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MULTIPLE FIBERS OF ELLIPTIC FIBRATIONS
KENTARO MITSUI

ABSTRACT. We review our studies on multiple fibers of elliptic fibra-
tions [Mitc]. We study invariants of elliptic fibrations over a complete
discrete valuation ring with an algebraically closed residue field. The
invariants appear when we localize invariants appearing in the canonical
bundle formula of elliptic surfaces. The study of the invariants is re-
duced to the case where the reduction of the special fiber is isomorphic
to an elliptic curve, and the case is studied. Further, we develop the clas-
sification of elliptic fibrations with a multiple fiber of this type. As an
application, we determine the combinations of multiple fibers appearing
in elliptic surfaces of Kodaira dimension zero. The possible combina-
tions were given by Bombieri and Mumford. As another application, we
give methods of resolving multiple fibers via inseparable coverings. In
particular, we complete the proof of Katsura and Ueno’s resolution of
multiple fibers. Our results also provide new methods of constructing
unirational surfaces. In particular, we construct irrational elliptic Zariski
surfaces of any geometric genus. This result gives a negative answer to
Zariski’s question in any characteristic.

1. INTRODUCTION

Multiple fibers of elliptic surfaces appear in Kodaira’s classification of
compact complex analytic surfaces [Kod63, §6]. It is important to study
multiple fibers in the classification of elliptic surfaces because invariants
associated to multiple fibers determine its Kodaira dimension. Any multiple
fiber of multiplicity m of an elliptic fibration over a disk can be resolved by
the base change via a totally-ramified cyclic covering of degree m and the
normalization. The induced morphism between the total spaces is étale.
Conversely, any elliptic fibration with a multiple fiber of multiplicity m can
be obtained as the quotient of an equivariant group action of degree m on a
smooth elliptic fibration. The quotient morphism between the total spaces
is étale.

In the positive characteristic cases, multiple fibers of elliptic surfaces ap-
pear in Bombieri and Mumford’s classification of algebraic surfaces [BM77].
A fiber of an elliptic fibration f: X — C over a closed point x on C is said
to be wildly ramified if the point x is contained in the support of the torsion
of Rl f, 0. Otherwise, the fiber is said to be tamely ramified. In contrast
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to the characteristic zero case, wildly ramified multiple fibers appear in the
positive characteristic cases. Their examples and partial results on their res-
olution were obtained in [KU85] and [KU86]. We would like to study such
multiple fibers in a comprehensive and systematic way. To this end, we
study the case where the base space is local.

2. NOTATION AND TERMINOLOGY

Let R be a complete discrete valuation ring (CDVR) with an algebraically
closed residue field k& of characteristic p and a field of fractions XK. Put
C := SpecR. An elliptic fibration over C is a proper flat scheme over C
that is regular and whose generic fiber is a geometrically connected smooth
curve of genus one. An elliptic fibration is said to be minimal if the spe-
cial fiber does not contain an exceptional curve of the first kind. We study
elliptic fibrations with a multiple fiber over C and apply the results to the
classification of elliptic surfaces.

Let f: X — C be a minimal elliptic fibration. By X} and Xx we denote
the special fiber of f and the generic fiber of f, respectively. Let £ be a
minimal regular model of the Jacobian Eg of Xx. The model is unique up to
isomorphism between the generic fibers. Let ,,T be the type of X; where m
is the multiplicity and T is the type (Kodaira’s symbol) of the combination
of the irreducible components of X;/m. We define integers #(7") and v(T')
by Table 1.

T [ I, |G |0 |IP I |0O° ]IV |V
W) 1| 266 | 4] 4] 3|3
W) 0 |0 |40 2]0]1]0

TABLE 1. The definition of u(T) and v(T').

The study of X is reduced to the case T =1,,. The case T =1, (n > 0) was
studied in [LLRO4, §8]. Thus, we mainly study the case T = Iy. The results
are summarized in the following sections. Let K’ /K be a finite extension
of degree d. Take the integral closure R’ of R in K’. Put C' := SpecR’ and
Xgr = Xg xx K'. Let f: X' — C' be the minimal regular model of Xy
over C'. By ,»T' we denote the type of the special fiber of /. Let E’ be
the minimal regular model of the Jacobian of Xgx/. We say that the multiple
fiber of f can be resolved by K’ /K if the equality m’ = 1 holds.

3. RESOLUTION

If p fu(T) and d = u(T), then T’ = ,1,y. Assume that T = I,,. Then
there exists a separable extension K’ /K of degree m such that .y T’ = 1Ly,
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The scheme X’ is isomorphic to the normalization of X xcC’ over C'. In
particular, we obtain a morphism 7y : X’ — X.

Case 1: p fm or n > 0. The extension K’ /K is cyclic and the morphism
Tty is étale.

Case 2: Otherwise. The special fiber Ej of E is an elliptic curve (Theo-
rem 6.6 in [LLRO04]). The morphism 7y is not necessarily étale. Assume
that K contains all the m-th roots of unity (e.g., R is equi-characteristic)
and Ey is ordinary. Then we may suppose that K’ /K is a cyclic extension.
Without the first assumption, we may only suppose that K’ /K is an abelian
extension. Without the second assumption (i.e., Ey is supersingular), we
may not suppose that K’ /K is a Galois extension. In the equi-characteristic
case, there exists an example of a minimal elliptic fibration with a multiple
fiber of type Iy that cannot be resolved by any Galois extension of degree
p nor the (unique) purely inseparable extension of degree p. Moreover, the
morphism 7y is non-étale for any non-trivial finite extension K’ /K.

The proof of the above results follow from the calculation of the invari-
ants of X (§5) and the Galois cohomology group H!(K,E), and the fol-
lowing theorem proved by Liu, Lorenzini, and Raynaud:

Theorem 3.1 (Theorem 6.6 in [LLR04], Corollary 6.7 in [LLRO04], and
Corollary 7.4 in [LLRO4)). Let Ex be an elliptic curve over Cx. Take an
element n € H! (K,Ek) of order m. Let Xk be the smooth curve over Cy
corresponding to 1. Let E and X be the minimal regular models of Ex and
Xy over C, respectively. Let T be the type of Ey. Then X, is of type ,T. If
T # I, then m is a power of p.

Further, the following statement holds: Take a positive integer m'. If T #
I, then we assume that m' is a power of p. Then there exists an element of
HY(K,Ek) of order m'.

Finally, we complete the proof of Katsura and Ueno’s resolution of mul-
tiple fibers [KU8S5, §6, §7]: when R is equi-characteristic and T = [, the
multiple fiber can be resolved by a finite succession of finite base changes
and the normalizations each of which induces an étale covering or a purely
inseparable covering of the total space. More precisely, the following holds:

Theorem 3.2. Suppose that R is equi-characteristic. Assume that Xy, is
of type ml,. Then there exist a finite cyclic extension K' /K (resp. K" /K")
and a finite purely inseparable extension K" /K’ (resp. K' /K) satisfying the
Jollowing conditions: Let ¢: X' — X (resp. ¢ : X" — X') be the morphism
between the minimal regular models induced by the base change and the
normalization. Then ¢ is étale and X" does not admit a multiple fiber.

In the proof of Katsura and Ueno, they studied the Frobenius action on
the cohomology group H!(Y, 6y) of an elliptic surface Y. In stead of the
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global case and the Frobenius action, we study the local case and the Galois
cohomology group H!(K,Eg). We may also give more precise statements
in some special cases. These results are useful in giving examples of unira-
tional elliptic surfaces. The notion of strange multiple fiber was introduced
as an obstruction to the proof of Katsura and Ueno’s resolution. To avoid
this obstruction and treat more general cases, first, we resolve a multiple
fiber by a Galois base change and the normalization. The induced covering
of the total space can be uniquely divided into two parts: the étale part and
the non-étale part. It is relatively easy to study the étale part. Next, we study
the non-étale part by explicit calculations of Galois cohomology groups. In
particular, we obtain Katsura and Ueno’s resolution. When p fu(T), we
characterize the multiple fibers that can be resolved by a finite purely insep-
arable extension:

Theorem 3.3. Suppose that R is equi-characteristic. Let ,,T be the type of
Xy. Assume thatm > 1, p fu(T), and d = u(T). Then the multiple fiber of
f can be resolved by a finite purely inseparable extension if and only if m is
a power of p and one of the following conditions is satisfied:

(1) T =1y and the special fiber of f is tamely ramified;

(2) Xlé,red is isomorphic to a supersingular elliptic curve over k.

Further, we point out that the main results in [Kaw00] and [Kaw06] are
incorrect. The results are based on partial results on the resolution of multi-
ple fibers of elliptic surfaces satisfying the following condition: The reduc-
tion of each closed fiber is isomorphic to a supersingular elliptic curve. We
give an alternative resolution of multiple fibers of elliptic fibrations of this
type without any condition:

Theorem 3.4. Suppose that R is equi-characteristic. Assume that X, is of
type mlo and Ex is a supersingular elliptic curve. For a non-negative integer
n, by K, /K we denote the (unique) purely inseparable extension of degree
p" in K¥8. Let R, be the valuation ring of K,,. Put C, := SpecR,. Let X,,/C,
be the minimal regular model of X Xc Cy,. Then X,, is canonically isomor-
Pphic to the normalization of X X ¢ C, over C,. Let m, be the multiplicity of
X k. If p | mn, then exactly one of the following equalities holds:

(1) (myg1,mny2) = (Mn/pymny1);
(2) (mn+1amn+2) = (mnamn+1/p)-
4. CONSTRUCTION

Any minimal elliptic fibration over C with a multiple fiber of type ,,1p can
be constructed as the GIT quotient of a finite equivariant group action on a
smooth elliptic fibration. When p fu(T') and d = u(T'), any minimal elliptic
fibration over C with a multiple fiber of other type ,,T can be constructed



from a minimal elliptic fibration over C’ with a multiple fiber of type I,
by quotient and birational transformation. We may give this construction
explicitly.

5. INVARIANTS

Let @y be the relative dualizing sheaf for f. Put V := X;/ m. We study
the following invariants (/,a):

(1) The length ! of the torsion of the R-module I'(C, R! £, O).
(2) The integer a appearing in the isomorphism

0y = f* oy ® Ox(aV)

induced by the canonical injective &x-module homomorphism

[ o — or.

The inequalities 0 < a < mhold. If m = 1, then (/,a) = (0,0). The following
statements hold (Proposition 1 in [Mitb]):

(1) The divisor V' contains an irreducible component whose multiplic-
ity is equal to m (by the classification of the special fibers). In par-
ticular, the equality m = 1 holds if and only if the equality X(K) # 0
holds.

(2) The special fiber of f is tamely ramified if and only if the order of
the line bundle Ox(Vy)|v, on ¥y in the Picard group of Vy is equal
tomy.

(3) If the special fiber of f is tamely ramified, thenas =ms— 1.

(4) If the special fiber of f is wildly ramified, then p | my.

The invariants (/,a) appear when we localize invariants appearing in the
canonical bundle formula of elliptic surfaces (§7). The invariants determine
the Kodaira dimensions of the elliptic surfaces (Proposition 7.1). By the
same method, we define the invariants (//,d) for X’/C’. We study a rela-
tionship between (/,a) and (//,d’). The study of (/,a) can be reduced to
the case T = I, in any characteristic p except in some small characteristics
depending on T':

Theorem 5.1. Assume that p Yu(T) and d = u(T). Then the equality
u(TYml+a)=m'l' +d +v(T)(m—-1)
holds.

By d¢r /¢ we denote the valuation of the different of C'/C. Thecase T =1,
(n > 0) was studied in [LLRO4, §8]:
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Theorem 5.2 (Proposition 8.11 (b) in [LLRO04]). Assume that T =1, (n >
0). Suppose that d = m and m’' = 1. Then the equality

ml +a= dcl/c
holds.

Assume that T =1o. By dy/x we denote the valuation of the different
of my: X’ — X (§3) along the special fibers. The remaining case T’ =1Ij is
studied:

Theorem 5.3. Assume that T =1y. Put d' :=dm’ /m. Then the equality
d(ml+a)=m'l'+d +mdoc—dyx
holds.

The above three theorems follow from a unified theorem including the
case p | u(T). In the proof, we study the relationship between the homo-
morphisms

1x: H'(X,0x) — H\(E, OF)
and
T HY(X', 6x)) — HY(E', Ogr)
constructed in Theorem 3.8 in [LLR04]. The canonical isomorphism
H'(Xg, Ox,) @k K' = H' (Xyo, Ox,,,)
allows us to compare the images of
H'(X,6x) and H'(X',0x)

in H' (X, Ox,,). The difference between the images can be described by
the ramifications of n-: ¢’ — C and my: X' — X if my exists. To treat
the general case, we study fibrations whose total spaces are not necessarily
regular. Using Theorem 3.8 in [LLR04] and the Grothendieck duality, we
obtain the unified theorem. Our proof of the second theorem is based on the
unified theorem and the fact that any minimal Weierstrass model is normal
and its singularities are rational. In particular, the proof is different from
that in [LLRO4]. Finally, we calculate dy/x in the third theorem from a
cocycle that represents the element of H!(K,Ex) corresponding to Xy in
order to obtain the desired invariants (/,a).
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6. CLASSIFICATION OF MULTIPLE FIBERS OF TYPE ]

We count the number M of isomorphism classes of elliptic fibrations with
a special fiber of type 1o, a fixed Jacobian Ex of the generic fibers, and
a fixed resolving Galois extension K'/K of degree m. When p Jm, only
tamely ramified multiple fibers appear. There exists a one-to-one corre-
spondence between the isomorphism classes and the elements of E(k) of
order m. In particular, the number M is non-zero and finite. When Ef is an
ordinary elliptic curve and p | m, both of tamely and wildly ramified mul-
tiple fibers appear. Their numbers are determined by the Galois group of
K'/K. The total number M is non-zero and finite. When Ej} is a supersin-
gular elliptic curve and m = p, only wildly ramified multiple fibers appear.
The number M is infinite except in one case where the conductor of K'/K
is equal to two. In this exceptional case, the number M is equal to zero.

7. ELLIPTIC SURFACES

Let C be a proper smooth curve over an algebraically closed field £. An
elliptic fibration over C is a proper flat scheme over C that is regular and
whose generic fiber is a geometrically connected smooth curve of genus
one. An elliptic fibration over C is said to be relatively minimal if any
closed fiber does not contain an exceptional curve of the first kind. A proper
smooth surface X is called a (relatively minimal) elliptic surface over C if
X admits a (relatively minimal) elliptic fibration over C. Let f: X — Cbe a
relatively minimal elliptic fibration. For each closed point # on C, we write
the fiber £~1(¢) over ¢ as m,D; where m, is the multiplicity of f~!(¢) and
Dy is a divisor on X. For each closed point ¢ on C, let /; be the length of the
torsion of the &c ,-module (R! £, Ox),. Put

I(f) = z;’:l,.

Then the canonical bundle formula (Theorem 2 in [BM77]) gives an iso-
morphism

Hx & L ®py Ox(D)
where the line bundle .# on C and the divisor D on X satisfy the equalities

deg Z = x(Ox)+2g(C)-2+1(f)

and
D= aD.
teC
Here, each coefficient g is an integer satisfying the inequalities 0 < a, < my.
We write the combination of the multiple fibers as

(al/mT""7ar/m:)ar+1/mr+17"'7aS/mS)'
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Here, the symbol * means that the fiber is wildly ramified. The canonical
bundle formula gives the following proposition:

Proposition 7.1. Put
S
8 :=x(Ox)+28(C) —2+I1(/)+ 3, -’;Ti
=1

Then the equalities

—oo, § <0,
K(X)=<0, é =0,
1, 6>0

hold.

8. EXAMPLES OF ELLIPTIC SURFACES

First, we construct previously unknown types of elliptic surfaces with a
strange multiple fiber [KU85]. Next, we give examples of all five types
of elliptic Enriques surfaces in characteristic two [Kat82, §1]. Finally, we
construct irrational elliptic Zariski surfaces of any geometric genus p,. In
particular, when p, = 0, the examples give a negative answer to Zariski’s
question [BBL94] in any characteristic. To determine the types of surfaces
in the second and third examples, we use our result on resolution of multi-
ple fibers by purely inseparable extensions. In our construction, we glob-
alize elliptic fibrations over an equi-characterisitic CDVR by the following
proposition:

Proposition 8.1 (Corollary 5.4.6 in [CD89] and Remark 5.4.2 in [CD89]).
For each closed point t on C, let C; be the completion of the localization of
C at t, M; the function field of C;, and M the function field of C. Let E be
the relatively minimal regular model over C of an elliptic curve Ejs over M.
Assume that E /C is non-trivial, i.e., there does not exist an elliptic curve Ey
over k such that E /C is given by the second projection Ey x;, C — C. We
denote the generic fiber of E xc C;/C; by Euy,. Then the global-to-local map

H'(M,Ev) — (D H' (M, En)
teC
is surjective.

9. ELLIPTIC SURFACES OF KODAIRA DIMENSION ZERO

We determine the combinations of multiple fibers appearing in relatively
minimal elliptic surfaces f: X — C of Kodaira dimension zero (Table 2).
The possible combinations were given in the complex analytic case (Propo-
sition 3.23 in [FM94]), in the algebraic case [BM77, p. 33], and in the rigid
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[xpe|g]!] (a/m) [n] p [N]j | examples or non-existence
0|0 (0|0](1/2,1/2,1/2, |2| #2 |H|C|[H]a, [Mitb]
1/2) 2 Q | O | [Q] &, [Mitb]
(2/3,2/3,2/3) [3] #3 |H|C| [H]b, [Mitb]
3 Q | O | [Q] a, [Kat95, §5.2], [Mitb]
(1/2,3/4,3/4) |4| #2 |H|C | [H]c, [Mitb]
2 Q|9 ]I[Qld, [Mitb]
(1/2,2/3,5/6) |61 +#2,3|H|C ]| [H]d, [Mith]
2 Q | O | [Q] b, [Mitb]
3 Q | O | [Q] b, [Mitb]
00 |0]1](0/251/2,1/2) |2 2 Q | O | [Q] ¢, [Mitb]
(1/2%,1/2) 21 2 not exist
(1/3%,2/3) 3 3 Q | O | [Q] ¢, [Kat95, §5.2], [Mitb]
(/734 4] 2 |[Q|0][Qle
(2/4*,1/2) 2 2 not exist
(2/6*,2/3) 3 2 H | O | [H] d, [KUSS, §8.4]
QiS|Qlg
(3/6*,1/2) 2 3 H | O | [H] d, [KUSS, §8.4]
Q|S|[Qle
0{1 (02} (0/p")
u=1 1 2 H | O | [H] a, [KU8S, §8.1]
Q| S |[QIf(A=0),[Q]h
u=1 1 3 H | O | [H] b, [KUS8S, §8.1}
QS |[Ql4[Q]f
u=2 1 2 H | O | [H] ¢, [KU8S, §8.2]
the othercases | 1 | >0 not exist
(0/p"*,0/p")
u=1,v=1 1 2 H|O | [H]a
Q| S | [Qf(A#0)
the othercases [ 1 | >0 not exist
0fj1|1]0]none 1| any | A | C | the product of elliptic curves
2 H | C|[H]a, [Hlc,
[KU8s5, §8.1, §8.2]
3 H | S | [H]b, [KU85, §8.1]
0|0 :1(0]none 2{ #£2 |H|[C | [H]a, [Mitb]
3| #3 |H|C|[H]b, [Mitb]
4| #2 |H | C|[H]c, [Mitb]
6| #2,3| H|C|[H]d, [Mitb]
1{ofofo0](1/2,1/2) 2| any | E §8
1tf1]ol1](0/29 1 2 N §8
271 |0]|0]none 1| any K K3 Kummer surfaces

TABLE 2. The invariants of relatively minimal elliptic sur-
faces f: X — C of Kodaira dimension zero. See §9 for
the notation. The columns N and ;j are valid when X is
an algebraic surface. We use the following abbreviation:
[HI=[BM77, §3, p. 37], [Q]=[BM76, §2, p. 214].




analytic case [Mita]. Examples or non-existence theorems are given in each
possible case.

Let us explain the notation in Table 2. By x (resp. pg, g, I, n, p) we
denote x(&Ox) (resp. the geometric genus of X, the genus of C, the length of
the torsion of the R-module I'(C,R! £, &), the order of the canonical bundle
Xy of X in the Picard group of X, the characteristic of the base field). By
(ai/m;) we denote the combination of multiple fibers. Assume that X is an
algebraic surface. Then the column N gives the name of X ([BM77] and
[BM76]): K: K3 surface, E: classical Enriques surface, N: non-classical
Enriques surface, A: abelian surface (the product of two elliptic curves), H:
hyperelliptic surface, Q: quasi-hyperelliptic surface. The column ; gives
the j-invariant of the Jacobian fibration associated to f in the following
way: C: any element of £, O: any constant ordinary j-invariant in £, S: any
supersingular j-invariant in k.

Acknowledgments. The author is grateful to the organizers of the confer-
ence. This work was supported by the Grant-in-Aid for JSPS Fellows (21-
1111) from Japan Society for the Promotion of Science, the Grant-in-Aid
for the Global COE program form the MEXT of Japan, and the Hausdorff
Center for Mathematics.

REFERENCES

[BBL94] J. Blass, P. Blass, and J. Lang, Zariski surfaces. Il. Section 3: on a question of
Oscar Zariski, Ulam Quart. 2 (1994), no. 3, 58 ff,, approx. 14 pp. (electronic).

[BM76] E.Bombieri and D. Mumford, Enriques’ classification of surfaces in char. p. IlI,
Invent. Math. 35 (1976), 197-232.

, Enrigues’ classification of surfaces in char. p. II, Complex analysis and
algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 23-42.

[CD89] F. R. Cossec and 1. V. Dolgadev, Enriques surfaces. I, Progress in Mathematics,
vol. 76, Birkhduser Boston Inc., Boston, MA, 1989.

[FM94] R. Friedman and J. W. Morgan, Smooth four-manifolds and complex surfaces,
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994.

[Kat82] T. Katsura, 4 note on Enriques’ surfaces in characteristic 2, Compositio Math.
47 (1982), no. 2, 207--216.

, Multicanonical systems of elliptic surfaces in small characteristics,
Compositio Math. 97 (1995), no. 1-2, 119-134, Special issue in honour of Frans
Oort.

{Kaw00] M. Kawazoe, Multiple fibers on elliptic surfaces in positive characteristic, J.
Math. Kyoto Univ. 40 (2000), no. 1, 185-201. )

, Multiple supersingular ellipitc fibers on elliptic surfaces, J. Pure Appl.
Algebra 204 (2006), no. 3, 602-615.

[Kod63] K. Kodaira, On compact analytic surfaces: II, Ann. of Math. (2) 77 (1963),
no. 3, 563-626.

[BM77]

[Kat95]

[Kaw06]

_53_

10



[KUSS5]

[KUS6]

[LLRO4]
[Mita]

[Mitb]

[Mitc]

T. Katsura and K. Ueno, On elliptic surfaces in characteristic p, Math. Ann. 272
(1985), no. 3, 291-330.

, Multiple singular fibres of type G, of elliptic surfaces in characteris-
tic p, Algebraic and topological theories (Kinosaki, 1984), Kinokuniya, Tokyo,
1986, pp. 405-429.

Q. Liu, D. Lorenzini, and M. Raynaud, Néron models, Lie algebras, and reduc-
tion of curves of genus one, Invent. Math. 157 (2004), no. 3, 455-518.

K. Mitsui, Classification of rigid analytic surfaces, preprint, http: //www.
math.kyoto-u.ac.jp/preprint/2009/21mitsui.pdf.

, Logarithmic transformations of rigid analytic elliptic surfaces,
preprint, http://www.math.kyoto-u.ac.jp/preprint/2009/
22mitsui.pdf.

, Multiple fibers of elliptic fibrations, preprint.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KYOTO UNIVERSITY,
KyoTo 606-8502, JAPAN
E-mail address: mitsui@math.kyoto-u.ac.jp

_..54.._

11



