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Introduction

In 1983, Tsuchihashi [T] constructed an isolated singularity called a cusp singularity
from a pair of an open cone and a discrete group acting on it, which is a generalization
of the Hilbert modular cusp singularities. By the construction, Tsuchihashi’s cusp
singularity is described by the fan decomposing the open cone. Although the cusp does
not depend on the choice of the fan, it describes a desingularlization of the singularity.
Furthermore, some important invariants are calculated by the fan.

In this note, we will show the possibility of using computer for analyzing cusp
singularities by introducing the method of Gröbner basis. Since the completed local
ring of a cusp singularity is a subring of the completion of a semigroup ring, it is
possible to define the leading monomials of the elements if we fix a monomial order
on the semigroup. However, we have difficulties since the semigroup consisting of the
leading monomials is not finitely generated in general. This indicates that monomial
orders are too strong for our purpose.

In most of monomial orders, the grading is the first step of the ordering. We will
show that the grading of the semigroup ring gives a filtration of the local ring, and
the associated graded ring is finitely generated. Using this result, we can show that
the local ring is Noetherian over a general field. In the last section, we will give some
remarks on the local ring related to the theory of Gröbner basis.

1 Subrings of a semigroup ring

Let N be a free Z-module of rank r ≥ 0. The dual Z-module HomZ(N,Z) is denoted
by M . We set NR = N ⊗Z R and MR = M ⊗Z R. N and M are contained in NR and
MR, respectively, as lattices. The natural pairing 〈 , 〉 : M × N → Z is extended to
the perfect pairing 〈 , 〉 : MR × NR → R of R-vector spaces.

A subset σ ⊂ NR is said to be a strongly convex rational polyhedral cone if there
exists a finite subset {u1, . . . , us} ⊂ N with σ = R0u1 + · · ·+R0us and σ∩(−σ) = {0},
where R0 = {c ∈ R ; c ≥ 0}. A strongly convex rational polyhedral cone is denoted
by a greek lowercase character as σ, τ , π, and is called simply a cone.

For a cone σ, we introduce the following notation. N(σ)R = σ + (−σ) is the
minimal linear subspace of NR containing σ. We define dim σ = dimR N(σ)R. We set
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N(σ) = N ∩ N(σ)R and N [σ] = N/N(σ). We set also M [σ]R = σ⊥ = {x ∈ MR ;
〈x, u〉 = 0 for all u ∈ σ}, M [σ] = M ∩ M [σ]R and M(σ) = M/M [σ]. M(σ) and N(σ)
are mutually dual Z-modules of rank dim σ, while M [σ] and N [σ] are mutually dual
Z-modules of rank r − dim σ.

In this section, we fix a cone π ⊂ NR of dimension r. Then the dual cone

π∨ = {x ∈ MR ; 〈x, u〉 ≥ 0 for all u ∈ π}

is a strongly convex rational polyhedral cone of dimension r in MR.
Since π∨ is a convex cone, x, y ∈ π∨ implies x+y ∈ π∨. Hence M∩π∨ is a semigroup

with the unit 0. Since π∨ is strongly convex, 0 is the unique invertible element of the
semigroup. An element m of M ∩ π∨ is said to be irreducible if there do not exist
m1,m2 ∈ M ∩ π∨ \ {0} with m = m1 + m2.

Lemma 1.1 (Gordan) The semigroup M∩π∨ is finitely generated. Namely, M∩
π∨ has only finite irreducible elements and the semigroup is generated by them.

We fix a field k of any characteristic. Lemma 1.1 implies that the semigroup ring

Sπ = k[M ∩ π∨] =
⊕

m∈M∩π∨
ke(m)

is a finitely generated k-algebra, where we define e(m)e(m′) = e(m+m′) for m,m′ ∈ M
and e(0) = 1. In particular, Sπ is a Noetherian ring. For each face σ of π, we denote
S(σ) = M ∩π∨∩σ⊥ and S(σ)◦ = M ∩ rel. int(π∨∩σ⊥). In particular, S(0) = M ∩π∨.
Since S(σ) is a subsemigroup of M ∩ π∨, k[S(σ)] is a subring of Sπ. Note that k[S(σ)]
is also considered as the residue ring of Sπ by the prime ideal

⊕
m∈M∩(π∨\σ⊥) ke(m).

We denote by F (π) the set of faces of π.

Lemma 1.2 The semigroup M ∩ π∨ has a decomposition

M ∩ π∨ =
∐

σ∈F (π)

S(σ)◦

as a set. If m ∈ S(σ)◦ and m′ ∈ S(τ)◦, then m + m′ ∈ S(ρ)◦ for ρ = σ ∩ τ .

Proof Let m be an element of M ∩π∨. Then σ = π∩ (m = 0) is a face of π, where
(m = 0) = {u ∈ NR ; 〈m,u〉 = 0}. Then this is the unique face σ of π such that m is
in the relative interior of π∨ ∩ σ⊥. If τ = π ∩ (m′ = 0), then π ∩ (m + m′ = 0) = σ ∩ τ
since π is contained in both (m ≥ 0) and (m′ ≥ 0). This implies ρ = σ ∩ τ . QED

We take a primitive element n0 ∈ N ∩ int π. Then we can define the grading of Sπ

by deg e(m) = 〈m, n0〉 for all m. Note that Sπ is positively graded and deg e(m) = 0
if and only if m = 0.

For each face σ of π, we denote by n0(σ) the image of n0 in N [σ]. We define
the category Iso(π, n0) as follows. Each object of Iso(π, n0) is the semigroup S(σ) for
σ ∈ F (π) and a morphism is an isomorphism φ : M [σ] → M [τ ] such that φ(S(σ)) =
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S(τ) and φ∗(n0(τ)) = n0(σ). We denote this morphism also by φ : S(σ) → S(τ). In
particular, all morphisms are isomorphisms, i.e., Iso(π, n0) is a groupoid.

For a subgroupoid H of Iso(π, n0), we consider the following conditions.
(1) For any element S(σ) of H, there exists a morphism φ : S(σ) → S(τ) in H which
is not the identity map.
(2) If φ : S(σ1) → S(σ2) is in H and it induces a non-identity map φ′ : S(τ1) → S(τ2)
for τ1, τ2 ∈ F (π) with σ1 ≺ τ1, σ2 ≺ τ2, then φ′ is in H.

Let H be a subgroupoid of Iso(π, n0) satisfying the conditions (1) and (2).
Clearly, H is decomposed into a finite union of connected components. The di-

mension dim H0 of a connected component is defined as dim H0 = dim σ for an object
S(σ) ∈ H0, which is independent of the choice of the object. If dim H0 is minimal
among the connected components of H, then H ′ = H \H0 is a subgroupoid satisfying
the conditions (1) and (2). Actually the condition (1) is obviously satisfied for H ′. The
condition (2) is also satisfied since σi ≺ τi and σi 6= τi imply dim τi > dim σi ≥ dim H0,
and hence φ′ is in H ′.

We define the vector subspace Sπ(H) of Sπ by

Sπ(H) = {
∑

m∈M∩π∨
ame(m) ; am = aφ(m) if φ : S(σ) → S(τ) is in H and m ∈ S(σ)} .

It is checked easily that this is a k-subalgebra.

The H-equivalence
H∼ on M ∩π∨ is defined by m

H∼m′ when m = m′ or there exists
φ : S(σ) → S(τ) ∈ H with m ∈ S(σ) and m′ = φ(m). For m ∈ M ∩ π∨, we set

eH(m) =
∑

m′ H∼m

e(m′) .

Then a basis of Sπ(H) as a k-vector space is given by

{eH(m) ; m ∈ M ∩ π∨/
H∼} .

Theorem 1.3 The ring Sπ is integral over Sπ(H), and Sπ(H) is finitely generated
over k.

Proof We prove that Sπ is integral over Sπ(H) by induction on the number of
connected components of H. If H is empty, then Sπ(H) = Sπ and the assertion is
trivial.

Assume that H is nonempty and H0 is a connected component of minimal dimen-
sion. Set H ′ = H \ H0. Then we have the relation Sπ(H) ⊂ Sπ(H ′) ⊂ Sπ. Since Sπ

is integral over Sπ(H ′) by the induction assumption, it suffices to show that Sπ(H ′) is
integral over Sπ(H).

Sπ(H ′) is generated by

{e(m) ; m ∈ S(σ)◦,S(σ) ∈ H0}

over Sπ(H). Take an element e(m) in this set. Let {m1, . . . , md} be the H-equivalent
class of m with m1 = m. If {S(σ1), . . . ,S(σc)} is the set of objects of H0, then e = d/c
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is an integer and each S(σi)
◦ contains e elements of {m1, . . . , md}. Let p(t) be the

monic polynomial

(t − e(m1)) · · · (t − e(md)) = td + u1t
d−1 + · · · + ud−1t + ud .

Then we have the equation p(e(m)) = 0 since m1 = m. The coefficient us is (−1)s

times the elementary symmetric polynomial in e(m1), . . . , e(md) of degree s for each
1 ≤ s ≤ d. We will show that this symmetric polynomial is an element of Sπ(H). Let
e(ml1) · · · e(mls) = e(ml1 + · · · + mls) be a monomial of the symmetric polynomial. If
there exists no S(σi)

◦ which contains all ml1 , . . . , mls , then ml1 + · · ·+mls is contained
in S(ρ)◦ for ρ with dim ρ < dim H0 by Lemma 1.2. In particular, the monomial
e(ml1 + · · · + mls) is in Sπ(H) by the minimality of dim H0.

On the other hand, the sum f of all monomials such that {ml1 , . . . , mls} is contained
in S(σi)

◦ for some i is an element of Sπ(H) since {φ(ml1), . . . , φ(mls)} has the same
property for any φ in H0 when this map is applicable. In order to see this fact more
precisely, let X be the set of subsets of {m1, . . . , md} consisting of s elements and
contained in S(σi)

◦ for some i. We introduce a relation V ∼ V ′ in X when there
exists φ : S(σ) → S(τ) in H0 such that V ⊂ S(σ)◦, V ′ ⊂ S(τ)◦ and V ′ = φ(V ).
This is an equivalence relation since H0 is a groupoid. Let {X1, . . . , Xa} be the set
of equivalence classes of X. Take an arbitrary class Xq. Then for each σi, we set
Xq,i = {V ∈ Xq ; V ⊂ S(σi)

◦} and define an element

fq,i =
∑

V ∈Xq,i

e(V ) ,

where e(V ) = e(
∑

m∈V m). Then we have φ(fq,i) = fq,j if φ : S(σi) → S(σj) is in H0,
where we denote also by φ the isomorphism k[S(σi)] → k[S(σi)] induced by φ. This
implies that fq = fq,1+· · ·+fq,c is an element of Sπ(H). Hence the sum f = f1+· · ·+fa

is also in Sπ(H).
Thus we know that us is an element of Sπ(H). Since p(e(m)) = 0, e(m) is integral

over Sπ(H). Hence Sπ(H ′) is integral over Sπ(H).
Since we proved that Sπ is integral over Sπ(H), the finite generation of Sπ(H)

follows from that of Sπ (see, for example, [AM, Proposition 7.8]). QED

2 Associated graded rings of cusp singularities

Assume r ≥ 2. Let C be a strongly convex open cone of NR and Γ a subgroup of GL(N)
acting effectively on C. The quotient D = C/R+ has a structure of (r−1)-dimensional
topological manifold. We assume the action of Γ on D is properly discontinuous and
the quotient D/Γ is compact. It is known that there exists a Γ-invariant fan Σ of NR

such that Σ is locally finite at each point of C, the support |Σ| is equal to C ∪ {0},
the stabilizer Γσ = {γ ∈ Γ ; γ(σ) = σ} is finite for every σ ∈ Σ \ {0} and the quotient
(Σ\{0})/Γ is finite. The action of Γ on D is free if and only if Γ acts on Σ\{0} freely.
In this case, the pair (C, Γ) defines a Tsuchihashi cusp singularity [T].
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Lemma 2.1 There exists a fan Σ with the following additional property. The sta-
bilizer Γσ acts on the cone σ trivially for every σ ∈ Σ \ {0}.

Proof For any Γ-invariant fan, its barycentric subdivision satisfies this condition.
QED

Let C∗ ⊂ MR be the interior of the dual cone of C̄. For n0 ∈ N ∩ C, we define

Θ∗(n0) = {x ∈ MR ; 〈x, γ(n0)〉 ≥ 1 for all γ ∈ Γ} .

The faces of Θ∗(n0) form a cell complex consisting of infinite number of (r − 1)-
dimensional bounded polytopes and their faces. The base space of the cell complex is
the boundary ∂Θ∗(n0) of Θ∗(n0). For each 0 ≤ i ≤ r − 1, we denote by Ki(∂Θ∗(n0))
the set of i-dimensional polytopes in the cell complex.

Lemma 2.2 The action of Γ on Kr−1(∂Θ∗(n0)) is transitive, and there exists n0 ∈
N ∩ C such that the action is principal.

Proof A polytope P in Kr−1(∂Θ∗(n0)) is defined by Θ∗(n0) ∩ (γ(n0) = 1) for an
element γ ∈ Γ, which is equal to γ−1(Θ∗(n0)∩(n0 = 1)). Hence the action is transitive.
Since the action of Γ on C is effective, the stabilizer is trivial for a point in a non-empty
open cone in C. An element n0 ∈ N ∩ C on a rational line intersecting it makes the
action principal. QED

We fix a primitive n0 in N ∩ C. Then P0 = Θ∗(n0) ∩ (n0 = 1) is an (r − 1)-
dimensional face of Θ∗(n0). Since R0P0 is a maximal dimensional strongly convex
rational polyhedral cone, there exists a cone π ⊂ NR such that π∨ = R0P0. Since
π∨ ⊂ C∗ and C is open, we have C̄ ⊂ int π ∪ {0}. For each σ ∈ F (π), we denote
σ∗ = π∨ ∩ σ⊥. Note that σ∗ is a cone contained in C∗ ∪ {0}. For S = M ∩ π∨, the
subcategory H(Γ) of Iso(π, n0) is defined as follows. An object of H(Γ) is S(σ) such
that there exist σ, τ ∈ F (π) and γ ∈ Γ \ {1} satisfying γ(σ∗) = τ ∗, and a morphism is
φ : M [σ] → M [τ ] induced by γ for such σ, τ and γ.

We set U = (M ∩ C∗) ∪ {0}. U is a semigroup with the unit 0, and we get the
semigroup ring

k[U ] =
⊕
m∈U

ke(m)

as a subring of the group ring k[M ]. Note that U is not finitely generated. Actually,
if U was finitely generated, it generates a strongly convex closed cone D contained in
C∗ ∪ {0}. Since C∗ \ D is a nonempty open cone, it contains a point m in M . This is
a contradiction, since m ∈ U ⊂ D. In particular, k[U ] is not finitely generated over k.
k[U ] has a structure of graded ring by defining deg e(m) = 〈m, n0〉. Namely, k[U ]d is
the k-vector space with the basis {e(m) ; m ∈ U , 〈m, n0〉 = d}.

Since π∨ = R0P0 ⊂ C∗ ∪ {0}, Sπ = k[M ∩ π∨] is a subalgebra of k[U ].
Since n0 is in the open cone C, the convex set C∗ ∩ (n0 < d) is bounded for every

d > 0, where (n0 < d) is the open half space {x ∈ MR ; 〈x, n0〉 < d}. In particular,
M ∩ C∗ ∩ (n0 < d) is a finite set.
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For each positive integer d, we define the ideal Id ⊂ k[U ] by

Id = (e(m) ; m ∈ U , 〈m,n0〉 ≥ d) .

Note that {e(m) ; 〈m,n0〉 ≥ d} is a k-basis of the ideal Id. Since the complement
of this set in U is finite, the quotient k[U ]/Id is an Artinian ring. We consider the
completion k[[U ]] = proj limi k[U ]/Ii. It is easy to see that this k-algebra is written as
the product

k[[U ]] =
∏

m∈U
ke(m) .

In particular, it does not depend on the choice of n0.
An element of k[[U ]] is written as an infinite sum f =

∑
m∈U ame(m). The action

of Γ on k[[U ]] is defined by
γ(f) =

∑
m∈U

ame(γ(m))

for f ∈ k[[U ]] and γ ∈ Γ. Note that (γγ′)(f) = γ′(γ(f)). The ring k[[U ]] has an
induced filtration {Îd} of ideals, where Îd = k[[U ]]Id for each d ≥ 0. Note that

Îd/Îd+1 = Id/Id+1 = k[U ]d .

Hence the associated graded ring

G(k[[U ]]) =
∞⊕

d=0

Îd/Îd+1

of k[[U ]] for this filtration is naturally isomorphic to k[U ].
For each f ∈ k[[U ]] \ {0}, we denote by L(f) the image of f in Îd/Îd+1 for the

maximal d with f ∈ Îd and call it the leading part of f . Note that f −L(f) is in Îd+1.
We consider the invariant subring A = k[[U ]]Γ. We can show that this is the

completion of the local ring of the cusp singularity when k = C and the action of Γ
on C is free. The ring A has the filtration defined by I(A)d = Îd ∩ A for d ≥ 0. We
define the associated graded ring B by

B = G(A) =
∞⊕

d=0

I(A)d/I(A)d+1 .

Theorem 2.3 B is equal to Sπ(H(Γ)) in k[U ]. In particular, B is finitely generated
over k.

Proof Let f =
∑

m∈U ame(m) be an element of I(A)d. If am 6= 0, then aγ(m) =
am 6= 0 and 〈m, γ(n0)〉 = 〈γ(m), n0〉 ≥ d for every γ ∈ Γ. This implies m is in dΘ(n0)
since Θ(n0) = {x ∈ C∗ ; 〈x, γ(n0)〉 ≥ 1 for all γ ∈ Γ}. If deg e(m) = d, then since
dΘ(n0)∩ (n0 = d) = dP0, e(m) is in k[M ∩π∨]d. Since L(f) is the sum of ame(m) with
deg e(m) = d, we have L(f) ∈ k[M ∩ π∨]d. If φ : S(σ) → S(τ) is in H(Γ), m ∈ S(σ)◦

and e(m) ∈ k[S(σ)]d, then there exists γ ∈ Γ such that φ(m) = γ(m). Since f is
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Γ-invariant and n0(σ) = n0(τ), we have n0(φ(m)) = n0(m) = d and aφ(m) = am. Hence
L(f) is in Sπ(H(Γ)). Thus we know that B is a subring of Sπ(H(Γ)).

In order to show B = Sπ(H(Γ)), it suffices to see that eH(Γ)(m) is in B for every
m ∈ M ∩ π∨. This is clear since eH(Γ)(m) = L(f) for f =

∑
γ∈Γ/ St(m) e(γ(m)) ∈ A,

where St(m) is the stabilizer of m and Γ/ St(m) is the set of the right cosets. QED

Let k[[x1, . . . , xs]] be the power series ring of s variables. The local ring k[[x1, . . . , xs]]
has the filtration {(x1, . . . , xs)

d} defined by the maximal ideal (x1, . . . , xs). For any
given elements u1, . . . , us of I1, there exists a continuous k-algebra homomorphism
φ : k[[x1, . . . , xs]] → k[[U ]] such that φ(xi) = ui for every i. Actually, an element
f ∈ k[[x1, . . . , xs]] is written as

f = f0 + f1 + f2 + · · ·

with fi a homogeneous polynomial of degree i for every i. Then fi(u1, . . . , us) ∈ Ii for
every i, and

f0(u1, . . . , us) + f1(u1, . . . , us) + f2(u1, . . . , us) + · · ·
defines an element of k[[U ]] which should be φ(f). If u1, . . . , us are in the subring A,
the image of φ is in A since every finite sum

∑d
i=0 fi(u1, . . . , us) is in A and A is closed

(cf. Proposition 3.2).
It is known that formal power series ring with finite variables over a Noetherian

ring is Noetherian [CC, 18]. We have the following theroem.

Theorem 2.4 (cf. [CC, 18, Théorèm 4]) Let {y1, . . . , ys} be a set of homoge-
neous elements of B which generates B over k. Assume yi ∈ I(A)li/I(A)li+1 and
yi is represented by ui ∈ I(A)li \ I(A)li+1 for each i. Then the homorphism φ :
k[[x1, . . . , xs]] → A defined by u1, . . . , us is surjective. In particular, A is a Noetherian
local ring.

Proof Let w be an arbitrary element of A. We define inductively a sequence of
polynomials fi ∈ k[x1, . . . , xs] such that fi(u1, . . . , us) ∈ I(A)i for every i,

w − {f0(u1, . . . , us) + f1(u1, . . . , us) + · · · + fd(u1, . . . , us)}

is in I(A)d+1 for every d and {f0 + f1 + · · · + fd} is a Cauchy sequence. Assume
f0, . . . , fd−1 are defined so that they satisfy the first two conditions. Then

g = w − {f0(u1, . . . , us) + f1(u1, . . . , us) + · · · + fd−1(u1, . . . , us)}

is an element of I(A)d. The image ḡ of g in I(A)d/I(A)d+1 is represented by a linear
combination ∑

e1,...,es

ae1,...,esy
e1
1 · · · yes

s

with coefficients in k, where the summation is taken over e1, . . . , es ≥ 0 satisfying e1l1+
· · · + esls = d. Since this element is represented by fd(u1, . . . , us) for the polynomial

fd(x1, . . . , xs) =
∑

e1,...,es

ae1,...,esx
e1
1 · · · xes

s ,
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we have

w − {f0(u1, . . . , us) + f1(u1, . . . , us) + · · · + fd(u1, . . . , us)}
= g − fd(u1, . . . , us) ∈ I(A)d+1 .

By the equality e1l1 + · · ·+ esls = d, the degree e1 + · · ·+ es of the monomial xe1
1 · · · xes

s

of fd is at least d/ max{l1, . . . , ls}. This implies that {f0 + f1 + · · · + fd} is a Cauchy
sequence. Hence the infinite sum f = f0 + f1 + · · · defines an element of k[[x1, . . . , xs]]
and φ(f) = w. Since w is arbitrary, φ is surjective.

Since the power series ring is Noetherian, so is the homomorphism image A. QED

3 Some results related to Gröbner basis

We think k has a discrete topology, and the k-algebra k[[U ]] =
∏

m∈U ke(m) has the
product topology. This topology is equal to that of the completion of k[U ] with respect
to the filtration {Id}.

For a subset E of k[[U ]], an element x =
∑

m∈U ame(m) is in the closure of E if
and only if there exists a sequence {yi} of elements of E such that the image of yd

to k[[U ]]/Id is equal to that of x for every d. This implies that a vector subspace
V ⊂ k[[U ]] is closed if and only if

V =
∞∩

d=0

(V + Id) .

For a vector subspace V ⊂ k[[U ]], we denote

L(V ) =
∞⊕

d=0

(V ∩ Id + Id+1)/Id+1 .

This is a vector subspace of k[U ].

Lemma 3.1 Let V1, V2 be vector subspaces of k[[U ]] with V1 ⊂ V2. Assume that V1

is closed. Then V1 = V2 if and only if L(V1) = L(V2).

Proof It is obvious that L(V1) = L(V2) if V1 = V2. Hence it suffices to show that
any element x ∈ V2 is in V1 if L(V1) = L(V2). For any d ≥ 0, we have

dimk(V1 + Id)/Id

=
d−1∑
i=0

dimk(V1 ∩ Ii + Ii+1)/Ii+1

=
d−1∑
i=0

dimk(V2 ∩ Ii + Ii+1)/Ii+1

= dimk(V2 + Id)/Id .

Since (V1 + Id)/Id ⊂ (V2 + Id)/Id, these vector spaces are equal. Hence x is in V1 + Id

for every d. This implies x ∈ V1 since V1 is closed. QED

The following proposition was used in Section 2.
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Proposition 3.2 The ring A ⊂ k[[U ]] is closed.

Proof Let x =
∑

m∈U ame(m) be an element of the closure of A. It suffices to show
that x is in A. For m ∈ U and γ ∈ Γ, let d = max{〈m,n0〉, 〈γ(m), n0〉} + 1. Since
x ∈ A + Id, there exists y ∈ A with x − y ∈ Id. This implies am = aγ(m) since the
coefficients of x and y are equal for every e(m′) with 〈m′, n0〉 ≤ d. Since m and γ are
arbitrary, x is an element of A. QED

Theorem 3.3 Any ideal of A is closed in k[[U ]]. In particular, ideals I1, I2 of A
with I1 ⊂ I2 are equal if and only if L(I1) = L(I2).

Proof Let I be an ideal of A. We may assume I 6= A. Since A is a complete
Noetherian local ring by Theorem 2.4, all ideals are closed in I(A)1-adic topology by
Artin-Rees’s lemma. Since the induced topology of A is I(A)1-admissible, it is equal
to the I(A)1-adic topology (see EGA I, Chap. 0, §7). Hence any ideal I of A is closed
in k[[U ]]. The second assertion follows from Lemma 3.1 since ideals are closed. QED
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