Classification of involutions on Enriques surfaces

Hiroki Ito (Nagoya University)

Terms

Involution

An automorphism of order 2 is called an involution.

Symplectic involution

An involution σ of a K3 surface X is called symplectic (resp. nonsymplectic) if $\sigma^*(\omega_X) = \omega_X$ (resp. $\sigma^*(\omega_X) = -\omega_X$), where ω_X is a non-vanishing 2-form on X.

Enriques surface

An Enriques surface Y is a compact complex surface satisfying the following conditions:

- (i) the geometric genus and the irregularity vanish,
- (ii) the bi-canonical divisor on Y is linearly equivalent to 0.

Every Enriques surface Y is the quotient of a K3 surface X by a fixed point free involution ε .

Result and How to prove

Theorem (Ito-Ohashi)

Lattice types of involutions on Enriques surfaces are classified into 18 types.

How to prove

Let ι be an involution on Y. We get two lifted involutions g and $g \circ \varepsilon (= \varepsilon \circ g)$ on X. Here g is a symplectic involution. Hence we just have to classify the pair (g, ε) .

The second cohomology group $L = H^2(X, \mathbb{Z})$ is equipped with lattice structure. By virtue of Torelli theorem, our problem is equivalent to the classification of the pair (g^*, ε^*) , where g^* and ε^* are involutions on L induced by g and ε respectively.

For our purpose, we use the theory of the classification of involu-

tions of a lattice with condition on a sublattice, due to Nikulin.

$$(Y,\iota) \ \xleftarrow{\quad \text{lift} \quad } \ (X,g,\varepsilon) \ \xleftarrow{\quad \text{cohomology rep.} \quad } \ (L,g^*,\varepsilon^*)$$

Nikulin's theory

Let S be a fixed lattice and θ an involution of S. Nikulin gave the determining condition of a triple (L, φ, i) with the condition (S, θ) satisfying the following commutative diagram:

$$\begin{array}{ccc}
L & \xrightarrow{\varphi} L \\
\downarrow i & & \downarrow i \\
S & \xrightarrow{\Theta} S
\end{array}$$

We identify $L = H^2(X, \mathbb{Z}), \ \varphi = \varepsilon^*, \ S = \{x \in L \mid g^*(x) = -x\} \simeq E_8(2)$ and $\theta = \varepsilon^*|_S$ to apply Nikulin's theory.

Related Topics

Involutions on K3 surfaces

Nikulin showed that finite symplectic automorphisms are determined by their order. Furthermore, he classified non-symplectic involutions into 75 types. Therefore involutions on K3 surfaces are classified into 76 types.

Numerically trivial involutions

Any involution f of a K3 surface X acts non-trivially on $H^2(X,\mathbb{Z})$. This is not true for an Enriques surface. Namely there exists an involution of an Enriques surface Y acting trivially on $H^2(Y,\mathbb{Q})$. Such an involution is called a numerically trivial involution. Mukai-Namikawa, Kondo and Mukai classified them into 3 types.

Examples

We also gave geometric realizations to all types. Most of them are by Horikawa construction.

Horikawa construction

Let ψ be an involution on $\mathbb{P}^1 \times \mathbb{P}^1$ given by $\psi \colon (u,v) \mapsto (-u,-v)$. Let *B* be a curve on $\mathbb{P}^1 \times \mathbb{P}^1$ with the following properties:

- (i) its bi-degree is (4,4) with at worst simple singularities,
- (ii) it is preserved under ψ ,
- (iii) it does not pass through any of fixed points of ψ .

Then the minimal resolution X of the double cover of $\mathbb{P}^1 \times \mathbb{P}^1$ branched along B is a K3 surface. Moreover, ψ lifts to two involutions of X. One of them is a fixed point free involution ε . Therefore $Y = X/\varepsilon$ is an Enriques surface. Another one induces an involution ι on Y.

$$B \subset \mathbb{P}^1 \times \mathbb{P}^1 \xleftarrow{\quad 2:1 \quad} R \xleftarrow{\quad \text{minimal} \quad} X \xrightarrow{\quad /\varepsilon \quad} Y$$

Examples

The column B stands for the branch locus stated above. The next column "fixed curve(s)" stands for the fixed curve(s) of ι in Y. Here

we denote by $C^{(m)}$ a non-singular curve of genus m. The last column T_X stands for the transcendental lattice of the covering K3surface generically.

No.	В	fixed curve(s)	T_X
[1]		$C^{(1)} + 4\mathbb{P}^1$	$U \oplus U(2)$
[2]		$4\mathbb{P}^1$	$U(2) \oplus U(2)$
[3]		$4\mathbb{P}^1$	$U(2) \oplus U(2)$
[4]		$C^{(1)} + 3\mathbb{P}^1$	$U \oplus U(2) \oplus A_1(2)$
[14]	2)(e)	$C^{(1)}$	$U \oplus U(2) \oplus A_1(2)^4$
[18]	M	$C^{(5)}$	$U \oplus U(2) \oplus E_8(2)$