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GROMOV-WITTEN THEORY OF ORBIFOLD PROJECTIVE
LINES AND INTEGRABLE HIERARCHIES

TODOR MILANOV

ABSTRACT. This lecture is a preliminary announcement of the results from my
joint project with H.-H. Tseng and Y. Shen. We prove that the generating function
of GW invariants for certain class of orbifolds is a tau-function for the Kac-
Wakimoto hierarchy corresponding to certain conjugacy class of the Weyl group.
In fact our project suggests that the Kac—Wakimoto hierarchies should admit an
extension similar to the well known Extended Toda hierarchy, which governs the
GW theory of P'.

1. INTRODUCTION

Let X = ]P’}”W3 be the projective line equipped with an orbifold structure, such
that there are exactly 3 orbifold points of type C/(Z/r;Z), where the weights r; are
positive integers satisfying:

1 1 1

X=—+—+—-1>0.

Ty, T2 T3
Let us recall that the orbifold cohomology H , (X; C) is by definition the cohomology
of its inertia orbifold. The latter is defined as follows. Locally, X is modelled by
U/G, where U is a coordinate chart and G is a finite group acting on U. The
orbifolds

U9/C(g), U={zeX :g-z=1z}, C(g)={h€eG : hg=gh}

parametrized by the conjugacy classes (g) of G are called twisted sectors. They can
be glued accordingly and give rise to a disjoint union of orbifolds, called the inertia
orbifold of X. Note that if we pick consistently (g) = {1}; then the resulting twisted
sector is just the orbifold X.

All integers r; satisfying the above condition are naturally in a 1-to-1 correspon-
dance with the Dynkin diagrams of ADE type together with a choice of a central
node: a node that splits the Dynkin diagram into 3 diagrams, which we call legs,
of type A;,—1 (1 < i < 3). We will always associate such a Dynkin diagram with
the orbifold X, as well as the corresponding root system and Weyl group. Further-
more, for each leg of the Dynkin diagram, we take the composition of the reflections
corresponding to the nodes on the leg (in order starting from the node incident to
the central node). Let us denote by o the composition of the transformations corre-
sponding to the legs (note that the order is irrelevant since the leg-transformations
commute.
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2 TODOR MILANOV

We fix a basis of the orbifold quantum cohomology H? . (X;C) as follows:
o1 =1, ¢o2=P
are the unit and the hyperplane class respectively and
oy, 1< <3, 1<i"<ry—1

are the units of the corresponding twisted sectors of X. Note that the dimension of
the cohomology is

N=ri+ro+r3—1.

It is convenient to denote by ¢ the set of all pairs (¢,¢”) that we used above to label
the basis of the cohomology. Let us denote by

h—1Q¢ i i
Dx(ft) =exp (Y Ty (Bis5 -+ Tho (B Vgimaths - 117 )

the generating function of orbifold Gromov—Witten invariants of X. In the above
formula, % and @Q are formal parameters that keep track respectively of the genus
and the degree of the holomorphic curves in X. Furthermore,

t=(to,t1,...), tx = (th)ies

is a sequence of formal vector variables that we use to keep track of the various
incidence (upper index %) and tangency (lower index k) constraints. Finally, using
the so called dilaton shift

1I:c = qlica (k,’L) 7é (1, (01 1))7 t(l)1 = q(l)l +1,
we identify Dx with a vector in the Fock space

(1) Chllgo,q1 +1,92,...]}, Cr=C((VR)).

Let us recall also that for each Dynkin diagram of type ADE and a choice of a conju-
gacy class C in the corresponding Weyl group, Kac—Wakimoto (see [9]) constructed
an integrable hierarchy, called the Kac-Wakimoto hierarchy (corresponding to the
conjugacy class C. Our main statement can be formulated as follows: the generat-
ing function Dx is a tau-function of the Kac-Wakimoto hierarchy corresponding to
C = [o].

The goal in this lecture is to make this statement more precise as well as to outline
the main steps in the proof.

n!

2. FROBENIUS MANIFOLDS AND ROOT SYSTEMS

Recall that the quantum cup product is a family of multiplications e; in the
cohomology space H*(X;C) parametrized by ¢ € H*(X;C) and defined by the
following genus-0 GW invariants:

d
(i o b)) =Y %— (Gir 85y Prs ts - -« £)0,34n.ds
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where ( , ) is the intersection pairing. The quantum cup product and the pairing
(, ) induce on H} a Frobenius structure of conformal dimension 1 with respect to
the Euler vector field:

. D
E=" (1-degc ¢i)t’5—t; + (

i€L

1 n 1 1 ) J
ato,z’

-+ —4+—-1
T1 T2 T3

where (t*);e, are the linear coordinates on M corresponding to the basis {¢;} chosen
above. More precisely, let M = HX,(X;C). We consider on M x C the trivial

O

vector bundle $ with fiber h := H}, (X;C). Using the linear structure on M, we
can identify £ with the pullback of TM via the projection map pr; : M x C — M.
In particular, we frequently identify vector fields on M with sections of £. These
structures are integrable in the sense that the following connection on ) is flat:

V=d—-2z"") (¢ie)dt! + (27 E e, —27'V) dz,
ice
where
Vb, V() = (5 - degcdi) o
2
is the so called Hodge grading operator.

2.1. Periods. For our purposes, it is more convenient to work with a family of
connections that are Laplace transform of V. Namely, for each integer n we introduce
the so called second structure connections ([2, 10]), on £:

(n) — _ %y 1y
v d+ieZL(A_E') (V—n—1/2)dt; O e (V—n—1/2)dA.
Note that V(™ has poles along the discriminant locus:
det(A — Ee) = 0.

Let us denote by (M x C)’' the complement to the discriminant. There exists a
calibration operator:

Se(2) =14 S1()z7 1 + Sa(t)z™ 2., Sk € End(h),
such that in a neighborhood of z = co we have
SIVS =d+ (z_2p . z_1V) dz,
where p is the cup product multiplication by ¢;(TX) = x P. It follows that the
differential operator
1+ S1(t)(=8) + Sa(t)(=82)> + - --

provides a gauge equivalence between the connection V(™ and the following connec-
tion:

1
2) d= Gy V- n-1/2)
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In other words, every horizontal section of V(™) has the form
(3) IO, 3) = (14 S1(8)(=0) + Sa(E) (=) + -+ ) F V),

where f: (M x C) — b is a horizontal section of (2).

Let us assume that the point (£, A) = (0, 1) is not on the discriminant, so that we
can choose it as a reference point on M x C. Furthermore, we fix a ray Rin {0} x C
starting at the reference point and approaching A = o0, so that we can construct
uniquely a horizontal section f()) of (2) for a given initial condition f(1) € §. For

each a € b let Lg") be the horizontal section V(™) satisfying the initial condition:
S-limg xy— 0,1y ISV (£, A) = a.

The S-lim here should be understood as follows. First we analytically continue the
period along some path approaching A = oo while keeping ¢ fixed. We stop at
Ao € R sufficiently large, so that the expansion (3) is convergent for all |A| > [Ag].
The S-lim is by definition set to be f(1). Note that in this definition the branch
of IV (t, M) is specified by some path consisting of 3 pieces: from (¢, A) to (¢, Ag), a
straight segment from (¢, Ag) to (0, Ag), and a line segment along the ray R. Clearly,
the definition of the limit depends only on the homotopy class of the path. Finally,
every other path connecting the reference point and (¢, A) is homotopic to a path of
this special type. Therefore, the S-limit is well defined for any branch of a horizontal
section of V(™.

2.2. Root systems. The quantum cohomology is known to be semi-simple (see
[11]), which means that there are local coordinates w;(t), ¢ € ¢, called canonical,
such that

0 o

9,9 _5, 9 ije.
auz' 3’u,j h 3‘?8’&&3” +J ’
If we put
e} 1
&= Vhig ., A= (8/8us, 0/0uy) ’
then

e; oy €5 =/ Aidijej,  (ei,e5) = by
Note that for each ¢t € M, s.t. the quantum multiplication is semi-simple, the
canonical coordinates w;(t) must be eigen-values of the operator Fe;. Moreover,

near A = u* the connection V(™ has precisely 1 section anti-invariant with respect
to the local monodromy. It has the following expansion:

(4) I™(EN) = en A—w) (e 4,

where ¢, is some constant depending only on n and the dots stand for some function
holomorphic at A = u;. Let us denote by A the set of all a € h such that there
exists a path in (M x C)’ terminating at a generic point on the discriminant, such

that the period Ic(,,n) has an expansion of the form (4).

_14_
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If It(ln)(t, )\) is a horizontal section of V(™; then 8,I(™ (¢, \) is a horizontal section

of V{"t1), Therefore it coincides with I,Sn-"l)(t, A) for some b € h. It is not hard to
see that

b=(1-p)'(V-n-1/2)a.
In other words, we have natural maps
A 5 ACTD o 0) = (1~ p)" iV —n—1/2)a.

Let us denote for brevity by A and A the sets AM™ respectively for n = —1 and
n = 0. Also, we extend r := r_; by linearity to a map r : h — b and put h := r(h).
It is easy to check that the following formula

(ab)™ = (IO, A), (A — B )T (£, X)) = (a, (1 — p)b)

gives a well defined non-degenerate pairing on h, namely using that I®) is a horizon-
tal section, one checks immediately that the RHS is independent of ¢ and A. Note
that the second equality follows by taking the S-limit. Following [2], we will refer
to (| )~ as the intersection pairing. The pull back of the intersection pairing via r
gives a new pairing on b, which we denote by (|); then

Proposition 1. The following statements hold:

(a) The set A is a finite root system in (§,( | )™).
(b) The set A is an affine root system in (h,( | )).

Moreover, A coincides with the root system that we associated to the orbifold X
and the analytical continuation along a big loop around the discriminant induces
the automorphism o of A. Let us denote by A the root lattice of A.

Lemma 2. Let mg :ob — b" be the orthogonal projection on the subspace of vectors
fized by o; then mo(A) = Zw, where w =1+ x P.

The affine root system can be described in terms of A as follows. If we delete
the central node of the Dynkin diagram we obtain 3 Dynkin diagrams (the empty
diagram is allowed) D, of type A,,—1, a = 1,2,3. Put

1
o= Z Ta(i) i
i#k

where a(t) € {1,2, 3} is such that the simple root o; belongs to the Dynkin diagram
Dy(i)- Finally let us fix a lift @ € A of & € A for all a.

Lemma 3. The affine root system A consists of the following vectors:
& — x"(w|a)” log Q P+ 27v/~1(n+ (p+|a)™) P,

where a € A, n € L.
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2.3. Construction of an integrable hierarchy in the Hirota form. Following
[6] and [4] we construct an integrable hierarchy in the Hirota form such that the
total descendant potential Dy is a solution.
Given 8 € A put
-1
£9(8,0,2) = ) oFH gV (8, M) (),
keZ

where for k£ < —1 the operation 8’;“ is taking the flat anti-derivative. This operation
is unambiguous because the operator V - 1/2 — k — 1 is invertible for £ < —1. The
vertex operator is by definition the following element of the Heisenberg group acting
on the Fock space (1):

Ff ()\) = e(fﬂ(tv)‘vz)+)Ae(fﬁ(t,)\,z)_)A
Let us denote the S-limit of the vertex operator by
() :=Slm T{(\), BeA.

Furthermore, let us choose a set A’ of affine roots such that the map r : A — A
induces 1-to-1 correspondence between A’ and A. We define the operator Qs by
the following formula:

dA _
Res (3 bOIPN) @12 = (/1o + 3 (68" 901~ 1@a a2 +
BeA!
m; ; )
+21: (H +1)(gf ®a 1~ 1@ 6})(0y ®al— 184 aql,.))_
17

Here the notations are as follows:

a= Cﬁ[[qgl’ qg17 o ]]
and the coefficients bg()) are defined by the following limit:

(5) 510 = tim (1- &) Bs0 )

where Bg(\, i) is the phase factor from the composition of the following two vertex
operators:

TP (u) = Ba(A\, ) : TP P (u) - .
Vector pY € § (§ is the simple Lie algebra corresponding to the root system A) will

be defined below and |o| is the order of the automorphism o. In fact, the consistency
of the hierarchy forces:

P47 /lof? = Res 22 (37 5s().
BeA!

Theorem 4. The total descendant potential satisfies the following Hirota bi-linear
equations:

Qa (Dx ® Dx) =0.
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Our goal now is to identify the Hirota equations appearing in the above theorem
with the Hirota equations of the Kac-Wakimoto hierarchies.

3. REALIZATION OF THE BASIC REPRESENTATION VIA PERIODS

Let g be a simple Lie algebra equipped with an invariant bi-linear pairing ( | )™.
By definition, the affine Kac-Moody algebra corresponding to g is the vector space
g:=gt,t ' ]eCK®Cd

equipped with a Lie bracket defined by the following relations:
(X ™Y t™] = [ X, Y] "™ + nbp,_m(X | Y)7K,
[d’X tn] = ’I’L(X tn)v [K7 g] = Oa
where X,Y € §.
Given a finite order automorphism o of g, Kac-Peterson (see [8]) constructed
a vertex operator representation of g, which can be used to define an integrable
hierarchy in the Hirota form. Our goal is to recall a particular case of the Kac~

Peterson’s construction which can be compared with the vertex operators that we
introduced in the previous section.

3.1. Simple Lie algebras. Given a simple root system A of ADE type in some
vector space (b, ( | )™~) we can construct the corresponding simple Lie algebra

§= f)@@ae[\ﬁa; fa =CA,
as follows. We may assume that ( )™~ is normalized in such a way that the length
of each root is v/2. Identifying the root system A with the space of vanishing cycles

of a simple singularity and the Weyl group W with the monodromy group of the
singularity (see [1]) we define the following co-cycle:

e:AxA— {£1}, €(a,B) = (_1)53“(6!,;‘3)’

where ST is the Seifert form (linking number between the vanishing cycles). Using
the standard properties of the Seifert form (see [1]) we get that this cocycle is W-
invariant and it satisfies the following properties:

e(o, B)e(Bra) = ()P (@, a) = (—1)P/2,

where |a|? := (a|a)™. Once we have such a co-cycle we can recall the so called
Frenkel-Kac construction [5], and define a Lie bracket on § as follows:

[An, A_p] = €(a, —a)a
IAa)Aﬁ} = E(Q’, ﬁ)Aa_;.g, if (a]ﬁ)N = -1
[Aa,Ap] =0, if (cB)” >0. ’
Moreover, given an element o € W we extend o to a Lie algebra automorphism

o : § — § by setting 0(Aa) = Ay(s). Moreover, we can extend the bilinear pairing
(1)~ to g in the following way:

(AalAa)™ i= e(a, —a), (Aa|Ap)™ := (AalH)~ =0, VB# —a, HeEh.

_17_
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The extended pairing is both g-invariant (with respect to the adjoint representation)
and W-invariant.

3.2. Twisted realization of the affine Lie algebra. Put n = e2mvV=1/ o], then
we extend further the action of ¢ to the affine Lie algebra g by

o-(Xot")=a(X)®(n™'t)", 0-K=K, o-d=d.

Let g° be the Lie subalgebra of o-fixed points. According to Kac (see [7], Theorem
8.6.) g° = g. Let us recall the isomorphism. The fixed points subspace §° contains a
Cartan subalgebra go. We have a corresponding decomposition into root subspaces

ﬁ: @ éa')
a'eA’

where A’ C go are the corresponding roots. Note that since the root subspaces are
1 dimensional, they must be eigen-subspaces of . Therefore, by choosing a set of

simple roots of, i = 1,2,...,N — 1 in A’ we can uniquely define an integral vector
s=(81,...,8N-1), 0 < s; < |o] s.t., the eigenvalue of the eigensubspace ﬁaé is 0%,
Put
N-1
po:Bo—fo, po= Y s,
i=1

where w[(1 <4 < N — 1) are the fundamental weights corresponding to the simple
roots of(1 < i < N — 1); then it is easy to see that an isomorphism

b:9g— g7
is given by the following map
(6) S(Xt") = (VX 4 50 (O XK
oK) = |o/K
-1 v_ L1 v vy~
(7 o) = o™ (d- oY~ 5(e¥lo0) K),

where pY € go is the dual to p,, ie., (p]|-)~ = po(-) and
ad v
t™re X = exp (logt adpg)X.
To see that this definition is meaningful, one has to notice first that
o = exXp (27!'\/ —ladpg/|a|) .

It follows that the RHS is a single valued function and that the resulting loop is
o-invariant.
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3.3. Periods and vertex operators. In this subsection we will derive explicit
formulas for the S-limit of the vertex operator I‘f (A). To begin with, let us denote
by * the natural involution in our index set that comes from Poincaré duality, i.e.,
the involution is uniquely defined so that the Poincaré pairing has the following
symmetry:

1 .

(9i,45) = — iz, Vi i€,

'l«,

where we set rg := 1. It will be convenient to introduce also
We = w/X, de:i= (Welwe)™ =1/x.
It can be proved that w, is the fundamental weight corresponding to the central
node of the Dynkin diagram (see Lemma 2). Furthermore, we put
Hj = lO'ITjI ()b_’i) .7 = (j,)j”) € liw,

where 14y is the index set of the cohomology classes supported on the twisted sectors,
i.e., 7 € ¢ such that 7' # 0, and

Hony = Hpgz) = Vol xwe;

then it is easy to see that these vectors form a basis of eigenvectors of b for the
monodromy o, satisfying the following orthogonality relations:

(Hi|Hj )™ = |o] 6ij, Vi,j €.

The eigenavlue of H; is e=2"V~14 for j € 1. Put d; = 1 — m;/|0], i € ¢; then

mp1) =0, Mgz =lol, mi=1" l;?/-l, 1€ Liw-
Note that these numbers have the following symmet;y:
m; +mp =|o], Vie..
Let
(8) B =r"}(a) - (wkla)” logQ P + 2mv/=1(n + (p*]a)™)

be an affine root; then by definition we have
ISP = (alwe)™ A+ (elw)™(log A — Co) P+ 21v/=1(n + (p+|a)™) P +
> (a|His)™ y/ry/lo] %
1€LLw 4
where Cy = log Q%. From here we find that the remaining periods are:

IP0) = (~1)1(elw) AP+ ST (ol Hir)™ (di — 1) -+ (di — DAE1 /i o,

i€t

forl > 1,

IP () = (alwe)™ + (@w)" AP+ 3 (ol Hir )Mo oy,

1Cltw

_.19_.
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and

1+1
—1-1
500

(a|wc)~m

A+
Z (alH’i*) V Tj'/’gl d](dj + 1) (d ¥ l)

1€ Ltw
where Cy(I > 1) are constants defined recursively by C; = Cy—; + 1/1.

Applying our quantization formalism, together with the substitutions A = ¢!?l/|o|
and

+(a|w)” (log/\ C)) P+ 2mv— n P+

1 |o|%e g
(9) Yo, ,
VA /ol mi(mi +al]) - (mi + lo])
1 o|d ‘ .
(10) w = — 1 .

VR /lolry mi(mi + IUI) “(mi+ o)
we get that the vertex operator I'*()\) has the form:

TP(3) = Us() Tg(M TE(Q),
where

U(3) = exp (3 (w(@) (oA~ O + 20/ =T(n + (p*10))) 2 4/VE),

=1

T3 = exp ( (w(e) 06 3z + 20T+ (o41e0) ) enp (- nte) Vi),

and

r2(¢) = exp (Yo (alH)™ (¥l y,y) exp (D (alHir)™ =2
4,

il

C—-m,—l|a| 9 )
m; — l|o| dys/’

where the sums are over all ¢ € /\{(0,1)} and [ > 0.

3.4. Twisted realization of the basic representation. Following [8], we would
like to recall the realization of the basic level 1 representation of the affine Lie algebra,
g corresponding to the automorphism o. The idea is to construct a representation
of the Lie algebra g?. Note that the central charge K of g must act by the scalar

1/|o|.

Let us introduce the following generating series:

lo]

Xa(C) = ZAa,n C—n = Z Z'ﬂ a(a)tn n [V RS A

nez =1 nez
and the following vectors:

= Hgmtlel e,
After a direct computation we get

(Hit, Xa(0)] = (o Hi)~¢™ ol X0(¢).
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It follows that X4 (¢) = X2(¢)E%(¢), where EX(¢) is the following vertex operator:

- ¢+l S
11 Hy)" Hie o1 = He )" Hiy Z =357
(11)  exp (;(al i) His i 1mi+llo_|)exp (;(al ) Hii—— _llo‘l)

and X3(¢) is an operator commuting with H;; for all 4 € /\{(0,1)} and [ € Z.
Let & be the subgroup of the affine Kac-Moody Lie group generated by the lifts
of the following loops:

ha,g = €xp (ozlogt“’I + 2mv—1 B),
where a € l‘;" and B € § are such that

o(ﬁ)—ﬁ+aeix.

Let us point out that under the analytical continuation around ¢ = 0, the loop hq, g
gains the factor e2mV-1lole The latter must be 1 because:

ol = (a+0(8) = B) + ola+ (a(B) - B) + -+ o7 a+ (o(8) — B) € A.
It follows that hq g is single valued and o-invariant, i.e., it defines an element of
the affine Kac—Moody loop group acting on g° by conjugation. Furthermore, the
operators
HO: Hi,l) H’i*,-—l—l (l 2 077' € L\{(07 1)}’ K

span a Heisenberg Lie algebra s. The main result of Kac—Peterson is the following:
the basic representation of g° remains irreducible when restricted to the pair (s,S).

Let s_ be the Lie subalgebra of s spanned by the vectors Hy _;_1, 1 € (\{(0,1)},
[ > 0. The basic representation can be realized on the following vector space:

Vi = S*(s_) ® Cle¥]e™,

where z is a complex number, the first factor in the tensor product is the symmetric
algebra on s_, and the second one is the group algebra of the lattice Zw = 7r0(./°X).
We will refer to [0) := 1 ® e*™ as the vacuum vector. Slightly abusing the notation
we put 9, := 3% — z (so that 9,,|0) = 0). Let us represent the Heisenberg algebra s
on Cle¥]e™ by letting all generators act trivially, except for Hy — w(Hp)d,. This
way Vi becomes naturally a s-module. Furthermore, put

E2(Q) = exp (we(aw) exp ((w(@) log ¢!+ 2mv/=T (p]0)™)20)
and E,(¢) = E%(¢)E%(C), where E%(() is defined by formula (11).

Theorem 5. There are constants ¢, @ € A such that the maps (mo was introduced
in Lemma 2)

Xa(¢) cadaim(an?/zEa(C), ac A

K — 1/|o],
1 ve_ Ll
d — ‘miﬁw _EHO—ZHi*,—l—lHi,l-

3,0

_21_
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lift the representation of the Heisenberg algebra s on V, to a representation of the
affine Lie algebra g°.

Using the commutation relations of the vertex operators we can find a formula
for the products cyc.. Let us introduce the following bi-multiplicative function on
A

lo]-1
B(e, B) = |o| @A™ H (1 —p)e'(@1B)~

Lemma 6. The constants ¢y satisfy the following identity:

E(Ol, —Ol) 627r\/rl_(pl|a)~(wc|a)~.

Caloa = B(aa —Oé)

4. THE KAC-WAKIMOTO HIERARCHY

Following Kac-Wakimoto, we can define an integrable hierarchy in the Hirota
form whose solutions are parametrized by the orbit of the vacuum vector |0) of the
affine Kac-Moody group. A vector 7 € V, belongs to the orbit iff Q, (7 ® 7) = 0,
where €2, is the operator representing the following bi-linear Casimir operator:

ZZ IA Aan® Ao+ K@d+d® K + H0®H0+
Q "(X

acA

1
+l}—! Z (Hi,l QHp» g1+ Hp 11 ® Hi,l)>
4l

where the second sum is over all ¢ € (\{(0,1)} and all / > 0. On the other, hand we
have

. . _ dc
2 ATA ) Aan ® Aermn = Rest=o Faa(O)Eal0) © Bo(C),

where
aa(¢) = B(o, o) ¢l Imo(@)[? g2mv/=Tp* (a)we(a)
We identify the symmetric algebra S*(s_) with the Fock space C[y], where y = (y;,)

is a sequence of formal variables indexed by 7 € /\{(0,1)} and ! > 0, by identifying
His 11 = (m; + lo])ys; then

5]
Ay’

Ho = (lolx)V?8,, K =1/|0],

i =

and

sl _xg
d= t:j _2_ Zl m; + lla’)yi,la’yi,l'

_22._
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The Hirota equations then assume the following form. A vector 7 belongs to the
orbit if and only if the following bilinear equations hold:

d¢ X
Res?(ae%aa(C)Ea(C) ® E—a(C)) TRT = (‘PX|2/|U|2 + 3ol (B®1—1®8,)+

1
ME 3 (mi + o)y ® 1~ 1@ 9i1)(By, ©1 - 18 ayi,,))r ® 7.
[N

Finally, let us point out that the constant |pY|?/|c|? can be found from the consis-
tency of the hierarchy. Namely if 7 = |0) we get that

oy Plol? = 3" aal():

o we(a)=0

We will refer to the above hierarchy as the non-extended ADE-Toda hierarchy. Its
relation to the standard Toda lattice hierarchies will be addressed in future investi-
gation.

Recall the change of the dynamical variables (9)-(10) and the identification A =
¢!l /|o|. In order to compare the Casimir operators 2/ and Q, we need to introduce
some kind of a discrete Fourier transform. Namely, we define a map

Fz : Callgo,q1 + 1,¢2...]] = a®c Va,
by the following formula
Falf(@. ) = f((@+n)Vh,..) e (joQ) ™",
neZ

where the dots stand for the remaining g-variables on which f depends. It is easy
to check that

(12) Fr o @QY/Vh=(0,+z) o Fy
and
LIm2+ma,
(13) Fy o e—m\/ﬁ@/aqg1 — g™ (|0’|XQ)2 o Fy.

Proposition 7. The Fourier transform F, intertwines the Casimir operators Qa:
and Sz, more precisely,

(]:x®a’]::c) o Qar = Q o (-Fz®a]::c)
This proposition in conjunction with Theorem 4 gives the following corollary.

Corollary 8. The Fourier transform Fz(Dx) is a solution to the Hirota bi-linear
equations of the non-extended ADE-Toda hierarchy.
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