Birational Arakelov Geometry

Atsushi MORIWAKI

Kyoto University
October 24， 2012

Problem：
For a real number $\lambda>1$ ，find an asymptotic estimate of

$$
\log \#\left\{(a, b) \in \mathbb{Z}^{2} \mid a^{2}+2 b^{2} \leq \lambda^{2 n}\right\}
$$

with respect to n ．

How many lattice points in the ellipse?

$$
a^{2}+2 b^{2} \leq \lambda^{2 n}
$$

Considering a shrinking map $(x, y) \mapsto\left(\lambda^{-n} x, \lambda^{-n} y\right)$,

$$
\begin{aligned}
\#\left\{(a, b) \in \mathbb{Z}^{2} \mid a^{2}\right. & \left.+2 b^{2} \leq \lambda^{2 n}\right\} \\
& =\#\left\{\left(a^{\prime}, b^{\prime}\right) \in\left(\mathbb{Z} \lambda^{-n}\right)^{2} \mid a^{\prime 2}+2 b^{\prime 2} \leq 1\right\} .
\end{aligned}
$$

We assign a square

$$
\left[a^{\prime}-\frac{\lambda^{-n}}{2}, a^{\prime}+\frac{\lambda^{-n}}{2}\right] \times\left[b^{\prime}-\frac{\lambda^{-n}}{2}, b^{\prime}+\frac{\lambda^{-n}}{2}\right]
$$

to each element of

$$
\left\{\left(a^{\prime}, b^{\prime}\right) \in\left(\mathbb{Z} \lambda^{-n}\right)^{2} \mid a^{\prime 2}+2 b^{\prime 2} \leq 1\right\} .
$$

\sum (the volume of each square) \sim the volume of the ellipse

Thus

$$
\begin{aligned}
\#\{(a, b) & \left.\in \mathbb{Z}^{2} \mid a^{2}+2 b^{2} \leq \lambda^{2 n}\right\} \times\left(\lambda^{-n}\right)^{2} \\
& \sim \text { the volume of }\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+2 y^{2} \leq 1\right\}=\frac{\pi}{\sqrt{2}} .
\end{aligned}
$$

Therefore,

$$
\log \#\left\{(a, b) \in \mathbb{Z}^{2} \mid a^{2}+2 b^{2} \leq \lambda^{2 n}\right\} \sim(2 \log \lambda) n
$$

Let K be a number field (i.e. a finite extension of \mathbb{Q}) and let $K(\mathbb{C})$ be the set of all embeddings $K \hookrightarrow \mathbb{C}$. Note that $\#(K(\mathbb{C}))=[K: \mathbb{Q}]$ and $K(\mathbb{C})$ is the set of \mathbb{C}-valued points of $\operatorname{Spec}(K)$. Let O_{K} be the ring of integers in K, that is,

$$
O_{K}=\{x \in K \mid x \text { is integral over } \mathbb{Z}\}
$$

We set $X=\operatorname{Spec}\left(O_{K}\right)$. Let $\operatorname{Div}(X)$ be the group of divisors on X, that is,

$$
\operatorname{Div}(X):=\bigoplus_{P \in X \backslash\{0\}} \mathbb{Z}[P]
$$

For $D=\sum_{P} a_{P}[P], \operatorname{deg}(D)$ is defined by

$$
\operatorname{deg}(D):=\sum_{P} a_{P} \log \#\left(O_{K} / P\right) .
$$

$\widehat{\operatorname{Div}}(X)$ is defined by

$$
\widehat{\operatorname{Div}}(X)=\operatorname{Div}(X) \times\left\{\xi \in \mathbb{R}^{K(\mathbb{C})} \mid \xi_{\sigma}=\xi_{\bar{\sigma}}(\forall \sigma \in K(\mathbb{C}))\right\}
$$

where $\bar{\sigma}$ is the composition of $\sigma: K \hookrightarrow \mathbb{C}$ and the complex conjugation $\mathbb{C} \xrightarrow{-} \mathbb{C}$. An element of $\widehat{\operatorname{Div}}(X)$ is called an arithmetic divisor on X. For simplicity, an element $\xi \in \mathbb{R}^{K(\mathbb{C})}$ is denoted by $\sum_{\sigma} \xi_{\sigma}[\sigma]$. For example, if we set

$$
\widehat{(x)}:=\left(\sum_{P} \operatorname{ord}_{P}(x)[P], \sum_{\sigma}-\log |\sigma(x)|^{2}[\sigma]\right)
$$

for $x \in K^{\times}$, then $\widehat{(x)} \in \widehat{\operatorname{Div}}(X)$, which is called an arithmetic principal divisor.

The arithmetic degree $\widehat{\operatorname{deg}}(\bar{D})$ for $\bar{D}=(D, \xi)$ is defined by

$$
\widehat{\operatorname{deg}}(\bar{D}):=\operatorname{deg}(D)+\frac{1}{2} \sum_{\sigma} \xi_{\sigma} .
$$

Note that $\widehat{\operatorname{deg}}(\widehat{(x)})=0$ by the product formula. For

$$
\begin{gathered}
\bar{D}=\left(\sum_{P} n_{P}[P], \sum_{\sigma} \xi_{\sigma}[\sigma]\right) \\
\bar{D} \geq 0 \quad \stackrel{\text { def }}{\Longleftrightarrow} n_{P} \geq 0 \text { and } \xi_{\sigma} \geq 0 \text { for all } P \text { and } \sigma
\end{gathered}
$$

We set

$$
\hat{H}^{0}(X, \bar{D}):=\left\{x \in K^{\times} \mid \bar{D}+\widehat{(x)} \geq 0\right\} \cup\{0\} .
$$

Set $K=\mathbb{Q}(\sqrt{-2})$. Then $O_{K}=\mathbb{Z}+\mathbb{Z} \sqrt{-2}$ and $K(\mathbb{C})=\left\{\sigma_{1}, \sigma_{2}\right\}$ given by $\sigma_{1}(\sqrt{-2})=\sqrt{-2}$ and $\sigma_{2}(\sqrt{-2})=-\sqrt{-2}$. We set $\bar{D}=\left(0, \log \left(\lambda^{2}\right)\left[\sigma_{1}\right]+\log \left(\lambda^{2}\right)\left[\sigma_{2}\right]\right)$. Then $\widehat{\operatorname{deg}}(\bar{D})=2 \log (\lambda)$.
Note that, for $x=a+b \sqrt{-2} \in \mathbb{Q}(\sqrt{-2}) \backslash\{0\}$,

$$
\begin{aligned}
n \bar{D}+\widehat{(x)} \geq 0 & \Longleftrightarrow\left\{\begin{array}{l}
n \log \left(\lambda^{2}\right)-\log \left(a^{2}+2 b^{2}\right) \geq 0 \\
a, b \in \mathbb{Z}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
a^{2}+2 b^{2} \leq \lambda^{2 n} \\
a, b \in \mathbb{Z}
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\hat{H}^{0}(X, n \bar{D}) & =\left\{x \in K^{\times} \mid n \bar{D}+\widehat{(x)} \geq 0\right\} \cup\{0\} \\
& =\left\{a+b \sqrt{-2} \in \mathbb{Z}[\sqrt{-2}] \mid a^{2}+2 b^{2} \leq \lambda^{2 n}\right\} .
\end{aligned}
$$

Thus the previous observation means that

$$
\log \# \hat{H}^{0}(X, n \bar{D}) \sim \widehat{\operatorname{deg}}(\bar{D}) n
$$

Theorem (Arithmetic Hilbert-Samuel formula for $\operatorname{Spec}\left(O_{K}\right)$)
If $\widehat{\operatorname{deg}}(\bar{D})>0$, then $\log \# \hat{H}^{0}(n \bar{D})=n \widehat{\operatorname{deg}}(\bar{D})+O(1)$. In particular, if $n \gg 1$, then there is $x \in K^{\times}$with $n \bar{D}+\widehat{(x)} \geq 0$. Moreover, $\lim _{n \rightarrow \infty} \log \# \hat{H}^{0}(n \bar{D}) / n=\widehat{\operatorname{deg}}(\bar{D})$.

Remark

Let r_{2} be the number of complex embeddings K into \mathbb{C} and let D_{K} be the discriminant of K over \mathbb{Q}. If

$$
\widehat{\operatorname{deg}}(\bar{D}) \geq \log \left((\pi / 2)^{r_{2}} \sqrt{\left|D_{K}\right|}\right)
$$

then $\hat{H}^{0}(\bar{D}) \neq\{0\}$.

For $\bar{D}=\left(\sum_{P} x_{P}[P], \xi\right) \in \widehat{\operatorname{Div}}(X)_{\mathbb{R}}, \widehat{\operatorname{deg}}(D)$ is defined by

$$
\widehat{\operatorname{deg}}(\bar{D}):=\sum_{P} x_{P} \log \#\left(O_{K} / P\right)+\frac{1}{2} \sum_{\sigma \in K(\mathbb{C})} \xi_{\sigma} .
$$

$$
\text { For } x=x_{1}^{a_{1}} \cdots x_{r}^{a_{r}} \in K_{\mathbb{R}}^{\times}\left(x_{1}, \ldots, x_{r} \in K^{\times}, a_{1}, \ldots, a_{r} \in \mathbb{R}\right) \text {, }
$$

$$
\widehat{(x)_{\mathbb{R}}}:=\sum a_{i} \widehat{\left(x_{i}\right)}
$$

For $\bar{D}=\left(\sum_{P} x_{P}[P], \xi\right) \in \widehat{\operatorname{Div}}(X)_{\mathbb{R}}$,

$$
\bar{D} \geq 0 \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad x_{P} \geq 0 \text { and } \xi_{\sigma} \geq 0 \text { for all } P \text { and } \sigma
$$

Theorem (Dirichlet's unit theorem)
If $\widehat{\operatorname{deg}}(\bar{D}) \geq 0$, then there is $x \in K_{\mathbb{R}}^{\times}$such that $\bar{D}+\widehat{(x)} \mathbb{R} \geq 0$.

Remark

The above theorem implies the classical Dirichlet's unit theorem, that is, for any $\xi \in \mathbb{R}^{K(\mathbb{C})}$ with $\sum_{\sigma} \xi_{\sigma}=0$ and $\xi_{\sigma}=\xi_{\bar{\sigma}}$, there are $x_{1}, \ldots, x_{r} \in O_{K}^{\times}$and $a_{1}, \ldots, a_{r} \in \mathbb{R}$ such that
$\xi_{\sigma}=\sum_{i} a_{i} \log \left|\sigma\left(x_{i}\right)\right|$ for all σ.

Indeed, we set $\bar{D}=(0, \xi)$. As $\widehat{\operatorname{deg}}(\bar{D})=0$, there are $x \in K_{\mathbb{R}}^{\times}$such that $\bar{D}+\widehat{(x)}_{\mathbb{R}} \geq 0$. Note that $\widehat{\operatorname{deg}}\left(\bar{D}+\widehat{(x)_{\mathbb{R}}}\right)=0$, so that

$$
\bar{D}+\widehat{(x)}_{\mathbb{R}}=(0,0)
$$

On the other hand, we can find $x_{1}, \ldots, x_{r} \in K^{\times}$and $a_{1}, \ldots, a_{r} \in \mathbb{R}$ such that $x=x_{1}^{a_{1} / 2} \cdots x_{r}^{a_{r} / 2}$ and a_{1}, \ldots, a_{r} are linearly independent over \mathbb{Q}. Thus,

$$
\left\{\begin{array}{l}
\sum_{i=1}^{r} a_{i} \operatorname{ord} P\left(x_{i}\right)=0 \quad \text { for all } P \\
\xi_{\sigma}=\sum_{i=1}^{r} a_{i} \log \left|\sigma\left(x_{i}\right)\right| \quad \text { for all } \sigma
\end{array}\right.
$$

Using the linear independency of a_{1}, \ldots, a_{r} over \mathbb{Q}, we have $\operatorname{ord}_{P}\left(x_{i}\right)=0$ for all P and i. This means that $x_{i} \in O_{K}^{\times}$for all i, as required.

Remark

The above theorem does not hold on an algebraic curve. In this sense, it is a purely arithmetic problem.
Atsushi MORIWAKI Birational Arakelov Geometry

Let M be an n-equidimensional smooth projective variety over \mathbb{C}. Let $\operatorname{Div}(M)$ be the group of Cartier divisors on M and let $\operatorname{Div}(M)_{\mathbb{R}}:=\operatorname{Div}(M) \otimes_{\mathbb{Z}} \mathbb{R}$, whose element is called an \mathbb{R}-divisor. Let us fix $D \in \operatorname{Div}(M)_{\mathbb{R}}$. We set $D=a_{1} D_{1}+\cdots+a_{l} D_{l}$, where $a_{1}, \ldots, a_{l} \in \mathbb{R}$ and D_{i} 's are prime divisors on M.
Let $g: M \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be a locally integrable function on M. We say g is a D-Green function of C^{∞}-type (resp. C^{0}-type) if, for each point $x \in M$, there are an open neighborhood U_{x} of x, local equations f_{1}, \ldots, f_{l} of D_{1}, \ldots, D_{l} respectively and a C^{∞} (resp. C^{0}) function u_{x} over U_{x} such that

$$
\left.g=u_{x}+\sum_{i=1}^{\prime}\left(-a_{i}\right) \log \left|f_{i}\right|^{2} \quad \text { (a.e. }\right)
$$

over U_{x}. The above equation is called a local expression of g.

Let g be a D-Green function of C^{0}-type on M. Let

$$
g=u+\sum\left(-a_{i}\right) \log \left|f_{i}\right|^{2}=u^{\prime}+\sum\left(-a_{i}\right) \log \left|f_{i}^{\prime}\right|^{2} \quad \text { (a.e.) }
$$

be two local expressions of g. Then, as $\sum\left(-a_{i}\right) \log \left|f_{i} / f_{i}^{\prime}\right|^{2}$ is $d d^{c}$-closed, we have $d d^{c}(u)=d d^{c}\left(u^{\prime}\right)$ as currents, so that it can be defined globally. We denote it by $c_{1}(D, g)$. Note that $c_{1}(D, g)$ is a closed $(1,1)$-current on M. If g is of C^{∞}-type, then $c_{1}(D, g)$ is represented by a C^{∞}-form.

Let X be a d-dimensional, generically smooth normal projective arithmetic variety, that is,
(1) X is projective flat integral scheme over \mathbb{Z}.
(2) If $X_{\mathbb{Q}}=X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q})$ is the generic fiber of $X \rightarrow \operatorname{Spec}(\mathbb{Z})$, then $X_{\mathbb{Q}}$ is smooth over \mathbb{Q}.
(3) The Krull dimension of X is d, that is, $\operatorname{dim} X_{\mathbb{Q}}=d-1$.
(a) X is normal.

Let $\operatorname{Div}(X)$ be the group of Cartier divisors on X and
$\operatorname{Div}(X)_{\mathbb{R}}=\operatorname{Div}(X) \otimes_{\mathbb{Z}} \mathbb{R}$, whose element is called an \mathbb{R}-divisor on X. For $D \in \operatorname{Div}(X)_{\mathbb{R}}$, we set $D=\sum_{i} a_{i} D_{i}$, where $a_{i} \in \mathbb{R}$ and D_{i} 's are reduced and irreducible subschemes of codimension one. We say D is effective if $a_{i} \geq 0$ for all i. Moreover, for $D, E \in \operatorname{Div}(X)_{\mathbb{R}}$,

$$
D \leq E(\text { or } E \geq D) \Longleftrightarrow E-D \text { is effective }
$$

Let D be an \mathbb{R}-divisor on X and let g be a locally integrable function on $X(\mathbb{C})$. We say a pair $\bar{D}=(D, g)$ is an arithmetic \mathbb{R}-divisor on X if $F_{\infty}^{*}(g)=g$ (a.e.), where $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$ is the complex conjugation map, i.e. for $x \in X(\mathbb{C}), F_{\infty}(x)$ is given by the composition $\operatorname{Spec}(\mathbb{C}) \xrightarrow{-} \operatorname{Spec}(\mathbb{C}) \xrightarrow{X} X$. Moreover, we say \bar{D} is of C^{∞}-type (resp. C^{0}-type) if g is a D-Green function of C^{∞}-type (resp. C^{0}-type). For arithmetic divisors $\bar{D}_{1}=\left(D_{1}, g_{1}\right)$ and $\bar{D}_{2}=\left(D_{2}, g_{2}\right)$, we define $\bar{D}_{1}=\bar{D}_{2}$ and $\bar{D}_{1} \leq \bar{D}_{2}$ to be

$$
\begin{aligned}
& \bar{D}_{1}=\bar{D}_{2} \Longleftrightarrow D_{1}=D_{2} \text { and } g_{1}=g_{2}(\text { a.e. }) \\
& \bar{D}_{1} \leq \bar{D}_{2} \Longleftrightarrow D_{1} \leq D_{2} \text { and } g_{1} \leq g_{2}(\text { a.e. })
\end{aligned}
$$

We say \bar{D} is effective if $\bar{D} \geq(0,0)$.

Let $\operatorname{Rat}(X)$ be the field of rational functions on X. For $\phi \in \operatorname{Rat}(X)^{\times}$, we set

$$
(\phi):=\sum_{\Gamma} \operatorname{ord}_{\Gamma}(\phi) \Gamma \quad \text { and } \quad \widehat{(\phi)}:=\left((\phi),-\log |\phi|^{2}\right) .
$$

Note that $\widehat{(\phi)}$ is an arithmetic divisor of C^{∞}-type

Let $\bar{D}=(D, g)$ be an arithmetic \mathbb{R}-divisor of C^{0}-type on X.

- $H^{0}(X, D):=\left\{\phi \in \operatorname{Rat}(X)^{\times} \mid D+(\phi) \geq 0\right\} \cup\{0\}$. Note that $H^{0}(X, D)$ is finitely generated \mathbb{Z}-module.
- $\hat{H}^{0}(X, \bar{D}):=\left\{\phi \in \operatorname{Rat}(X)^{\times} \mid \bar{D}+\widehat{(\phi)} \geq(0,0)\right\} \cup\{0\}$. Note that $\hat{H}^{0}(X, \bar{D})$ is a finite set.
- $\hat{h}^{0}(X, \bar{D}):=\log \# \hat{H}^{0}(X, \bar{D})$.
- $\widehat{\operatorname{vol}(\bar{D})}:=\limsup _{n \rightarrow \infty} \frac{\log \# \hat{H}^{0}(X, n \bar{D})}{n^{d} / d!}$.

Theorem

(1) $\widehat{\operatorname{vol}}(\bar{D})<\infty$.
(2) (H. Chen) $\widehat{\operatorname{vol}}(\bar{D}):=\lim _{n \rightarrow \infty} \frac{\log \# \hat{H}^{0}(X, n \bar{D})}{n^{d} / d!}$.
(3) $\widehat{\operatorname{vol}}(a \bar{D})=a^{d} \widehat{\operatorname{vol}}(\bar{D})$ for $a \in \mathbb{R}_{\geq 0}$.
(9) (Moriwaki) vol : $\widehat{\operatorname{Div}}_{C^{0}}(X)_{\mathbb{R}} \rightarrow \mathbb{R}$ is continuous in the following sense: Let $\bar{D}_{1}, \ldots, \bar{D}_{r}, \bar{A}_{1}, \ldots, \bar{A}_{s}$ be arithmetic \mathbb{R}-divisors of C^{0}-type on X. For a compact subset B in \mathbb{R}^{r} and a positive number ϵ, there are positive numbers δ and δ^{\prime} such that

$$
\left|\widehat{\operatorname{vol}}\left(\sum a_{i} \bar{D}_{i}+\sum \delta_{j} \bar{A}_{j}+(0, \phi)\right)-\widehat{\operatorname{vol}}\left(\sum a_{i} \bar{D}_{i}\right)\right| \leq \epsilon
$$

for all $a_{1}, \ldots, a_{r}, \delta_{1}, \ldots, \delta_{s} \in \mathbb{R}$ and $\phi \in C^{0}(X)$ with $\left(a_{1}, \ldots, a_{r}\right) \in B,\left|\delta_{1}\right|+\cdots+\left|\delta_{s}\right| \leq \delta$ and $\|\phi\|_{\text {sup }} \leq \delta^{\prime}$.

Let C be a reduced and irreducible 1-dimensional closed subscheme of X. We would like to define $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right)$. It is characterized by the following properties:
(1) $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right)$ is linear with respect to \bar{D}.
(2) If $\phi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$, then $\widehat{\operatorname{deg}}\left(\left.\widehat{(\phi)_{\mathbb{R}}}\right|_{C}\right)=0$.
(3) If $C \nsubseteq \operatorname{Supp}(D)$ and C is vertical, then $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right)=\log (p) \operatorname{deg}\left(\left.D\right|_{C}\right)$, where C is contained in the fiber over a prime p.
(9) If $C \nsubseteq \operatorname{Supp}(D)$ and C is horizontal, then $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right)=\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{\tilde{C}}\right)$, where \widetilde{C} is the normalization of C. Note that $\widetilde{C}=\operatorname{Spec}\left(O_{K}\right)$ for some number field K.

- \bar{D} is big $\Longleftrightarrow \widehat{\operatorname{vol}}(\bar{D})>0$.
- \bar{D} is psedo-effective $\Longleftrightarrow \bar{D}+\bar{A}$ is big for any big arithmetic \mathbb{R}-divisor \bar{A} of C^{0}-type.
- $\bar{D}=(D, g)$ is nef \Longleftrightarrow
(1) $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right) \geq 0$ for all reduced and irreducible 1-dimensional closed subschemes C of X.
(2) $c_{1}(D, g)$ is a positive current.
- $\bar{D}=(D, g)$ is relatively nef \Longleftrightarrow
(1) $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right) \geq 0$ for all vertical reduced and irreducible 1-dimensional closed subschemes C of X.
(2) $c_{1}(D, g)$ is a positive current.
- $\bar{D}=(D, g)$ is integrable $\Longleftrightarrow \bar{D}=\bar{P}-\bar{Q}$ for some nef arithmetic \mathbb{R}-divisors \bar{P} and \bar{Q}.

Theorem (Arithmetic Hilbert-Samuel formula)

(Gillet-Soulé-Abbes-Bouche-Zhang-Moriwaki) If \bar{D} is nef, then

$$
\hat{h}^{0}(X, n \bar{D})=\frac{\widehat{\operatorname{deg}}\left(\bar{D}^{d}\right)}{d!} n^{d}+o\left(n^{d}\right) .
$$

In other words, $\widehat{\operatorname{vol}}(\bar{D})=\widehat{\operatorname{deg}}\left(\bar{D}^{d}\right)$.

Remark

The above theorem suggests that $\widehat{\operatorname{deg}}\left(\bar{D}^{d}\right)$ can be defined by $\widehat{\operatorname{vol}(\bar{D}) \text {. Note that }}$

$$
d!X_{1} \cdots X_{d}=\sum_{I \subseteq\{1, \ldots, d\}}(-1)^{d-\#(I)}\left(\sum_{i \in I} X_{i}\right)^{d}
$$

in $\mathbb{Z}\left[X_{1}, \ldots, X_{d}\right]$. Thus, for nef arithmetic \mathbb{R}-divisors $\bar{D}_{1}, \ldots, \bar{D}_{d}$,

$$
d!\widehat{\operatorname{deg}}\left(\bar{D}_{1} \cdots \bar{D}_{d}\right)=\sum_{I \subseteq\{1, \ldots, d\}}(-1)^{d-\#(I) \widehat{v o l}}\left(\sum_{i \in I} \bar{D}_{i}\right) .
$$

In general, for integrable arithmetic \mathbb{R}-divisors $\bar{D}_{1}, \ldots, \bar{D}_{d}$, we can define $\operatorname{deg}\left(\bar{D}_{1} \cdots \bar{D}_{d}\right)$ by linearity.

Theorem (Generalized Hodge index theorem)

Corollary (The existence of small sections)
(Faltings-Gillet-Soulé-Zhang-Moriwaki) If \bar{D} is a relatively nef and $\widehat{\operatorname{deg}}\left(\bar{D}^{d}\right)>0$, then there are n and $\phi \in \operatorname{Rat}(X)^{\times}$such that $n \bar{D}+\widehat{(\phi)} \geq 0$.

Corollary (Arithmetic Bogomolov's inequality)
(Miyaoka-Soulé-Moriwaki) We assume $d=2$ and X is regular. Let (E, h) be a C^{∞}-hermitian locally free sheaf on X. If E is semistable on the generic fiber, then

$$
\widehat{\operatorname{deg}}\left(\widehat{c}_{2}(\bar{E})-\frac{r-1}{2 r} \widehat{c}_{1}(\bar{E})^{2}\right) \geq 0
$$

where $r=\operatorname{rk} E$.
Let $\pi: Y=\operatorname{Proj}\left(\bigoplus_{n \geq 0} \operatorname{Sym}^{n}(E)\right) \rightarrow X$ and D the tautological divisor on Y (i.e. $\mathcal{O}_{Y}(D)=\mathcal{O}(1)$). Roughly speaking, if we give a suitable Green function g to D, then $(D, g)-(1 / r) \pi^{*}\left(\widehat{c}_{1}(\bar{E})\right)$ is relatively nef and its volume is zero, so that

$$
\widehat{\operatorname{deg}}\left(\left((D, g)-(1 / r) \pi^{*}\left(\widehat{c}_{1}(\bar{E})\right)\right)^{r+1}\right) \leq 0
$$

by the Generalized Hodge index theorem, which gives the above inequality.

Theorem (Arithmetic Fujita's approximation theorem)

(Chen-Yuan) We assume that \bar{D} is big. For a given $\epsilon>0$, there are a birational morphism $\nu_{\epsilon}: Y_{\epsilon} \rightarrow X$ of generically smooth, normal projective arithmetic varieties and a nef and big arithmetic \mathbb{Q}-divisor \bar{P} of C^{∞}-type such that $\nu_{\epsilon}^{*}(\bar{D}) \geq \bar{P}$ and $\widehat{\operatorname{vol}}(\bar{P}) \geq \widehat{\operatorname{vol}}(\bar{D})-\epsilon$.

Let S be a non-singular projective surface over an algebraically closed field. Let D be an effective divisor on S. By virtue of Bauer, the positive part of the Zariski decomposition of D is characterized by the greatest element of

$$
\{M \mid M \text { is a nef } \mathbb{R} \text {-divisor on } S \text { and } M \leq D\} .
$$

Theorem (Zariski decomposition on arithmetic surfaces)
(Moriwaki) We assume that $d=2$ and X is regular. Let \bar{D} be an arithmetic \mathbb{R}-divisor of C^{0}-type on X such that the set

$$
\Upsilon(\bar{D})=\{\bar{M} \mid \bar{M} \text { is a nef arithmetic } \mathbb{R} \text {-divisor on } X \text { and } \bar{M} \leq \bar{D}\}
$$ is not empty. Then there is a nef arithmetic \mathbb{R}-divisor \bar{P} such that \bar{P} gives the greatest element of $\Upsilon(\bar{D})$, that is, $\bar{P} \in \Upsilon(\bar{D})$ and $\bar{M} \leq \bar{P}$ for all $\bar{M} \in \Upsilon(\bar{D})$. Moreover, if we set $\bar{N}=\bar{D}-\bar{P}$, then the following properties hold:

(1) $\hat{H}^{0}(X, n \bar{P})=\hat{H}^{0}(X, n \bar{D})$ for all $n \geq 0$.
(2) $\widehat{\operatorname{vol}}(\bar{D})=\widehat{\operatorname{vol}}(\bar{P})=\widehat{\operatorname{deg}}\left(\bar{P}^{2}\right)$.
(3) $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{N})=0$.
(9) If \bar{B} is an integrable arithmetic \mathbb{R}-divisor of C^{0}-type with $(0,0) \supsetneqq \bar{B} \leq \bar{N}$, then $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<0$.

For the proof of the property (3), the following characterization of nef arithmetic \mathbb{R}-Cartier is used:
Theorem (Generalized Hodge index theorem on arithmetic surfaces)
(Moriwaki) We assume that $d=2$ and \bar{D} is integrable. If $\operatorname{deg}\left(D_{\mathbb{Q}}\right) \geq 0$, then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right) \leq \widehat{\operatorname{vol}}(\bar{D})$. Moreover, we have the following:
(1) We assume that $\operatorname{deg}\left(D_{\mathbb{Q}}\right)=0$. The equality holds if and only if there are $\lambda \in \mathbb{R}$ and $\phi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$such that

$$
\bar{D}=\widehat{(\phi)}_{\mathbb{R}}+(0, \lambda)
$$

(2) We assume that $\operatorname{deg}\left(D_{\mathbb{Q}}\right)>0$. The equality holds if and only if \bar{D} is nef.

Let X be a d-dimensional, generically smooth normal projective arithmetic variety and let \bar{D} be a big arithmetic \mathbb{R}-divisor of C^{0}-type on X. By the above theorem, a decomposition $\bar{D}=\bar{P}+\bar{N}$ is called a Zariski decomposition of \bar{D} if
(1) \bar{P} is a nef arithmetic \mathbb{R}-divisor on X.
(2) \bar{N} is an effective arithmetic \mathbb{R}-divisor of C^{0}-type on X.
(3) $\widehat{\operatorname{vol}(} \bar{D})=\widehat{\operatorname{vol}}(\bar{P})$.

Let $\mathbb{P}_{\mathbb{Z}}^{n}=\operatorname{Proj}\left(\mathbb{Z}\left[T_{0}, T_{1}, \ldots, T_{n}\right]\right), D=\left\{T_{0}=0\right\}$ and $z_{i}=T_{i} / T_{0}$ for $i=1, \ldots, n$. Let us fix a positive number a. We define a D-Green function g_{a} of C^{∞}-type on $\mathbb{P}^{n}(\mathbb{C})$ and an arithmetic divisor \bar{D}_{a} of C^{∞}-type on $\mathbb{P}_{\mathbb{Z}}^{n}$ to be

$$
g_{a}:=\log \left(1+\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)+\log (a) \quad \text { and } \quad \bar{D}_{a}:=\left(D, g_{a}\right)
$$

Note that $c_{1}\left(\bar{D}_{a}\right)$ is positive. Let

$$
\Delta_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid x_{1}+\cdots+x_{n} \leq 1\right\}
$$

and let $\vartheta_{a}: \Delta_{n} \rightarrow \mathbb{R}$ be a function given by

$$
2 \vartheta_{g}=-\left(1-x_{1}-\cdots-x_{n}\right) \log \left(1-x_{1}-\cdots-x_{n}\right)-\sum_{i=1}^{n} x_{i} \log x_{i}+\log (a)
$$

We set

$$
\Theta_{a}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid \vartheta_{a}\left(x_{1}, \ldots, x_{n}\right) \geq 0\right\}
$$

The following properties (1) - (6) hold for \bar{D}_{a} :
(1) \bar{D}_{a} is ample $\Longleftrightarrow a>1$.
(2) \bar{D}_{a} is nef $\Longleftrightarrow a \geq 1$.
(3) \bar{D}_{a} is big $\quad \Longleftrightarrow \quad a>\frac{1}{n+1}$.
(4) \bar{D}_{a} is pseudo-effective $\Longleftrightarrow a \geq \frac{1}{n+1}$.
(5) (Integral formula) The following formulae hold:

$$
\widehat{\operatorname{vol}}\left(\bar{D}_{a}\right)=(n+1)!\int_{\Theta_{a}} \vartheta_{a}\left(1-x_{1}-\cdots-x_{n}, x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

and
$\widehat{\operatorname{deg}}\left(\bar{D}_{a}^{n+1}\right)=(n+1)!\int_{\Delta_{n}} \vartheta_{a}\left(1-x_{1}-\cdots-x_{n}, x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$.
Boucksom and H . Chen generalized the above formulae to a general situation by using Okounkov bodies.
(6) (Zariski decomposition for $n=1$) We assume $n=1$. The Zariski decomposition of \bar{D}_{a} exists if and only if $a \geq 1 / 2$.
Moreover, we set $H_{0}=D=\left\{T_{0}=0\right\}, H_{1}=\left\{T_{1}=0\right\}$ and $\theta_{a}=\inf \Theta_{a}$.

If we set

$$
p_{a}\left(z_{1}\right)=\left\{\begin{array}{ll}
\theta_{a} \log \left|z_{1}\right|^{2} & \text { if }\left|z_{1}\right|<\sqrt{\frac{\theta_{a}}{1-\theta_{a}}}, \\
\log \left(1+\left|z_{1}\right|^{2}\right)+\log (a) & \text { if } \sqrt{\frac{\theta_{a}}{1-\theta_{a}}} \leq\left|z_{1}\right|
\end{array} \sqrt{\frac{1-\theta_{a}}{\theta_{a}}},\right.
$$

then the positive part of \bar{D}_{a} is given by

$$
\left((1-\theta) H_{0}-\theta H_{1}, p_{a}\right)
$$

Let $\bar{D}_{g}=\left(H_{0}, g\right)$ be a big arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on $\mathbb{P}_{\mathbb{Z}}^{n}$. We assume that

$$
g\left(\exp \left(2 \pi \sqrt{-1} \theta_{1}\right) z_{1}, \ldots, \exp \left(2 \pi \sqrt{-1} \theta_{n}\right) z_{n}\right)=g\left(z_{1}, \ldots, z_{n}\right)
$$

for all $\theta_{1}, \ldots, \theta_{n} \in[0,1]$. We set

$$
\xi_{g}\left(y_{1}, \ldots, y_{n}\right):=\frac{1}{2} g\left(\exp \left(y_{1}\right), \ldots, \exp \left(y_{n}\right)\right)
$$

for $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Let ϑ_{g} be the Legendre transform of ξ_{g}, that is,

$$
\begin{aligned}
& \vartheta_{g}\left(x_{1}, \ldots, x_{n}\right) \\
& :=\sup \left\{x_{1} y_{1}+\cdots+x_{n} y_{n}-\xi_{g}\left(y_{1}, \ldots, y_{n}\right) \mid\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

for $\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n}$. Note that if
$g=\log \left(1+\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)+\log (a)$, then
$2 \vartheta_{g}=-\left(1-x_{1}-\cdots-x_{n}\right) \log \left(1-x_{1}-\cdots-x_{n}\right)-\sum_{i=1}^{n} x_{i} \log x_{i}+\log (a)$.

Theorem (Burgos Gil, Moriwaki, Philippon and Sombra)

There is a Zariski decomposition of $f^{*}\left(\bar{D}_{g}\right)$ for some birational morphism $f: Y \rightarrow \mathbb{P}_{\mathbb{Z}}^{n}$ of generically smooth and projective normal arithmetic varieties if and only if

$$
\Theta_{g}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid \vartheta_{g}\left(x_{1}, \ldots, x_{n}\right) \geq 0\right\}
$$

is a quasi-rational convex polyhedron, that is, there are $\gamma_{1}, \ldots, \gamma_{I} \in \mathbb{Q}^{n}$ and $b_{1}, \ldots, b_{l} \in \mathbb{R}$ such that

$$
\Theta_{g}=\left\{x \in \mathbb{R}^{n} \mid\left\langle x, \gamma_{i}\right\rangle \geq b_{i} \forall i=1, \ldots, /\right\}
$$

where \langle,$\rangle is the standard inner product of \mathbb{R}^{n}$.
The above theorem holds for toric varieties.

For example, if $g=\log \max \left\{a_{0}, a_{1}\left|z_{1}\right|^{2}, a_{2}\left|z_{2}\right|^{2}\right\}$, then \bar{D}_{g} is big if and only if $\max \left\{a_{0}, a_{1}, a_{2}\right\}>1$. Moreover,

$$
\Theta_{g}=\left\{\left(x_{1}, x_{2}\right) \in \Delta_{2} \left\lvert\, \log \left(\frac{a_{1}}{a_{0}}\right) x_{1}+\log \left(\frac{a_{2}}{a_{0}}\right) x_{2}+\log \left(a_{0}\right) \geq 0\right.\right\} .
$$

Thus there is a Zariski decomposition of $f^{*}\left(\bar{D}_{g}\right)$ for some birational morphism $f: Y \rightarrow \mathbb{P}_{\mathbb{Z}}^{2}$ of generically smooth and projective normal arithmetic varieties if and only if there is $\lambda \in \mathbb{R}_{>0}$ such that

$$
\lambda\left(\log \left(\frac{a_{1}}{a_{0}}\right), \log \left(\frac{a_{2}}{a_{0}}\right)\right) \in \mathbb{Q}^{2} .
$$

