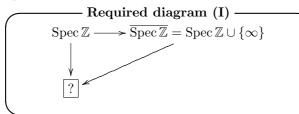
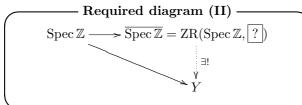


1 Motivation

We want a category in which we can compactify Spec \mathbb{Z} :



We want $\overline{\operatorname{Spec}\mathbb{Z}}$ to be the Zariski-Riemann space $\operatorname{ZR}(\operatorname{Spec}\mathbb{Z}, [?])$ of $\operatorname{Spec}\mathbb{Z}$, namely to have the universal property as follows: $\operatorname{Spec}\mathbb{Z} \to [?]$ is proper, and if $\operatorname{Spec}\mathbb{Z} \to Y$ is a morphism over [?] and $Y \to [?]$ is proper, then there should exist a unique morphism $\operatorname{Spec}\mathbb{Z} \to Y$:



However, these diagrams cannot be obtained in the category (**Sch**) of schemes:

- (1) Spec \mathbb{Z} is the initial object in (Sch), hence we don't have any object ? under Spec \mathbb{Z} .
- (2) The infinite place ∞ is not a prime ideal.

Several attempts have been made in the past (Haran, Durov, \cdots), but have not reached the characterization of $\overline{\text{Spec }\mathbb{Z}}$ by the universal property.

Therefore, we must consider an algebraic type which generalizes that of commutative rings; this is what we call 'convexoid rings', as is defined below.

2 Definitions

An algebraic type τ is *commutative*, if any *m*-ary operator φ and *n*-ary operator ψ commutes:

$$\varphi(\psi(x_{11},\cdots,x_{1n}),\cdots,\psi(x_{m1},\cdots,x_{mn}))$$

= $\psi(\varphi(x_{11},\cdots,x_{m1}),\cdots,\varphi(x_{1n},\cdots,x_{mn}))$

This enables us to give a τ -algebra structure on Hom sets, and hence to define tensor products \otimes .

A convexoid is a quadruple $(M, \boxplus, -, 0)$ which satisfies:

(1) M is a set, $0 \in M$, \boxplus (resp. -) is a binary (resp. unary) operator on M,

- (2) The algebraic structure on M is commutative in the above sense, and
- (3) $a \boxplus b = b \boxplus a$, $(-a) \boxplus a = 0$.

A convexoid ring is a commutative monoid object with respect to \otimes in the category of convexoids.

Example 2.0.1. $\mathbf{D}\mathbb{Q} = \{x \in \mathbb{Q} \mid |x| \leq 1\}$ is a convexoid ring, by setting $a \boxplus b = (a+b)/2$. Note that \boxplus is not associative.

We can define 'convexoid schemes', just as in the way of usual schemes; however, this is **NOT sufficient** for our purpose.

If R is a convexoid ring, then $\gamma_R = 1 \boxplus 0$ is the fundamental constant.

- A ring is a localization of a convexoid -

 $R[\gamma_R^{-1}]$ becomes a ring, by setting $a+b=\gamma_R^{-1}(a\boxplus b).$

A morphism $A \to B$ of convexoid rings is an *equivalence*, if $\gamma_A B = \gamma_B B$ and $A[\gamma_A^{-1}] \to B[\gamma_B^{-1}]$ is a ring isomorphism.

A convexoid scheme is a (multiplicative) monoidvalued space X which is locally isomorphic to the spectrum of some convexoid ring, and transition maps are equivalences.

3 Results

Let R_0 be the initial object in the category of convexoid rings. This is a submonoid of the polynomial ring $\mathbb{Z}[\gamma]$, and hence equipped with a canonical grading. We can define a convexoid scheme Proj R_0 .

Valuation convexoid rings can be defined just like valuation rings. A proper morphism of convexoid schemes is defined by the valuative criterion.

— Main theorem
$$(T-)$$
 [1] —

$$\overline{\operatorname{Spec} \mathbb{Z}} = \operatorname{ZR}(\operatorname{Spec} \mathbb{Z}, \operatorname{Proj} R_0).$$

This is realized in the **pro-category** of convexoid schemes.

- **Remark 3.0.2.** The infinity place canonically appears, without using the terminology of norms. This can be shown by proving a generalization of Ostrowski's theorem.
 - The above theorem can be generalized to any ring of algebraic integers \mathcal{O}_K .
 - A locally free sheaf on $\overline{\text{Spec }\mathcal{O}_K}$ is, by definition a projective \mathcal{O}_K -module equipped with a norm satisfying some finiteness property.

References

[1] Takagi, S.: Compactifying Spec \mathbb{Z} , arXiv: math.AG/1203.4914