Non-normal very ample integral polytopes

シンポジウム記録 2012年度 pp.123-123

代数幾何学

大阪大学

東谷 章弘 (Akihiro Higashitani)

代数幾何学城崎シンポジウム (於 兵庫県立城崎大会議室)

2012年 10月22日 ~ 10月26日

1. Definitions

 $\mathcal{P} \subset \mathbb{R}^N$: an integral polytope of dimension n $\mathcal{A}_{\mathcal{P}} = \{(\alpha, 1) \in \mathbb{R}^{N+1} : \alpha \in \mathcal{P}\} \cap \mathbb{Z}^{N+1}$

• We say that \mathcal{P} is **normal** if \mathcal{P} satisfies

$$\mathbb{Z}_{>0}\mathcal{A}_{\mathcal{P}}=\mathbb{R}_{>0}\mathcal{A}_{\mathcal{P}}\cap\mathbb{Z}\mathcal{A}_{\mathcal{P}}.$$

• We say that \mathcal{P} is **very ample** if \mathcal{P} satisfies

$$|(\mathbb{R}_{>0}\mathcal{A}_{\mathcal{P}}\cap\mathbb{Z}\mathcal{A}_{\mathcal{P}})\setminus\mathbb{Z}_{>0}\mathcal{A}_{\mathcal{P}}|<\infty.$$

the elements of $(\mathbb{R}_{\geq 0}\mathcal{A}_{\mathcal{P}} \cap \mathbb{Z}\mathcal{A}_{\mathcal{P}}) \setminus \mathbb{Z}_{\geq 0}\mathcal{A}_{\mathcal{P}}$: the **holes** of \mathcal{P} Note: "normal \Longrightarrow very ample"

For simplicity, we assume

$$N=n$$
 and $\mathbb{Z}\mathcal{H}_{\mathcal{P}}=\mathbb{Z}^{n+1}$.

Then

 \mathcal{P} is normal (resp. very ample) \iff

 \mathcal{P} satisfies (*) for all $m \ge 1$ (resp. for sufficiently large m):

$$\forall \alpha \in m\mathcal{P} \cap \mathbb{Z}^n$$
,

(*)
$$\exists \alpha_1, \ldots, \exists \alpha_m \in \mathcal{P} \cap \mathbb{Z}^n \text{ s.t.}$$

$$\alpha = \alpha_1 + \cdots + \alpha_m$$
.

♣ \mathcal{P} is called *k*-normal if \mathcal{P} satisfies (*) for all $m \ge k$.

2. Backgrounds

From Commutative Algebra

K: field

 $\mathbb{Z}_{\geq 0}\mathcal{A}_{\mathcal{P}}, \, \mathbb{R}_{\geq 0}\mathcal{A}_{\mathcal{P}} \cap \mathbb{Z}^{n+1}$: affine semigroups

• $K[\mathcal{P}] = K[\mathbb{Z}_{\geq 0}\mathcal{A}_{\mathcal{P}}], \overline{K[\mathcal{P}]} = K[\mathbb{R}_{\geq 0}\mathcal{A}_{\mathcal{P}} \cap \mathbb{Z}^{n+1}]:$ affine semigroup graded K-algebras

 $\Longrightarrow \overline{K[\mathcal{P}]}$ is the *normalization* of $K[\mathcal{P}]$.

• $K[\mathcal{P}]$ and $\overline{K[\mathcal{P}]}$ are graded by grading $\deg X^{\alpha} = i$, where $\alpha = (\alpha_1, \dots, \alpha_n, i) \in \mathbb{R}_{\geq 0} \mathcal{A}_{\mathcal{P}} \cap \mathbb{Z}^{n+1}$.

• \mathcal{P} is normal (resp. very ample) \iff

 $K[\mathcal{P}]$ (resp. m^k) is generated by degree one elements (resp. for $k \gg 0$, where $m = K[\mathcal{P}]_+$).

From Algebraic Geometry

X: toric variety of dim n /K, L: ample line bundle on X $\mathcal{P} \subset \mathbb{R}^n$: the corresponding integral polytope to (X,L) Then

$$H^0(X,L) \cong \bigoplus_{v \in \mathcal{P} \cap \mathbb{Z}^n} K\mathbf{e}_v$$

$$R(X,L) := \bigoplus_{i>0} H^0(X,L^{\otimes i}) \cong \overline{K[\mathcal{P}]}$$

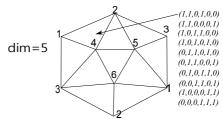
- \mathcal{P} is normal \iff L is normally generated (in the sense of Mumford)
- \mathcal{P} is very ample \iff L is very ample

3. Examples

Our main interest is the existence of

non-normal very ample integral polytopes!!

EXAMPLE (Bruns–Gubeladze '02)



o non-normal: (1, 1, 1, 1, 1, 1) =

1/2((1,1,0,1,0,0) + (0,1,1,0,1,0) + (0,0,1,1,0,1) + (1,0,0,0,1,1))

 \circ very ample; (1, 1, 1, 1, 1, 1) + (1, 1, 0, 1, 0, 0) =

(1,0,1,1,0,0) + (0,1,0,1,1,0) + (1,1,0,0,0,1) and so on...

 \circ the number of holes = 1

EXAMPLE (Bruns–Gubeladze '09)

$$\operatorname{conv}\begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 3 & 4 & 1 & 2 \end{pmatrix}, \qquad \dim = 3,$$

$$\circ (1,1,4) = \frac{1}{2}((0,0,1) + (1,0,2) + (0,1,3) + (1,1,2))$$

$$\circ$$
 (1, 1, 4) + (0, 0, 0) = (0, 0, 1) + (0, 0, 1) + (1, 1, 2)

 \circ the number of holes = 1

REMARK (Ogata '11)

In [3], infinitely many non-normal very ample integral polytopes of dim 3 are constructed.

4. Main Result

How about higher dimensions?

Theorem

Let n and h be integers with $n \ge 3$ and $h \ge 1$. Then there exists a non-normal very ample integral polytope of dimension n having exactly h holes.

REMARK (Katthän '12)

 \mathcal{P} : non-normal very ample integral polytope

 $\implies K[\mathcal{P}]$ is **NEVER** Cohen–Macaulay!!

REFERENCE

- [1] W. Bruns and J. Gubeladze, "Polytopes, rings and K-theory", Springer-Verlag, Heidelberg, 2009.
- [2] D. Cox, J. Little and H. Schenck, "Toric varieties", American Mathematical Society, 2011.
- [3] S. Ogata, Very ample but not normal lattice polytopes, to appear in *Beiträge Algebra Geom.*, (2011)