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Symplectic varieties of complete intersection and contact geometry
YOSHINORI NAMIKAWA

A normal complex algebraic variety X is a symplectic variety if there is a holo-
morphic symplectic 2-form w on the regular part X,., of X and w extends to a
(possibly degenerate) holomorphic 2-form on a resolution f: X — X.

Example: Let g be a semisimple complex Lie algebra and let G be its adjoint
group. Let us consider the adjoint quotient map x : g — g//G. If rank(g) = r, then
g//G is isomorphic to the r-dimensional affine space = C". The nilpotent variety
N is, by definition, the set of all nilpotent elements of g and we have N = x~1(0).
The nilpotent variety decomposes into the disjoint union of (finite number of)
nilpotent orbits. There is a unique nilpotent orbit O,.4 that is open dense in N,
which we call the regular nilpotent orbit. Then N = Teg. The regular nilpotent
orbit O,y coincides with the regular part of N and it admits a holomorphic
symplectic form wg g so called the Kostant-Kirillov 2-form. Then (N,wgkg) is
a symplectic variety. Moreover N C g is defined as a complete intersection of r
homogeneous polynomials (with respect to the standard C*-action on g).

In this talk I characterize the nilpotent varieties of semisimple Lie algebras
among affine symplectic varieties.

Let (X,w) be a singular affine symplectic variety of dimension 2n embedded in
an affine space C?"*" as a complete intersection of 7 homogeneous polynomials.
Assume that w is also homogeneous, i.e. there is an integer [ such that t*w = ' -w
for t € C*.

Main Theorem ([1]): One has (X,w) = (N,wk k), where N is the nilpotent
variety of a semisimple Lie algebra g together with the Kostant-Kirillov 2-form
WKK -

Before starting the proof, we give a few observations.

Observation 1. | =1, where | := wit(w).

Write X as f; = ... = f,, = 0 with homogeneous polynomials f;(z1, ..., 22n4r)-
We put a; := deg(f;). As X is singular, we may assume that a; > 1 for every i.
The holomorphic volume form w™ := w A ... Aw can be written, by the adjunction
formula (or the residue formula), as

w" =c-Res(dz1 A ... A zantr /(f1s s [r))

with a nonzero constant c¢. Since X has only canonical singularities, we see that
wt(w) > 0. Computing the weights of both sides, we get

0<n- wtlw)=2n+r—Xa; < 2n.

The last inequality follows from the fact that a; > 1 and so Xa; > r. Hence
wt(w) =1 and Xa; =n+r.

Observation 2. X has a C*-equivariant crepant resolution m: Y — X.
1
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(Sketch of Proof): Take a resolution f: W — X and apply the MMP(Minimal
Model Program) to the morphism f. Then we get a partial crepant resolution
m:Y — X where Y may possibly have Q-factorial terminal singularities. The
C*-action on X extends to a C*-action in such a way that 7 is C*-equivariant.
The symplectic form w induces a Poisson structure on the regular locus X,..4. By
the normality of X, this Poisson structure extends to a Poisson structure on X.
The pull-back of w by 7 is a symplectic form on Y,., because 7 is crepant. Then
it induces a Poisson structure on Y;.., and it extends to a Poisson structure on Y.
Now let us consider a Poisson deformation Y — A of Y. Then 7 extends to a
birational morphism 7 : ) — X over A for a Poisson deformation X — A of X. If
the Poisson deformation Y /A is very general, then 7; : Y; — X; is an isomorphism
for t # 0. Since X has only complete intersection singularities, X; also does. On
the other hand, we have Codimy Sing(Y) > 4 because Y has only terminal singu-
larities. This implies that Codimy, Sing(Y:) > 4; and hence Codimx, Sing(X;) > 4.
Notice that X; is a symplectic variety and such a symplectic variety X; must be
smooth by a proposition of Beauville. As Y; = X, we have seen that Y; is smooth.
Finally, by the Q-factoriality of Y, we see that any Poisson deformation J — A
is a locally trivial flat deformation of Y. Therefore ¥ must be smooth and 7 is a
crepant resolution.

We put P(X) := X —{0}/C* and Z := Y —7~1(0)/C*. Then 7 induces a map
7: Z — P(X). By using the fact that wt(z;) = 1 for all 4, we have:

Observation 3. 7: Z — P(X) is a crepant resolution.

Notice that Z is a projective manifold of dimension 2n — 1. An important fact
is that Z has a contact structure.

Let W be a complex manifold of odd dimension 2n — 1. A contact structure on
W is an exact sequence of vector bundles

OHE%@WiMHO,

where M is a line bundle and the induced pairing Ex E — M, (z,y) — 0([z,y]) is
nondegenerate. Recall that a subbundle of © is called integrable if the bracket [, ]
is closed in the subbundle. In this sense, E is a highly non-integrable subbundle
of ©. The line bundle M is called the contact line bundle and the twisted 1-form
6 € (W, ® M) is called the contact form. If W admits a contact structure,
then —Kyw = M®" and (d§)"~! A 6 is a nondegenerate 2n — 1-form on W.

Let us return to our situation. The C*-bundle X — {0} — P(X) restricts to the
C*-bundle X,y = P(X);eq. Weput L := Op(x)(1)|p(x),., and denote by (L~1)*
the C*-bundle on P(X),. 4 obtained from the dual line bundle L~! by removing the
0-section. Then X,.; — P(X);¢g can be identified with p : (L71)% — P(X),¢g.
The C*-action on X,, coincides with the natural C*-action on (L~!)* as a C*-
bundle. Let ¢ be a vector field on (L~1)* generating this C*-action. We regard
w as a symplectic 2-form on (L™!)* by the identification of X,., with (L=*)*.
Then one can write

w(C7 ) =p*0
2
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with a twisted 1-form 6 € F(P(X)TG!J’Q%)(X)MQ ® L). We remark that p*L has
a natural trivialization on (L~=1)*. This twisted 1-form 6 determines a contact
structure on P(X),eq.

Denote by i : P(X);eqy — P(X) the inclusion map. Then i*Q%D(X)reg = 7.05L.
Since F(P(X),i*Q%,(X)mg ® Op(x)(1)) = T'(Z,9 @ T*Op(x)(1)), the twisted 1-
form 6 can be regarded as an element of I'(Z,Q}, ® 7*Op(x)(1)).

Proposition 1. Z has a contact structure with the contact line bundle 7 Opx)(1).

For a contact projective manifold Z, the following structure theorem was proved
by Kebekus, Peternell, Sommese and Wisniewski.

Theorem 2: Assume that Z is a contact projective manifold with ba(Z) > 1
and Kz not nef. Then Z is a projectivized cotangent bundle P(T*M) := T*M —
(0 — section)/C* of a projective manifold M. Moreover, the contact line bundle is
isomorphic to Opp-ap)(1).

As Kz = 7*Op(x)(—n), it is not nef. Moreover, since X is a symplectic variety
of complete intersection, CodimxSing(X) = 2. Thus, if n > 2, then P(X) has
singularities and 7 has an exceptional locus. This implies that by(Z) > 1. When
n = 1, it is easily checked that X is isomorphic to an A;-surface singularity
22+ 22422 =0in C3.

In the remainder we assume that n > 2. Then Z is a projectivized cotangent
bundle P(7T* M) for some projective manifold by the theorem above. Which kind
of manifold is M 7

First notice that Op (7« (1) = 7*Op(x)(1). In particular, Opp-ap)(1) is nef.
The following theorem was proved by Demailly, Peternell and Schneider.

Theorem 3. Let M be a projective manifold with Opp«pr)(1) nef. Assume
that x(M,Onr) # 0. Then M is a Fano manifold.

Actually it is conjectured that M is a rational homogeneous space under the
same assumption; but it is still open except when dim M = 2 or 3. But, in our
case, we can prove more:

Proposition 4. Let M be a Fano manifold such that |Op -y (1)| is free from
base points. Then M is a rational homogeneous soace, that is, M = G /P with a
complex semisimple Lie group G and its parabolic subgroup P.

(Sketch of Proof). By the assumption we see that the map

HO(M7@M) ® Oy — O

is surjective. Let G be the neutral component of Aut(M). Then G is a linear
algebraic group. By the surjectivity G acts transitively on M. Hence M can be
written as G/P with a parabolic subgroup P. Let us prove that G is semisimple.
Let r(G) be the radical of G. Then r(G) is contained in P. But this implies that
r(QG) acts trivially on G/P. By the definition of G, G acts effectively on M. This
implies that 7(G) = 1.
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By the proposition Z = P(T*(G/P)). Let us consider the moment map
w: T*(G/P) — g*. Since g is semisimple, g* = g. Then Im(u) coincides
with a nilpotent orbit closure O of g. One can take the projectivization [ :
P(T*(G/P)) — P(0O). We compare this map with # : Z — P(X). The embed-
dings P(O) — P(g) and P(X) — P2"*7~! determine the tautological line bun-
dles Op(p)(1) and Op(x)(1). One can check that i*Opo)(1) = Op(r+(a/py)(1)
and 7*Op(x)(1) = Op(r+(g/p))(1). Moreover both fi and 7 coincide with the
morphisms determined by the complete linear system |Op(r+(g/p))(1)|. This im-

plies that (P(X), Op(x)(1)) & (P(O), Op()(1)) as polarized varieties. Therefore
X = O as a C*-varieties.

The final task is to show that O is the nilpotent variety N of g. For simplicity
we only discuss the case when g is an exceptional simple Lie algebra. See [1] for
other cases. We are now assuming that O is complete intersection in g. Then one
can construct a G-equivariant morphism f : g — V from g to a G-representation
V with dimV = Codimgé in such a way that f~'(0) = O. By the argument
above the embedding X — C?"*" is identified with the embedding O — g. Recall
that we have Ya; = n +r. As a; > 1 for each i, we have 2r < n + r; hence r < n.

Note that dim g = 2n + r and CodimyO = r. Thus we have
dimV <1/3-dimg.

When g is exceptional, there is no non-trivial irreducible G-representation that
satisfies this inequality. Thus V is a direct sum of trivial G-representations. In
particular, O is the common zeros of some adjoint invariant polynomials. On the
other hand, N is the common zeros of all adjoint invariant polynomials. Hence
O contains N. As all nilpotent orbits are contained in N, O is contained in N.
Therefore O = N.
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