Symplectic varieties of complete intersection and contact geometry Yoshinori Namikawa

A normal complex algebraic variety X is a symplectic variety if there is a holo－ morphic symplectic 2 －form ω on the regular part $X_{\text {reg }}$ of X and ω extends to a （possibly degenerate）holomorphic 2－form on a resolution $f: \tilde{X} \rightarrow X$ ．

Example：Let \mathfrak{g} be a semisimple complex Lie algebra and let G be its adjoint group．Let us consider the adjoint quotient map $\chi: \mathfrak{g} \rightarrow \mathfrak{g} / / G$ ．If $\operatorname{rank}(\mathfrak{g})=r$ ，then $\mathfrak{g} / / G$ is isomorphic to the r－dimensional affine space $\cong \mathbf{C}^{r}$ ．The nilpotent variety N is，by definition，the set of all nilpotent elements of \mathfrak{g} and we have $N=\chi^{-1}(0)$ ． The nilpotent variety decomposes into the disjoint union of（finite number of） nilpotent orbits．There is a unique nilpotent orbit $O_{\text {reg }}$ that is open dense in N ， which we call the regular nilpotent orbit．Then $N=\overline{O_{\text {reg }}}$ ．The regular nilpotent orbit $O_{\text {reg }}$ coincides with the regular part of N and it admits a holomorphic symplectic form $\omega_{K K}$ so called the Kostant－Kirillov 2－form．Then（ $N, \omega_{K K}$ ）is a symplectic variety．Moreover $N \subset \mathfrak{g}$ is defined as a complete intersection of r homogeneous polynomials（with respect to the standard \mathbf{C}^{*}－action on \mathfrak{g} ）．

In this talk I characterize the nilpotent varieties of semisimple Lie algebras among affine symplectic varieties．

Let (X, ω) be a singular affine symplectic variety of dimension $2 n$ embedded in an affine space $\mathbf{C}^{2 n+r}$ as a complete intersection of r homogeneous polynomials． Assume that ω is also homogeneous，i．e．there is an integer l such that $t^{*} \omega=t^{l} \cdot \omega$ for $t \in \mathbf{C}^{*}$ ．

Main Theorem（［1］）：One has $(X, \omega) \cong\left(N, \omega_{K K}\right)$ ，where N is the nilpotent variety of a semisimple Lie algebra \mathfrak{g} together with the Kostant－Kirillov 2－form $\omega_{K K}$ ．

Before starting the proof，we give a few observations．
Observation 1．$l=1$ ，where $l:=w t(\omega)$ ．
Write X as $f_{1}=\ldots=f_{r}=0$ with homogeneous polynomials $f_{i}\left(z_{1}, \ldots, z_{2 n+r}\right)$ ． We put $a_{i}:=\operatorname{deg}\left(f_{i}\right)$ ．As X is singular，we may assume that $a_{i}>1$ for every i ． The holomorphic volume form $\omega^{n}:=\omega \wedge \ldots \wedge \omega$ can be written，by the adjunction formula（or the residue formula），as

$$
\omega^{n}=c \cdot \operatorname{Res}\left(d z_{1} \wedge \ldots \wedge z_{2 n+r} /\left(f_{1}, \ldots, f_{r}\right)\right)
$$

with a nonzero constant c ．Since X has only canonical singularities，we see that $w t(\omega)>0$ ．Computing the weights of both sides，we get

$$
0<n \cdot w t(\omega)=2 n+r-\Sigma a_{i}<2 n
$$

The last inequality follows from the fact that $a_{i}>1$ and so $\Sigma a_{i}>r$ ．Hence $w t(\omega)=1$ and $\Sigma a_{i}=n+r$ ．

Observation 2．X has a \mathbf{C}^{*}－equivariant crepant resolution $\pi: Y \rightarrow X$ ．
(Sketch of Proof): Take a resolution $f: W \rightarrow X$ and apply the MMP(Minimal Model Program) to the morphism f. Then we get a partial crepant resolution $\pi: Y \rightarrow X$ where Y may possibly have \mathbf{Q}-factorial terminal singularities. The \mathbf{C}^{*}-action on X extends to a \mathbf{C}^{*}-action in such a way that π is \mathbf{C}^{*}-equivariant. The symplectic form ω induces a Poisson structure on the regular locus $X_{\text {reg }}$. By the normality of X, this Poisson structure extends to a Poisson structure on X. The pull-back of ω by π is a symplectic form on $Y_{\text {reg }}$ because π is crepant. Then it induces a Poisson structure on $Y_{\text {reg }}$ and it extends to a Poisson structure on Y. Now let us consider a Poisson deformation $\mathcal{Y} \rightarrow \Delta$ of Y. Then π extends to a birational morphism $\tilde{\pi}: \mathcal{Y} \rightarrow \mathcal{X}$ over Δ for a Poisson deformation $\mathcal{X} \rightarrow \Delta$ of X. If the Poisson deformation \mathcal{Y} / Δ is very general, then $\tilde{\pi}_{t}: Y_{t} \rightarrow X_{t}$ is an isomorphism for $t \neq 0$. Since X has only complete intersection singularities, X_{t} also does. On the other hand, we have $\operatorname{Codim}_{Y} \operatorname{Sing}(Y) \geq 4$ because Y has only terminal singularities. This implies that $\operatorname{Codim}_{Y_{t}} \operatorname{Sing}\left(Y_{t}\right) \geq 4$; and hence $\operatorname{Codim}_{X_{t}} \operatorname{Sing}\left(X_{t}\right) \geq 4$. Notice that X_{t} is a symplectic variety and such a symplectic variety X_{t} must be smooth by a proposition of Beauville. As $Y_{t} \cong X_{t}$, we have seen that Y_{t} is smooth. Finally, by the \mathbf{Q}-factoriality of Y, we see that any Poisson deformation $\mathcal{Y} \rightarrow \Delta$ is a locally trivial flat deformation of Y. Therefore Y must be smooth and π is a crepant resolution.

We put $\mathbf{P}(X):=X-\{0\} / \mathbf{C}^{*}$ and $Z:=Y-\pi^{-1}(0) / \mathbf{C}^{*}$. Then π induces a map $\bar{\pi}: Z \rightarrow \mathbf{P}(X)$. By using the fact that $w t\left(z_{i}\right)=1$ for all i, we have:

Observation 3. $\bar{\pi}: Z \rightarrow \mathbf{P}(X)$ is a crepant resolution.
Notice that Z is a projective manifold of dimension $2 n-1$. An important fact is that Z has a contact structure.

Let W be a complex manifold of odd dimension $2 n-1$. A contact structure on W is an exact sequence of vector bundles

$$
0 \rightarrow E \rightarrow \Theta_{W} \xrightarrow{\theta} M \rightarrow 0
$$

where M is a line bundle and the induced pairing $E \times E \rightarrow M,(x, y) \rightarrow \theta([x, y])$ is nondegenerate. Recall that a subbundle of Θ is called integrable if the bracket [,] is closed in the subbundle. In this sense, E is a highly non-integrable subbundle of Θ. The line bundle M is called the contact line bundle and the twisted 1-form $\theta \in \Gamma\left(W, \Omega_{W}^{1} \otimes M\right)$ is called the contact form. If W admits a contact structure, then $-K_{W} \cong M^{\otimes n}$ and $(d \theta)^{n-1} \wedge \theta$ is a nondegenerate $2 n-1$-form on W.

Let us return to our situation. The \mathbf{C}^{*}-bundle $X-\{0\} \rightarrow \mathbf{P}(X)$ restricts to the \mathbf{C}^{*}-bundle $X_{\text {reg }} \rightarrow \mathbf{P}(X)_{\text {reg }}$. We put $L:=\left.O_{\mathbf{P}(X)}(1)\right|_{\mathbf{P}(X)_{\text {reg }}}$ and denote by $\left(L^{-1}\right)^{\times}$ the \mathbf{C}^{*}-bundle on $\mathbf{P}(X)_{\text {reg }}$ obtained from the dual line bundle L^{-1} by removing the 0 -section. Then $X_{\text {reg }} \rightarrow \mathbf{P}(X)_{\text {reg }}$ can be identified with $p:\left(L^{-1}\right)^{\times} \rightarrow \mathbf{P}(X)_{\text {reg }}$. The \mathbf{C}^{*}-action on $X_{\text {reg }}$ coincides with the natural \mathbf{C}^{*}-action on $\left(L^{-1}\right)^{\times}$as a \mathbf{C}^{*} bundle. Let ζ be a vector field on $\left(L^{-1}\right)^{\times}$generating this \mathbf{C}^{*}-action. We regard ω as a symplectic 2 -form on $\left(L^{-1}\right)^{\times}$by the identification of $X_{\text {reg }}$ with $\left(L^{-1}\right)^{\times}$. Then one can write

$$
\omega(\zeta, \cdot)=p_{2}^{*} \theta
$$

with a twisted 1-form $\theta \in \Gamma\left(\mathbf{P}(X)_{\text {reg }}, \Omega_{\mathbf{P}(X)_{\text {reg }}}^{1} \otimes L\right)$. We remark that $p^{*} L$ has a natural trivialization on $\left(L^{-1}\right)^{\times}$. This twisted 1 -form θ determines a contact structure on $\mathbf{P}(X)_{\text {reg }}$.

Denote by $i: \mathbf{P}(X)_{\text {reg }} \rightarrow \mathbf{P}(X)$ the inclusion map. Then $i_{*} \Omega_{\mathbf{P}(X)_{\text {reg }}}^{1}=\bar{\pi}_{*} \Omega_{Z}^{1}$. Since $\Gamma\left(\mathbf{P}(X), i_{*} \Omega_{\mathbf{P}(X)_{\text {reg }}}^{1} \otimes O_{\mathbf{P}(X)}(1)\right)=\Gamma\left(Z, \Omega_{Z}^{1} \otimes \bar{\pi}^{*} O_{\mathbf{P}(X)}(1)\right)$, the twisted 1form θ can be regarded as an element of $\Gamma\left(Z, \Omega_{Z}^{1} \otimes \bar{\pi}^{*} O_{\mathbf{P}(X)}(1)\right)$.

Proposition 1. Z has a contact structure with the contact line bundle $\bar{\pi}^{*} O_{\mathbf{P}(X)}(1)$.

For a contact projective manifold Z, the following structure theorem was proved by Kebekus, Peternell, Sommese and Wisniewski.

Theorem 2: Assume that Z is a contact projective manifold with $b_{2}(Z)>1$ and K_{Z} not nef. Then Z is a projectivized cotangent bundle $\mathbf{P}\left(T^{*} M\right):=T^{*} M-$ ($0-$ section $) / \mathbf{C}^{*}$ of a projective manifold M. Moreover, the contact line bundle is isomorphic to $O_{\mathbf{P}\left(T^{*} M\right)}(1)$.

As $K_{Z} \cong \bar{\pi}^{*} O_{\mathbf{P}(X)}(-n)$, it is not nef. Moreover, since X is a symplectic variety of complete intersection, $\operatorname{Codim}_{X} \operatorname{Sing}(X)=2$. Thus, if $n \geq 2$, then $\mathbf{P}(X)$ has singularities and $\bar{\pi}$ has an exceptional locus. This implies that $b_{2}(Z)>1$. When $n=1$, it is easily checked that X is isomorphic to an A_{1}-surface singularity $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0$ in \mathbf{C}^{3}.

In the remainder we assume that $n \geq 2$. Then Z is a projectivized cotangent bundle $\mathbf{P}\left(T^{*} M\right)$ for some projective manifold by the theorem above. Which kind of manifold is M ?

First notice that $O_{\mathbf{P}\left(T^{*} M\right)}(1)=\bar{\pi}^{*} O_{\mathbf{P}(X)}$ (1). In particular, $O_{\mathbf{P}\left(T^{*} M\right)}(1)$ is nef. The following theorem was proved by Demailly, Peternell and Schneider.

Theorem 3. Let M be a projective manifold with $O_{\mathbf{P}\left(T^{*} M\right)}(1)$ nef. Assume that $\chi\left(M, O_{M}\right) \neq 0$. Then M is a Fano manifold.

Actually it is conjectured that M is a rational homogeneous space under the same assumption; but it is still open except when $\operatorname{dim} M=2$ or 3 . But, in our case, we can prove more:

Proposition 4. Let M be a Fano manifold such that $\left|O_{\mathbf{P}\left(T^{*} M\right)}(1)\right|$ is free from base points. Then M is a rational homogeneous soace, that is, $M=G / P$ with a complex semisimple Lie group G and its parabolic subgroup P.
(Sketch of Proof). By the assumption we see that the map

$$
H^{0}\left(M, \Theta_{M}\right) \otimes O_{M} \rightarrow \Theta_{M}
$$

is surjective. Let G be the neutral component of $\operatorname{Aut}(M)$. Then G is a linear algebraic group. By the surjectivity G acts transitively on M. Hence M can be written as G / P with a parabolic subgroup P. Let us prove that G is semisimple. Let $r(G)$ be the radical of G. Then $r(G)$ is contained in P. But this implies that $r(G)$ acts trivially on G / P. By the definition of G, G acts effectively on M. This implies that $r(G)=1$.

By the proposition $Z=\mathbf{P}\left(T^{*}(G / P)\right)$. Let us consider the moment map $\mu: T^{*}(G / P) \rightarrow \mathfrak{g}^{*}$. Since \mathfrak{g} is semisimple, $\mathfrak{g}^{*} \cong \mathfrak{g}$. Then $\operatorname{Im}(\mu)$ coincides with a nilpotent orbit closure \bar{O} of \mathfrak{g}. One can take the projectivization $\bar{\mu}$: $\mathbf{P}\left(T^{*}(G / P)\right) \rightarrow \mathbf{P}(\bar{O})$. We compare this map with $\bar{\pi}: Z \rightarrow \mathbf{P}(X)$. The embeddings $\mathbf{P}(\bar{O}) \rightarrow \mathbf{P}(\mathfrak{g})$ and $\mathbf{P}(X) \rightarrow \mathbf{P}^{2 n+r-1}$ determine the tautological line bundles $O_{\mathbf{P}(\bar{O})}(1)$ and $O_{\mathbf{P}(X)}(1)$. One can check that $\bar{\mu}^{*} O_{\mathbf{P}(\bar{O})}(1)=O_{\mathbf{P}\left(T^{*}(G / P)\right)}(1)$ and $\bar{\pi}^{*} O_{\mathbf{P}(X)}(1)=O_{\mathbf{P}\left(T^{*}(G / P)\right)}(1)$. Moreover both $\bar{\mu}$ and $\bar{\pi}$ coincide with the morphisms determined by the complete linear system $\left|O_{\mathbf{P}\left(T^{*}(G / P)\right)}(1)\right|$. This implies that $\left(\mathbf{P}(X), O_{\mathbf{P}(X)}(1)\right) \cong\left(\mathbf{P}(\bar{O}), O_{\mathbf{P}(\bar{O})}(1)\right)$ as polarized varieties. Therefore $X \cong \bar{O}$ as a \mathbf{C}^{*}-varieties.

The final task is to show that \bar{O} is the nilpotent variety N of \mathfrak{g}. For simplicity we only discuss the case when \mathfrak{g} is an exceptional simple Lie algebra. See [1] for other cases. We are now assuming that \bar{O} is complete intersection in \mathfrak{g}. Then one can construct a G-equivariant morphism $f: \mathfrak{g} \rightarrow V$ from \mathfrak{g} to a G-representation V with $\operatorname{dim} V=\operatorname{Codim}_{\mathfrak{g}} \bar{O}$ in such a way that $f^{-1}(0)=\bar{O}$. By the argument above the embedding $X \rightarrow \mathbf{C}^{2 n+r}$ is identified with the embedding $\bar{O} \rightarrow \mathfrak{g}$. Recall that we have $\Sigma a_{i}=n+r$. As $a_{i}>1$ for each i, we have $2 r \leq n+r$; hence $r \leq n$. Note that $\operatorname{dim} \mathfrak{g}=2 n+r$ and $\operatorname{Codim}_{\mathfrak{g}} \bar{O}=r$. Thus we have
$\operatorname{dim} V \leq 1 / 3 \cdot \operatorname{dim} \mathfrak{g}$.
When \mathfrak{g} is exceptional, there is no non-trivial irreducible G-representation that satisfies this inequality. Thus V is a direct sum of trivial G-representations. In particular, \bar{O} is the common zeros of some adjoint invariant polynomials. On the other hand, N is the common zeros of all adjoint invariant polynomials. Hence \bar{O} contains N. As all nilpotent orbits are contained in N, \bar{O} is contained in N. Therefore $\bar{O}=N$.

References

[1] Y. Namikawa, On the structure of homogeneous symplectic varieties of complete intersection, arXiv: 1201.5444, to appear in Invent. Math.

