the tertiary Burniat surfaces, in [NePill]; the deformation
theoretic aspects were not addressed in [NePill] and it could be inter-
esting to do it.

Using the techniques developed for the above results Yi-fan Chen
has been able to prove a conjecture of Mendes-Lopes and Pardini (cf.
[MLP04]):

Theorem 5.9 (Y. Chen). The siz dimensional family constructed by
Mendes -Lopes and Pardini in [MLPO04], containing the Keum-Naie
surfaces with K% = 3 as a proper algebraic subset, is indeed an irre-
ducible component of the modult space of surfaces of general type.
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The new idea which made the long sought for proof of the above
result possible is the representation of a special surface in the above
family as some (Z/2Z)?-cover of a four nodal cubic and the use of the
methods mentioned above (to calculate spaces of sections of logarithmic
differential forms on blow ups). Chen shows that the tangent dimension
of Kuranishi space is bounded from above by 6, and then the Kuranishi
inequality gives that the dimension is exactly 6.

6. DEFORMATION OF AUTOMORPHISMS.

Here is what we have learnt from extended Burniat surfaces.

In this section S will be the minimal model of a nodal Burniat surface
with K% =4 or K% = 3, and X its canonical model. Observe that for
K? = 4, X has one ordinary node, while for K? = 3, X has three
ordinary nodes.

A very surprising and new phenomenon occurs for these surfaces,
confirming Vakil’s ‘Murphy’s law’ philosophy ([Va06]).

To explain what happens for the moduli spaces of extended and
nodal Burniat surfaces, let us recall again an old result due to Burns
and Wahl (cf. [BWT74]).

Let S be a minimal surface of general type and let X be its canonical
model. Denote by Def(S), resp. Def(X), the base of the Kuranishi
family of S, resp. of X.

Their result explains the relation between Def(S) and Def(X).

Theorem 6.1 (Burns - Wahl). Assume that Kg is not ample and let
p: 8 — X be the canonical morphism.

Denote by Lx the space of local deformations of the singularities
of X and by Ls the space of deformations of a neighbourhood of the
exceptional curves of p. Then Def(S) is realized as the fibre product
associated to the Cartesian diagram

Def(S) — Lg = C¥,

l X
Def(X) —> ,CX = Cy,
where v is the number of rational (—2)-curves in S, and A is a Galots

covering with Galois group W := @[_,W;, the direct sum of the Weyl
groups W, of the singular points of X.

An immediate consequence is the following

Corollary 6.2. (Burns - Wahl) 1) ¢ : Def(S) — Def(X) is a finite
morphism, in particular, ¢ is surjective.

2) If the derivative of Def(X) — Lx is not surjective (i.e., the sin-
gularities of X cannot be independently smoothened by the first order
infinitesimal deformations of X ), then Def(S) is singular.
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Assume now that we have 1 # G < Aut(S) = Aut(X).

Then we can consider the space of G-invariant local deformations
of S, Def(S,G), resp. Def(X,G) of X, and we have a natural map
Def(S,G) — Def (X, G).

We indeed show here that, unlike the case for the corresponding
morphism of local deformation spaces, this map needs not to be surjec-
tive; and, as far as we know, the following result gives the first global
example of such a phenomenon.

Theorem 6.3. The deformations of nodal Burniat surfaces with K% =
4,3 to extended Burniat surfaces with K% = 4,3 yield examples where
Def(S,(Z/2Z)?) — Def(X, (Z/2Z)?) is not surjective.

Moreover, Def(S, (Z/27)?) C Def(S), whereas for the canonical model
we have: Def(X, (Z/2Z)*) = Def(X).

The moduli space of pairs, of an extended (or nodal) Burniat surface
with K% = 4,3 and a (Z/2Z)?-action, is disconnected; but its image in
the moduli space is a connected open set.

The reason for this phenomenon can already be seen locally around the
node.
Let G be the group G = (Z/2)? acting on C? as follows:

G ={1,01,09,03 = 01+ 03}

acts by o1(u,v,w) = (u,v, —w), o2(u,v,w) = (—u, —v,w).
The invariants for the action of G on C* x C are:

T = u2,y =%, 2 = uv, s 1= w?, t.

Observe that the hypersurfaces X; = {(u,v,w)|w? = uv + t} are
G-invariant, and the quotient X;/G is the fixed hypersurface

Y, @Y, = {(z,y, 2)|2* = zy},

which has a nodal singularity at the point z =y =2z =0.

In fact, G acts on the family X; = {w? = uv + t}, which admits a
simultaneous resolution only after the base change 7° = t: and then
we have two small resolutions

w—"T v

= {((wv,w,7),§) € X x Pl|—— = ——=¢},
8 = {((wv,w,7),m) € X X ]pll“':T -2 -n

Then it is easy to see that G has several liftings to S, but

e cither G acts only as a group of birational not biregular auto-
morphisms on & and leaves 7 fixed,

e or, GG acts as a group of biregular automorphisms on & but does
not leave 7 fixed.
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Looking at the local picture in detail, one sees how the above family
yields a discontinuous variation of the three branch divisors on the blow
up Y of Yy at its singular point.
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