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Problem:

For a real number � > 1, find an asymptotic estimate of

log#
�

(a, b) 2 Z2 | a2 + 2b2  �2n
 

with respect to n.
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How many lattice points in the ellipse?

a2 + 2b2  �2n
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Considering a shrinking map (x , y) 7! (��nx ,��ny),

#
�

(a, b) 2 Z2 | a2 + 2b2  �2n
 

= #
n

(a0, b0) 2 �Z��n
�

2 | a02 + 2b02  1
o

.

We assign a square



a0 � ��n

2
, a0 +

��n

2

�

⇥


b0 � ��n

2
, b0 +

��n

2

�

to each element of
n

(a0, b0) 2 �Z��n
�

2 | a02 + 2b02  1
o

.
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x2 + 2y2  1

X

(the volume of each square) ⇠ the volume of the ellipse
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Thus

#
�

(a, b) 2 Z2 | a2 + 2b2  �2n
 ⇥ (��n)2

⇠ the volume of
�

(x , y) 2 R2 | x2 + 2y2  1
 

=
⇡p
2
.

Therefore,

log#
�

(a, b) 2 Z2 | a2 + 2b2  �2n
 ⇠ (2 log �)n.
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Let K be a number field (i.e. a finite extension of Q) and let K (C)
be the set of all embeddings K ,! C. Note that
#(K (C)) = [K : Q] and K (C) is the set of C-valued points of
Spec(K ). Let OK be the ring of integers in K , that is,

OK = {x 2 K | x is integral over Z}.

We set X = Spec(OK ). Let Div(X ) be the group of divisors on
X , that is,

Div(X ) :=
M

P2X\{0}

Z[P].

For D =
P

P aP [P], deg(D) is defined by

deg(D) :=
X

P

aP log#(OK/P).
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cDiv(X ) is defined by

cDiv(X ) = Div(X )⇥ {⇠ 2 RK(C) | ⇠� = ⇠�̄ (8� 2 K (C))},

where �̄ is the composition of � : K ,! C and the complex

conjugation C ��! C. An element of cDiv(X ) is called an
arithmetic divisor on X . For simplicity, an element ⇠ 2 RK(C) is
denoted by

P

� ⇠�[�]. For example, if we set

c(x) :=

 

X

P

ordP(x)[P],
X

�

� log |�(x)|2[�]
!

for x 2 K⇥, then c(x) 2 cDiv(X ), which is called an arithmetic
principal divisor.
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The arithmetic degree ddeg(D) for D = (D, ⇠) is defined by

ddeg(D) := deg(D) +
1

2

X

�

⇠�.

Note that ddeg(c(x)) = 0 by the product formula. For

D =

 

X

P

nP [P],
X

�

⇠�[�]

!

,

D � 0
def() nP � 0 and ⇠� � 0 for all P and �

We set

Ĥ0(X ,D) := {x 2 K⇥ | D + c(x) � 0} [ {0}.
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Set K = Q(
p�2). Then OK = Z+ Z

p�2 and K (C) = {�
1

,�
2

}
given by �

1

(
p�2) =

p�2 and �
2

(
p�2) = �p�2. We set

D = (0, log(�2)[�
1

] + log(�2)[�
2

]). Then ddeg(D) = 2 log(�).
Note that, for x = a+ b

p�2 2 Q(
p�2) \ {0},

nD + c(x) � 0 ()
(

n log(�2)� log(a2 + 2b2) � 0

a, b 2 Z

()
(

a2 + 2b2  �2n

a, b 2 Z
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Therefore,

Ĥ0(X , nD) =
n

x 2 K⇥ | nD + c(x) � 0
o

[ {0}
= {a+ b

p�2 2 Z[
p�2] | a2 + 2b2  �2n}.

Thus the previous observation means that

log#Ĥ0(X , nD) ⇠ddeg(D)n.
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Theorem (Arithmetic Hilbert-Samuel formula for Spec(OK ))

If ddeg(D) > 0, then log#Ĥ0(nD) = nddeg(D) + O(1). In

particular, if n � 1, then there is x 2 K⇥ with nD + c(x) � 0.

Moreover, limn!1 log#Ĥ0(nD)/n =ddeg(D).

Remark

Let r
2

be the number of complex embeddings K into C and let DK

be the discriminant of K over Q. If

ddeg(D) � log((⇡/2)r2
p

|DK |),

then Ĥ0(D) 6= {0}.
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8

>

<

>

:

Div(X )R := Div(X )⌦Z R,
cDiv(X )R := Div(X )R ⇥ {⇠ 2 RK(C) | ⇠� = ⇠�̄ (8� 2 K (C))},
K⇥
R := (K⇥,⇥)⌦Z R

For D = (
P

P xP [P], ⇠) 2 cDiv(X )R, ddeg(D) is defined by

ddeg(D) :=
X

P

xP log#(OK/P) +
1

2

X

�2K(C)
⇠�.

For x = xa1
1

· · · xarr 2 K⇥
R (x

1

, . . . , xr 2 K⇥, a
1

, . . . , ar 2 R),

c(x)R :=
X

aid(xi ).

For D = (
P

P xP [P], ⇠) 2 cDiv(X )R,

D � 0
def() xP � 0 and ⇠� � 0 for all P and �
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Theorem (Dirichlet’s unit theorem)

If ddeg(D) � 0, then there is x 2 K⇥
R such that D + c(x)R � 0.

Remark

The above theorem implies the classical Dirichlet’s unit theorem,
that is, for any ⇠ 2 RK(C) with

P

� ⇠� = 0 and ⇠� = ⇠�̄, there are
x
1

, . . . , xr 2 O⇥
K and a

1

, . . . , ar 2 R such that
⇠� =

P

i ai log |�(xi )| for all �.

Atsushi MORIWAKI Birational Arakelov Geometry

-57-

7



Indeed, we set D = (0, ⇠). As ddeg(D) = 0, there are x 2 K⇥
R such

that D + c(x)R � 0. Note that ddeg(D + c(x)R) = 0, so that

D + c(x)R = (0, 0).

On the other hand, we can find x
1

, . . . , xr 2 K⇥ and

a
1

, . . . , ar 2 R such that x = xa1/2
1

· · · xar/2r and a
1

, . . . , ar are
linearly independent over Q. Thus,

(

Pr
i=1

ai ordP(xi ) = 0 for all P

⇠� =
Pr

i=1

ai log |�(xi )| for all �

Using the linear independency of a
1

, . . . , ar over Q, we have
ordP(xi ) = 0 for all P and i . This means that xi 2 O⇥

K for all i , as
required.

Remark

The above theorem does not hold on an algebraic curve. In this
sense, it is a purely arithmetic problem.
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Let M be an n-equidimensional smooth projective variety over C.
Let Div(M) be the group of Cartier divisors on M and let
Div(M)R := Div(M)⌦Z R, whose element is called an R-divisor.
Let us fix D 2 Div(M)R. We set D = a

1

D
1

+ · · ·+ alDl , where
a
1

, . . . , al 2 R and Di ’s are prime divisors on M.
Let g : M ! R [ {±1} be a locally integrable function on M.
We say g is a D-Green function of C1-type (resp. C 0-type) if, for
each point x 2 M, there are an open neighborhood Ux of x , local
equations f

1

, . . . , fl of D1

, . . . ,Dl respectively and a C1 (resp. C 0)
function ux over Ux such that

g = ux +
l
X

i=1

(�ai ) log |fi |2 (a.e.)

over Ux . The above equation is called a local expression of g .
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Let g be a D-Green function of C 0-type on M. Let

g = u +
X

(�ai ) log |fi |2 = u0 +
X

(�ai ) log |f 0i |2 (a.e.)

be two local expressions of g . Then, as
P

(�ai ) log |fi/f 0i |2 is
ddc -closed, we have ddc(u) = ddc(u0) as currents, so that it can
be defined globally. We denote it by c

1

(D, g). Note that c
1

(D, g)
is a closed (1, 1)-current on M. If g is of C1-type, then c

1

(D, g)
is represented by a C1-form.
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Let X be a d-dimensional, generically smooth normal projective
arithmetic variety, that is,

1 X is projective flat integral scheme over Z.
2 If XQ = X ⇥

Spec(Z) Spec(Q) is the generic fiber of
X ! Spec(Z), then XQ is smooth over Q.

3 The Krull dimension of X is d , that is, dimXQ = d � 1.

4 X is normal.

Let Div(X ) be the group of Cartier divisors on X and
Div(X )R = Div(X )⌦Z R, whose element is called an R-divisor on
X . For D 2 Div(X )R, we set D =

P

i aiDi , where ai 2 R and
Di ’s are reduced and irreducible subschemes of codimension one.
We say D is e↵ective if ai � 0 for all i . Moreover, for
D,E 2 Div(X )R,

D  E (or E � D) () E � D is e↵ective
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Let D be an R-divisor on X and let g be a locally integrable
function on X (C). We say a pair D = (D, g) is an arithmetic
R-divisor on X if F ⇤

1(g) = g (a.e.), where F1 : X (C) ! X (C) is
the complex conjugation map, i.e. for x 2 X (C), F1(x) is given

by the composition Spec(C) �! Spec(C) x! X . Moreover, we say
D is of C1-type (resp. C 0-type) if g is a D-Green function of
C1-type (resp. C 0-type). For arithmetic divisors D

1

= (D
1

, g
1

)
and D

2

= (D
2

, g
2

), we define D
1

= D
2

and D
1

 D
2

to be

D
1

= D
2

() D
1

= D
2

and g
1

= g
2

(a.e.),

D
1

 D
2

() D
1

 D
2

and g
1

 g
2

(a.e.).

We say D is e↵ective if D � (0, 0).
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Let Rat(X ) be the field of rational functions on X . For
� 2 Rat(X )⇥, we set

(�) :=
X

�

ord
�

(�)� and c(�) := ((�),� log |�|2).

Note that c(�) is an arithmetic divisor of C1-type
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Let D = (D, g) be an arithmetic R-divisor of C 0-type on X .

• H0(X ,D) := {� 2 Rat(X )⇥ | D + (�) � 0} [ {0}. Note that
H0(X ,D) is finitely generated Z-module.

• Ĥ0(X ,D) := {� 2 Rat(X )⇥ | D + c(�) � (0, 0)}[ {0}. Note that
Ĥ0(X ,D) is a finite set.

• ĥ0(X ,D) := log#Ĥ0(X ,D).

• cvol(D) := lim sup
n!1

log#Ĥ0(X , nD)

nd/d !
.

Atsushi MORIWAKI Birational Arakelov Geometry

Theorem

1 cvol(D) < 1.

2 (H. Chen) cvol(D) := limn!1
log#

ˆH0

(X ,nD)

nd/d!
.

3 cvol(aD) = adcvol(D) for a 2 R�0

.

4 (Moriwaki) cvol : cDivC0

(X )R ! R is continuous in the
following sense: Let D

1

, . . . ,Dr ,A1

, . . . ,As be arithmetic
R-divisors of C 0-type on X . For a compact subset B in Rr

and a positive number ✏, there are positive numbers � and �0

such that
�

�

�

cvol
⇣

X

aiD i +
X

�jAj + (0,�)
⌘

� cvol
⇣

X

aiD i

⌘

�

�

�

 ✏

for all a
1

, . . . , ar , �1, . . . , �s 2 R and � 2 C 0(X ) with
(a

1

, . . . , ar ) 2 B, |�
1

|+ · · ·+ |�s |  � and k�k
sup

 �0.
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Let C be a reduced and irreducible 1-dimensional closed
subscheme of X . We would like to define ddeg(D

�

�

C
). It is

characterized by the following properties:

1 ddeg(D
�

�

C
) is linear with respect to D.

2 If � 2 Rat(X )⇥R , then
ddeg(c(�)R

�

�

�

C
) = 0.

3 If C 6✓ Supp(D) and C is vertical, then
ddeg(D

�

�

C
) = log(p) deg(D|C ), where C is contained in the

fiber over a prime p.

4 If C 6✓ Supp(D) and C is horizontal, then
ddeg(D

�

�

C
) =ddeg(D

�

�eC ), where
eC is the normalization of C .

Note that eC = Spec(OK ) for some number field K .

Atsushi MORIWAKI Birational Arakelov Geometry

• D is big () cvol(D) > 0.
• D is psedo-e↵ective () D + A is big for any big arithmetic
R-divisor A of C 0-type.
• D = (D, g) is nef ()

1 ddeg(D
�

�

C
) � 0 for all reduced and irreducible 1-dimensional

closed subschemes C of X .

2 c
1

(D, g) is a positive current.

• D = (D, g) is relatively nef ()
1 ddeg(D

�

�

C
) � 0 for all vertical reduced and irreducible

1-dimensional closed subschemes C of X .

2 c
1

(D, g) is a positive current.

• D = (D, g) is integrable () D = P � Q for some nef
arithmetic R-divisors P and Q.
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Theorem (Arithmetic Hilbert-Samuel formula)

(Gillet-Soulé-Abbes-Bouche-Zhang-Moriwaki) If D is nef, then

ĥ0(X , nD) =
ddeg(D

d
)

d !
nd + o(nd).

In other words, cvol(D) =ddeg(D
d
).

Atsushi MORIWAKI Birational Arakelov Geometry

Remark

The above theorem suggests that ddeg(D
d
) can be defined by

cvol(D). Note that

d!X
1

· · ·Xd =
X

I✓{1,...,d}

(�1)d�#(I )

 

X

i2I
Xi

!d

in Z[X
1

, . . . ,Xd ]. Thus, for nef arithmetic R-divisors D
1

, . . . ,Dd ,

d !ddeg(D
1

· · ·Dd) =
X

I✓{1,...,d}

(�1)d�#(I )
cvol

 

X

i2I
D i

!

.

In general, for integrable arithmetic R-divisors D
1

, . . . ,Dd , we can
define ddeg(D

1

· · ·Dd) by linearity.

Atsushi MORIWAKI Birational Arakelov Geometry

-63-

13



Theorem (Generalized Hodge index theorem)

(Moriwaki) If D is relatively nef, then cvol(D) �ddeg(Dd
).

Corollary (The existence of small sections)

(Faltings-Gillet-Soulé-Zhang-Moriwaki) If D is a relatively nef and
ddeg(D

d
) > 0, then there are n and � 2 Rat(X )⇥ such that

nD + c(�) � 0.
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Corollary (Arithmetic Bogomolov’s inequality)

(Miyaoka-Soulé-Moriwaki) We assume d = 2 and X is regular. Let
(E , h) be a C1-hermitian locally free sheaf on X . If E is
semistable on the generic fiber, then

ddeg

✓

bc
2

(E )� r � 1

2r
bc
1

(E )2
◆

� 0,

where r = rkE.

Let ⇡ : Y = Proj
⇣

L

n�0

Symn(E )
⌘

! X and D the tautological

divisor on Y (i.e. OY (D) = O(1)). Roughly speaking, if we give a
suitable Green function g to D, then (D, g)� (1/r)⇡⇤(bc

1

(E )) is
relatively nef and its volume is zero, so that

ddeg
�

((D, g)� (1/r)⇡⇤(bc
1

(E )))r+1

�  0

by the Generalized Hodge index theorem, which gives the above
inequality.
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Theorem (Arithmetic Fujita’s approximation theorem)

(Chen-Yuan) We assume that D is big. For a given ✏ > 0, there
are a birational morphism ⌫✏ : Y✏ ! X of generically smooth,
normal projective arithmetic varieties and a nef and big arithmetic
Q-divisor P of C1-type such that ⌫⇤✏ (D) � P and
cvol(P) � cvol(D)� ✏.

Atsushi MORIWAKI Birational Arakelov Geometry

Let S be a non-singular projective surface over an algebraically
closed field. Let D be an e↵ective divisor on S . By virtue of
Bauer, the positive part of the Zariski decomposition of D is
characterized by the greatest element of

{M | M is a nef R-divisor on S and M  D}.
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Theorem (Zariski decomposition on arithmetic surfaces)

(Moriwaki) We assume that d = 2 and X is regular. Let D be an
arithmetic R-divisor of C 0-type on X such that the set

⌥(D) = {M | M is a nef arithmetic R-divisor on X and M  D}

is not empty. Then there is a nef arithmetic R-divisor P such that
P gives the greatest element of ⌥(D), that is, P 2 ⌥(D) and
M  P for all M 2 ⌥(D). Moreover, if we set N = D � P, then
the following properties hold:

1 Ĥ0(X , nP) = Ĥ0(X , nD) for all n � 0.

2 cvol(D) = cvol(P) =ddeg(P
2

).

3 ddeg(P · N) = 0.

4 If B is an integrable arithmetic R-divisor of C 0-type with

(0, 0) � B  N, then ddeg(B
2

) < 0.
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For the proof of the property (3), the following characterization of
nef arithmetic R-Cartier is used:

Theorem (Generalized Hodge index theorem on arithmetic surfaces)

(Moriwaki) We assume that d = 2 and D is integrable. If

deg(DQ) � 0, then ddeg(D
2

)  cvol(D). Moreover, we have the
following:

1 We assume that deg(DQ) = 0. The equality holds if and only
if there are � 2 R and � 2 Rat(X )⇥R such that

D = c(�)R + (0,�).

2 We assume that deg(DQ) > 0. The equality holds if and only
if D is nef.
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Let X be a d-dimensional, generically smooth normal projective
arithmetic variety and let D be a big arithmetic R-divisor of
C 0-type on X . By the above theorem, a decomposition
D = P + N is called a Zariski decomposition of D if

1 P is a nef arithmetic R-divisor on X .

2 N is an e↵ective arithmetic R-divisor of C 0-type on X .

3 cvol(D) = cvol(P).

Atsushi MORIWAKI Birational Arakelov Geometry

Let Pn
Z = Proj(Z[T

0

,T
1

, . . . ,Tn]), D = {T
0

= 0} and zi = Ti/T0

for i = 1, . . . , n. Let us fix a positive number a. We define a
D-Green function ga of C1-type on Pn(C) and an arithmetic
divisor Da of C1-type on Pn

Z to be

ga := log(1 + |z
1

|2 + · · ·+ |zn|2) + log(a) and Da := (D, ga).

Note that c
1

(Da) is positive. Let

�n :=
�

(x
1

, . . . , xn) 2 Rn
�0

| x
1

+ · · ·+ xn  1
 

and let #a : �n ! R be a function given by

2#g = �(1�x
1

�· · ·�xn) log(1�x
1

�· · ·�xn)�
n
X

i=1

xi log xi+log(a).

We set

⇥a := {(x
1

, . . . , xn) 2 �n | #a(x1, . . . , xn) � 0} .
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The following properties (1) – (6) hold for Da:
(1) Da is ample () a > 1.
(2) Da is nef () a � 1.
(3) Da is big () a > 1

n+1

.

(4) Da is pseudo-e↵ective () a � 1

n+1

.
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(5) (Integral formula) The following formulae hold:

cvol(Da) = (n + 1)!

Z

⇥a

#a(1� x
1

� · · ·� xn, x1, . . . , xn)dx1 · · · dxn

and

ddeg(D
n+1

a ) = (n + 1)!

Z

�n

#a(1� x
1

� · · ·� xn, x1, . . . , xn)dx1 · · · dxn.

Boucksom and H. Chen generalized the above formulae to a
general situation by using Okounkov bodies.

Atsushi MORIWAKI Birational Arakelov Geometry

(6) (Zariski decomposition for n = 1) We assume n = 1. The
Zariski decomposition of Da exists if and only if a � 1/2.
Moreover, we set H

0

= D = {T
0

= 0}, H
1

= {T
1

= 0} and
✓a = inf ⇥a.
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If we set

pa(z1) =

8

>

>

>

<

>

>

>

:

✓a log |z1|2 if |z
1

| <
q

✓a
1�✓a

,

log(1 + |z
1

|2) + log(a) if
q

✓a
1�✓a

 |z
1

| 
q

1�✓a
✓a

,

(1� ✓a) log |z1|2 if |z
1

| >
q

1�✓a
✓a

,

then the positive part of Da is given by

((1� ✓)H
0

� ✓H
1

, pa).
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Let Dg = (H
0

, g) be a big arithmetic R-Cartier divisor of C 0-type
on Pn

Z. We assume that

g(exp(2⇡
p�1✓

1

)z
1

, . . . , exp(2⇡
p�1✓n)zn) = g(z

1

, . . . , zn)

for all ✓
1

, . . . , ✓n 2 [0, 1]. We set

⇠g (y1, . . . , yn) :=
1

2
g(exp(y

1

), . . . , exp(yn))

for (y
1

, . . . , yn) 2 Rn. Let #g be the Legendre transform of ⇠g ,
that is,

#g (x1, . . . , xn)

:= sup{x
1

y
1

+ · · ·+ xnyn � ⇠g (y1, . . . , yn) | (y1, . . . , yn) 2 Rn}
for (x

1

, . . . , xn) 2 �n. Note that if
g = log(1 + |z

1

|2 + · · ·+ |zn|2) + log(a), then

2#g = �(1�x
1

�· · ·�xn) log(1�x
1

�· · ·�xn)�
n
X

i=1

xi log xi+log(a).
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Theorem (Burgos Gil, Moriwaki, Philippon and Sombra)

There is a Zariski decomposition of f ⇤(Dg ) for some birational
morphism f : Y ! Pn

Z of generically smooth and projective normal
arithmetic varieties if and only if

⇥g := {(x
1

, . . . , xn) 2 �n | #g (x1, . . . , xn) � 0}

is a quasi-rational convex polyhedron, that is, there are
�
1

, . . . , �l 2 Qn and b
1

, . . . , bl 2 R such that

⇥g = {x 2 Rn | hx , �i i � bi 8i = 1, . . . , l},

where h , i is the standard inner product of Rn.

The above theorem holds for toric varieties.
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For example, if g = logmax{a
0

, a
1

|z
1

|2, a
2

|z
2

|2}, then Dg is big if
and only if max{a

0

, a
1

, a
2

} > 1. Moreover,

⇥g =

⇢

(x
1

, x
2

) 2 �
2

�

�

�

�

log

✓

a
1

a
0

◆

x
1

+ log

✓

a
2

a
0

◆

x
2

+ log(a
0

) � 0

�

.

Thus there is a Zariski decomposition of f ⇤(Dg ) for some birational
morphism f : Y ! P2

Z of generically smooth and projective normal
arithmetic varieties if and only if there is � 2 R>0

such that

�

✓

log

✓

a
1

a
0

◆

, log

✓

a
2

a
0

◆◆

2 Q2.
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