Example of Weierstrass semigroups of double covering type

代数幾何学シンポジウム記録 2012年度 pp.124 124

Kenta Watanabe. Supervisor: Sampei Usui Dept. of Math.,Osaka Univ.,Japan. u390547e@ecs.cmc.osaka-u.ac.jp

1 Numerical semigroup

We call a subsemigroup H of the monoid \mathbb{N}_0 consisting of nonnegative integers a **numerical semigroup** if $\mathbb{N}_0 \setminus H$ is a finite set. The genus g(H) of a numerical semigroup H is defined by the cardinality of the set $\mathbb{N}_0 \setminus H$.

Example 1. $H = \langle 3, 4 \rangle$ or $\langle 3, 5, 7 \rangle \Longrightarrow g(H) = 3$.

2 Weierstrass semigroup

We work over the complex number field \mathbb{C} . A curve means a smooth projective curve. For a curve C and a point P on C, we call a non-negative integer $n \in \mathbb{N}_0$ a **gap** if there is no meromorphic function which is holomorphic on $C \setminus \{P\}$ and has a pole of order n at P.

Fact 1. For the set G(P) consisting of gaps at a point P on a curve C, the set $\mathbb{N}_0 \setminus G(P)$ forms a numerical semigroup.

We call the numerical semigroup $\mathbb{N}_0 \setminus G(P)$ a Weierstrass semigroup and denote it by H(P). For instance, both of two semigroups in Example 1 are Weierstrass semigroups of a plane pointed curve of degree 4.

3 Plane curve case

Theorem 3.1 (E. Kang, S. J. Kim). Let C be a plane curve of degree d, and let $P \in C$. then, we have the following results.

(i) If $I_P(C \cap T_P(C)) = d$, then $H(P) = \langle d, d-1 \rangle$. (ii) If $I_P(C \cap T_P(C)) = d - 1$, then

$$H(P) = \langle \{d - 1 + r(d - 2)\}_{0 < r < d - 2} \rangle,$$

where $T_R(C)$ is the tangent line at R on a curve C, and $I_Q(C_1 \cap C_2)$ is the intersection multiplicity at an intersection point Q of two curves C_1 and C_2 .

It is well known that, in the case where C is a smooth plane curve of degree d, if the intersection multiplicity at P of C and the tangent line $T_P(C)$ at P on C is equal to d, d-1, or d-2, then the Weierstrass semigroup H(P) of (C, P) is uniquely determined. Moreover, if $d \leq 7$, then H(P) is completely determined by Komeda and Kim.

4 Weierstrass semigroups of double covering of curves

For a numerical semigroup H, we set $d_2(H) = \{\frac{h}{2} \mid h \in H \text{ is even}\}.$

Fact 2. $\pi : \tilde{C} \to C$ is a double covering of curves with a ramification point $\tilde{P} \Longrightarrow d_2(H(\tilde{P})) = H(\pi(\tilde{P})).$

We call a numerical semigroup H the **double covering type** if there is a double cover of curves $\pi : \tilde{C} \to C$ with $H = H(\tilde{P})$ as in Fact 2. **Question**. For a pointed curve (C, P), what is a condition for a numerical semigroup \tilde{H} with $d_2(\tilde{H}) = H(P)$ to be the double covering type ?

In general, it is difficult to consider this problem. However, if the genus of a pointed curve (C, P) is sufficiently small, then the following result is known.

Theorem 4.2 (Komeda). Let \tilde{H} be a numerical semigroup of genus ≥ 9 with $g(d_2(\tilde{H})) = 3$. Then \tilde{H} is the double covering type.

5 Main results

Theorem 5.1 Let X be an algebraic K3 surface which is given by a double cover $\pi : X \to \mathbb{P}^2$. Let C be a smooth projective curve on X with $\pi^{-1}\pi(C) = C$ which is not the ramification divisor of π , and let P be a ramification point of $\pi|_C : C \to \pi(C)$. Assume that the curve $\pi(C)$ is a plane curve of degree $d \geq 4$. Then, we have the following results.

(i) If
$$I_{\pi(P)}(T_{\pi(P)}(\pi(C)) \cap \pi(C)) = d$$
, then

$$H(P) = 2H(\pi(P)) + (6d - 1)\mathbb{N}_0.$$

(ii) Assume that $I_{\pi(P)}(T_{\pi(P)}(\pi(C)) \cap \pi(C)) = d-1$ and let

$$T_{\pi(P)}(\pi(C))|_{\pi(C)} = (d-1)\pi(P) + Q.$$

If $I_Q(T_Q(\pi(C)) \cap \pi(C)) = d$, then $H(P) = 2H(\pi(P)) + (8d - 9)\mathbb{N}_0 + (10d - 13)\mathbb{N}_0$ $+ \dots + (8d - 9 + 2r(d - 2))\mathbb{N}_0$ $+ \dots + (2(d - 1)^2 + 5)\mathbb{N}_0.$

In theorem 5.1 (ii), in the case where d = 4 and $I_Q(T_Q(\pi(C)) \cap \pi(C)) \leq 4$, the Weierstrass semigroup H(P) is classified as follows.

n	H(P)
23	$2H(\pi(P)) + 23\mathbb{N}_0$
27	$2H(\pi(P)) + 27\mathbb{N}_0 + 31\mathbb{N}_0 + 35\mathbb{N}_0,$
	$2H(\pi(P)) + 27\mathbb{N}_0 + 29\mathbb{N}_0$
29	$2H(\pi(P)) + 29\mathbb{N}_0 + 31\mathbb{N}_0 + 33\mathbb{N}_0$

References

- E. Kang, S. J. Kim, A Weierstrass semigroup at a pair of inflection points on a smooth plane curve, Bull Korean Math. Soc. 44, No. 2, pp. 369-378 (2007).
- [2] Komeda, J., On Weierstrass semigroups of double coverings of genus three curves, Semigroup Forum 83, 479-488 (2011).
- [3] Komeda, J., S. J. Kim, The Weierstrass semigroups on the quotient curve of a plane curve of degree ≤ 7 by an involution, J. Algebra, 322, 137-152 (2009).
- [4] Torres, F., Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscr. Math. 83, 39-58 (1994).

-124-