On Fano fourfolds with nef bundle $\Lambda^2 \mathcal{T}_X$ and $\rho(X) \ge 2$

代数幾何学シンポジウム記録

2012年度 pp.125 125

Yasutake Kazunori (Kyushu University)

Abstract

In this poster, I explain about the structure of Fano fourfolds whose the second exterior power of tangent bundle $\Lambda^2 \mathcal{T}_X$ is nef and Picard number $\rho(X)$ is at least 2.

— Definition of nef vector bundle —

X: smooth proj. var. / \mathbb{C} , \mathcal{E} :vector bundle on X,

 $\pi: \mathbb{P}_X(\mathcal{E}) \to X$:projectivization, $\xi_{\mathcal{E}}$:tautol. div.

 $(\Diamond) \ \mathcal{E} : \mathbf{nef} \ (\mathbf{ample}) \stackrel{\mathbf{def}}{\Leftrightarrow} \ \xi_{\mathcal{E}} : \mathbf{nef} \ (\mathbf{ample})$

Known results

One of a generalization of Mori's Theorem (Hartshorne conjecture), K.Cho and E.Sato gave a characterization of smooth quadric as a variety with ample bundle $\Lambda^2 \mathcal{T}_X$.

- X sm. proj. variety. with ample vect. bundle $\Lambda^2 \mathcal{T}_X$
- $\Rightarrow X \cong \mathbb{P}^n$ or Q_n : smooth quadric hypersurface

As a further generalization of this theorem, F.Campana and T.Peternell classified threefolds with nef bundle $\Lambda^2 \mathcal{T}_X$.

 \sim Nef case in 3 dim., Campana-Peternell [CP1] —

X sm. proj. threefold with nef vect. bundle $\Lambda^2 \mathcal{T}_X$

 \Rightarrow Either \mathcal{T}_X : nef, the blowing up of \mathbb{P}^3 at a point. or del Pezzo threefold of degree ≥ 2 with $\rho(X) = 1$

<u>Problem</u>

Classify smooth projective fourfolds with nef vector bundle $\Lambda^2 \mathcal{T}_X$.

Fourfolds with nef tangent bundle are already classified by F.Campana-T.Peternell, N.Mok and J.-M. Hwang. We review the classification in Fano case.

— Fano fourfolds with $\mathcal{T}_{\mathbf{X}}$ nef , [CP2], [M] [H] —

X : smooth Fano fourfold with nef tangent bundle \mathcal{T}_X . Then X is one of the following: $\mathbb{P}^4, \ Q_4, \ \mathbb{P}^3 \times \mathbb{P}^1, \ Q_3 \times \mathbb{P}^1, \ \mathbb{P}^2 \times \mathbb{P}^2, \ \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2, \ \mathbb{P}_{\mathbb{P}^2}(\mathcal{T}_{\mathbb{P}^2}) \times \mathbb{P}^1, \ \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \ \mathbb{P}_{\mathbb{P}^3}(\mathcal{N})$ with null correlation bundle \mathcal{N} .

<u>General results</u>

In the case where $\kappa(X) = 0$, we can classify in all dimension.

— Kodaira dimension $\kappa(\mathbf{X}) = \mathbf{0}$, Theorem1 —

X : smooth projective variety of $\kappa(X) = 0$.

Then the following conditions are equivalent:

- 1. $\Lambda^r \mathcal{T}_X$ is nef for $1 \leq r \leq n-1$;
- 2. \mathcal{T}_X is nef;
- 3. There is an étale covering $\nu : A \to X$ from Abelian variety.

Proof. Nefness of $\Lambda^r \mathcal{T}_X$ implies that X has the flat tangent bundle. The theorem follows from the result of Yau \square Next, we consider the case where X is Fano and obtained by the blowing up of a smooth variety along a smooth subvariety. This proposition plays an important role in my study.

- Blowing up, **Proposition2** -

X : blowing up of smooth variety Y of dimension n along smooth subvariety Z. If X is Fano and $\Lambda^2 \mathcal{T}_X$ is nef \Rightarrow X is the blowing up of \mathbb{P}^n at a point.

Main theorem

As a first step of classification of the case where $\kappa(X) = -\infty$, we consider Fano fourfolds with $\rho(X) \ge 2$.

- Fano fourfolds with $\rho(\mathbf{X}) \ge \mathbf{2}$, Theorem3 -

X : smooth Fano fourfold with $\rho(X) \ge 2 / \mathbb{C}$. If $\Lambda^2 \mathcal{T}_X$ is nef and \mathcal{T}_X is not nef \Rightarrow X is the blowing up of \mathbb{P}^4 at a point.

Proof. Using results about extremal contractions on smooth four folds \square

The proof of above theorem yields the following result.

- Corollary ------

X : smooth Fano fourfold with $\rho(X) \ge 2$. If $\Lambda^2 \mathcal{T}_X$ is nef on every extremal rational curve in X $\Rightarrow \Lambda^2 \mathcal{T}_X$ is nef.

References

- [CP1] F. Campana and T. Peternell, On the second exterior power of tangent bundles of threefolds, Compos. Math. 83 no.3, (1992), 329–346.
- [CP2] F. Campana and T. Peternell, 4-folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscripta Math. 79 (1993), 225–238.
- [CS] K. Cho and E. Sato, Smooth projective varieties with the ample vector bundle $\Lambda^2 \mathcal{T}_X$ in any characteristic, J. Math. Kyoto Univ. 35 (1995), 1–33.
- [H] J-M. Hwang, Rigidity of rational homogeneous spaces, Proc. of ICM. (2006), 613–626.
- [M] N. Mok, On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents, Trans. of A.M.S. 357 no.7 (2002), 2639–2658.
- [Y] K. Yasutake, Fano fourfolds with Picard number greater than two whose the second exterior power of tangent bundles are numerically effective, preprint.