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A normal complex algebraic variety X is a symplectic variety if there is a holo-
morphic symplectic 2-form ω on the regular part Xreg of X and ω extends to a

(possibly degenerate) holomorphic 2-form on a resolution f : X̃ → X.

Example: Let g be a semisimple complex Lie algebra and let G be its adjoint
group. Let us consider the adjoint quotient map χ : g → g//G. If rank(g) = r, then
g//G is isomorphic to the r-dimensional affine space ∼= Cr. The nilpotent variety
N is, by definition, the set of all nilpotent elements of g and we have N = χ−1(0).
The nilpotent variety decomposes into the disjoint union of (finite number of)
nilpotent orbits. There is a unique nilpotent orbit Oreg that is open dense in N ,

which we call the regular nilpotent orbit. Then N = Oreg. The regular nilpotent
orbit Oreg coincides with the regular part of N and it admits a holomorphic
symplectic form ωKK so called the Kostant-Kirillov 2-form. Then (N,ωKK) is
a symplectic variety. Moreover N ⊂ g is defined as a complete intersection of r
homogeneous polynomials (with respect to the standard C∗-action on g).

In this talk I characterize the nilpotent varieties of semisimple Lie algebras
among affine symplectic varieties.

Let (X,ω) be a singular affine symplectic variety of dimension 2n embedded in
an affine space C2n+r as a complete intersection of r homogeneous polynomials.
Assume that ω is also homogeneous, i.e. there is an integer l such that t∗ω = tl ·ω
for t ∈ C∗.

Main Theorem ([1]): One has (X,ω) ∼= (N,ωKK), where N is the nilpotent
variety of a semisimple Lie algebra g together with the Kostant-Kirillov 2-form
ωKK .

Before starting the proof, we give a few observations.

Observation 1. l = 1, where l := wt(ω).
Write X as f1 = ... = fr = 0 with homogeneous polynomials fi(z1, ..., z2n+r).

We put ai := deg(fi). As X is singular, we may assume that ai > 1 for every i.
The holomorphic volume form ωn := ω ∧ ...∧ ω can be written, by the adjunction
formula (or the residue formula), as

ωn = c · Res(dz1 ∧ ... ∧ z2n+r/(f1, ..., fr))

with a nonzero constant c. Since X has only canonical singularities, we see that
wt(ω) > 0. Computing the weights of both sides, we get

0 < n · wt(ω) = 2n+ r − Σai < 2n.

The last inequality follows from the fact that ai > 1 and so Σai > r. Hence
wt(ω) = 1 and Σai = n+ r.

Observation 2. X has a C∗-equivariant crepant resolution π : Y → X.
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(Sketch of Proof): Take a resolution f : W → X and apply the MMP(Minimal
Model Program) to the morphism f . Then we get a partial crepant resolution
π : Y → X where Y may possibly have Q-factorial terminal singularities. The
C∗-action on X extends to a C∗-action in such a way that π is C∗-equivariant.
The symplectic form ω induces a Poisson structure on the regular locus Xreg. By
the normality of X, this Poisson structure extends to a Poisson structure on X.
The pull-back of ω by π is a symplectic form on Yreg because π is crepant. Then
it induces a Poisson structure on Yreg and it extends to a Poisson structure on Y .
Now let us consider a Poisson deformation Y → ∆ of Y . Then π extends to a
birational morphism π̃ : Y → X over ∆ for a Poisson deformation X → ∆ of X. If
the Poisson deformation Y/∆ is very general, then π̃t : Yt → Xt is an isomorphism
for t ̸= 0. Since X has only complete intersection singularities, Xt also does. On
the other hand, we have CodimY Sing(Y ) ≥ 4 because Y has only terminal singu-
larities. This implies that CodimYtSing(Yt) ≥ 4; and hence CodimXtSing(Xt) ≥ 4.
Notice that Xt is a symplectic variety and such a symplectic variety Xt must be
smooth by a proposition of Beauville. As Yt

∼= Xt, we have seen that Yt is smooth.
Finally, by the Q-factoriality of Y , we see that any Poisson deformation Y → ∆
is a locally trivial flat deformation of Y . Therefore Y must be smooth and π is a
crepant resolution.

We put P(X) := X−{0}/C∗ and Z := Y −π−1(0)/C∗. Then π induces a map
π̄ : Z → P(X). By using the fact that wt(zi) = 1 for all i, we have:

Observation 3. π̄ : Z → P(X) is a crepant resolution.

Notice that Z is a projective manifold of dimension 2n− 1. An important fact
is that Z has a contact structure.

Let W be a complex manifold of odd dimension 2n− 1. A contact structure on
W is an exact sequence of vector bundles

0 → E → ΘW
θ→ M → 0,

where M is a line bundle and the induced pairing E×E → M , (x, y) → θ([x, y]) is
nondegenerate. Recall that a subbundle of Θ is called integrable if the bracket [ , ]
is closed in the subbundle. In this sense, E is a highly non-integrable subbundle
of Θ. The line bundle M is called the contact line bundle and the twisted 1-form
θ ∈ Γ(W,Ω1

W ⊗M) is called the contact form. If W admits a contact structure,
then −KW

∼= M⊗n and (dθ)n−1 ∧ θ is a nondegenerate 2n− 1-form on W .
Let us return to our situation. The C∗-bundle X−{0} → P(X) restricts to the

C∗-bundleXreg → P(X)reg. We put L := OP(X)(1)|P(X)reg and denote by (L−1)×

theC∗-bundle on P(X)reg obtained from the dual line bundle L−1 by removing the
0-section. Then Xreg → P(X)reg can be identified with p : (L−1)× → P(X)reg.
The C∗-action on Xreg coincides with the natural C∗-action on (L−1)× as a C∗-
bundle. Let ζ be a vector field on (L−1)× generating this C∗-action. We regard
ω as a symplectic 2-form on (L−1)× by the identification of Xreg with (L−1)×.
Then one can write

ω(ζ, ·) = p∗θ
2
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with a twisted 1-form θ ∈ Γ(P(X)reg,Ω
1
P(X)reg

⊗ L). We remark that p∗L has

a natural trivialization on (L−1)×. This twisted 1-form θ determines a contact
structure on P(X)reg.

Denote by i : P(X)reg → P(X) the inclusion map. Then i∗Ω
1
P(X)reg

= π̄∗Ω
1
Z .

Since Γ(P(X), i∗Ω
1
P(X)reg

⊗ OP(X)(1)) = Γ(Z,Ω1
Z ⊗ π̄∗OP(X)(1)), the twisted 1-

form θ can be regarded as an element of Γ(Z,Ω1
Z ⊗ π̄∗OP(X)(1)).

Proposition 1. Z has a contact structure with the contact line bundle π̄∗OP(X)(1).

For a contact projective manifold Z, the following structure theorem was proved
by Kebekus, Peternell, Sommese and Wisniewski.

Theorem 2: Assume that Z is a contact projective manifold with b2(Z) > 1
and KZ not nef. Then Z is a projectivized cotangent bundle P(T ∗M) := T ∗M −
(0− section)/C∗ of a projective manifold M . Moreover, the contact line bundle is
isomorphic to OP(T∗M)(1).

As KZ
∼= π̄∗OP(X)(−n), it is not nef. Moreover, since X is a symplectic variety

of complete intersection, CodimXSing(X) = 2. Thus, if n ≥ 2, then P(X) has
singularities and π̄ has an exceptional locus. This implies that b2(Z) > 1. When
n = 1, it is easily checked that X is isomorphic to an A1-surface singularity
z21 + z22 + z23 = 0 in C3.

In the remainder we assume that n ≥ 2. Then Z is a projectivized cotangent
bundle P(T ∗M) for some projective manifold by the theorem above. Which kind
of manifold is M ?

First notice that OP(T∗M)(1) = π̄∗OP(X)(1). In particular, OP(T∗M)(1) is nef.
The following theorem was proved by Demailly, Peternell and Schneider.

Theorem 3. Let M be a projective manifold with OP(T∗M)(1) nef. Assume
that χ(M,OM ) ̸= 0. Then M is a Fano manifold.

Actually it is conjectured that M is a rational homogeneous space under the
same assumption; but it is still open except when dimM = 2 or 3. But, in our
case, we can prove more:

Proposition 4. Let M be a Fano manifold such that |OP(T∗M)(1)| is free from
base points. Then M is a rational homogeneous soace, that is, M = G/P with a
complex semisimple Lie group G and its parabolic subgroup P .

(Sketch of Proof). By the assumption we see that the map

H0(M,ΘM )⊗OM → ΘM

is surjective. Let G be the neutral component of Aut(M). Then G is a linear
algebraic group. By the surjectivity G acts transitively on M . Hence M can be
written as G/P with a parabolic subgroup P . Let us prove that G is semisimple.
Let r(G) be the radical of G. Then r(G) is contained in P . But this implies that
r(G) acts trivially on G/P . By the definition of G, G acts effectively on M . This
implies that r(G) = 1.
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By the proposition Z = P(T ∗(G/P )). Let us consider the moment map
µ : T ∗(G/P ) → g∗. Since g is semisimple, g∗ ∼= g. Then Im(µ) coincides
with a nilpotent orbit closure Ō of g. One can take the projectivization µ̄ :
P(T ∗(G/P )) → P(Ō). We compare this map with π̄ : Z → P(X). The embed-
dings P(Ō) → P(g) and P(X) → P2n+r−1 determine the tautological line bun-
dles OP(Ō)(1) and OP(X)(1). One can check that µ̄∗OP(Ō)(1) = OP(T∗(G/P ))(1)

and π̄∗OP(X)(1) = OP(T∗(G/P ))(1). Moreover both µ̄ and π̄ coincide with the
morphisms determined by the complete linear system |OP(T∗(G/P ))(1)|. This im-

plies that (P(X), OP(X)(1)) ∼= (P(Ō), OP(Ō)(1)) as polarized varieties. Therefore

X ∼= Ō as a C∗-varieties.

The final task is to show that Ō is the nilpotent variety N of g. For simplicity
we only discuss the case when g is an exceptional simple Lie algebra. See [1] for
other cases. We are now assuming that Ō is complete intersection in g. Then one
can construct a G-equivariant morphism f : g → V from g to a G-representation
V with dimV = CodimgŌ in such a way that f−1(0) = Ō. By the argument
above the embedding X → C2n+r is identified with the embedding Ō → g. Recall
that we have Σai = n+ r. As ai > 1 for each i, we have 2r ≤ n+ r; hence r ≤ n.
Note that dim g = 2n+ r and CodimgŌ = r. Thus we have

dimV ≤ 1/3 · dim g.

When g is exceptional, there is no non-trivial irreducible G-representation that
satisfies this inequality. Thus V is a direct sum of trivial G-representations. In
particular, Ō is the common zeros of some adjoint invariant polynomials. On the
other hand, N is the common zeros of all adjoint invariant polynomials. Hence
Ō contains N . As all nilpotent orbits are contained in N , Ō is contained in N .
Therefore Ō = N .

References

[1] Y. Namikawa, On the structure of homogeneous symplectic varieties of complete intersec-

tion, arXiv: 1201.5444, to appear in Invent. Math.

4

-122-


