On mixed Hodge structure of character varieties

Arata Komyo

Department of Mathematics, Graduate School of Science, Kobe University, D2

Abstract

In this poster, we study a variety, called character variety $\mathcal{M}_{B,\mathrm{GL}(n,\mathbb{C})}^{\mu,\lambda,g}$ whose points parametrize representation of the fundamental group of kpunctured Riemann surface of genus g into $\mathrm{GL}(n,\mathbb{C})$. In particular, we investigate the mixed Hodge structure of character varieties. There exists very interesting conjectures. For example,

Conjecture 1.2.1 of [1]

We have the following

(i) The compactly supported mixed Hodge polynomial $H_c^s(\mathcal{M}_{B,G(I), \mathbb{C}}; x, y, t)$ is a polynomial in xy and t, and is independent of the choice of generic eigenvalues of multiplicities μ . (ii) Moreover.

$$H_c^*(\mathcal{M}_{B,\mathrm{GL}(n,\mathbb{C})}^{\mu,\lambda,g};x,y,t) = (t\sqrt{q})^{\dim(\mathcal{M}_{B,\mathrm{GL}[n,\mathbb{C}]}^{\mu,\lambda,g})} \mathbb{H}_{\mu}(-\frac{1}{\sqrt{q}},t\sqrt{q}),$$

where q:=xy, and $\mathbb{H}_{m{\mu}}(z,w)$ is the rational function defined in [1]

Here

$$H_c^*(X; x, y, t) := \sum \dim_{\mathbb{C}} (\operatorname{Gr}_p^F \operatorname{Gr}_W^{p+q} H_c^j(X)^{\mathbb{C}}) x^p y^q t^j$$
.

Conjecture 1.2.1 (i) is true.

 λ -connection

Definition

Let Σ be a compact Riemann surface of genus a

We fix

- ullet k-distinct points p_1,\ldots,p_k in Σ ,
- A-distinct points p_1,\dots,p_k \dots .
 $\mu=(\mu^1,\dots,\mu^k)$, where $\mu^i=(\mu^i_1,\dots,\mu^i_{r_i})$ such that $\mu^i_1\geq \mu^i_2\geq \cdots$ are non-negative integers and $\sum_j \mu^i_j=n$ for each i,
- integers d, n with n > 0.

$$\Xi^{\mu,k}_{\mathrm{ll}}(d) := \left\{ \left(\lambda, (\xi^i_j)^{1 \leq i \leq k}_{1 \leq j \leq r_i} \right) \in \mathbb{C} \times \mathbb{C}^{\sum r_i} \left| \lambda d + \sum_{i,j} \mu^i_j \xi^i_j = 0 \right. \right\}$$

We take a member $(\lambda, \xi) \in \Xi_n^{\mu, k}(d)$, where $\xi = (\xi_i^i)_{1 \le i \le r}^{1 \le i \le k}$

Parabolic λ-connection -

We say $(E,\nabla,\{l_*^{[i]}\}_{1\leq i\leq k})$ a ξ -parabolic λ -connection of rank n and degree d of type μ if

(1) E is an algebraic vector bundle on Σ of rank n and degree d (2) $\nabla: E \to E \otimes \Omega^1_{\Sigma}(p_1 + \dots + p_k)$ is a λ -connection, that is, ∇ is a homomorphism of sheaves satisfying $\nabla(fa) = \lambda a \otimes df + f \nabla(a)$ for $f \in \mathcal{O}_{\Sigma}$ and $a \in E$, and

(3) for each p_i , $l_*^{(i)}$ is a filtration $E|_{p_i} = l_1^{(i)} \supset l_2^{(i)} \supset \cdots \supset l_{r_i}^{(i)} \supset l_{r_{i+1}}^{(i)} \supset l_{r_{i+1}}^{(i)} = 0$ such that $\dim(l_j^{(i)}/l_{j+1}^{(i)}) = \mu_j^i$ and $(\operatorname{Res}_{p_i}(\nabla) - \xi_j^i \operatorname{id}_{E|_{p_i}})(l_j^{(i)}) \subset l_{j+1}^{(i)}$ for $j = 1, ..., r_i$.

Moduli space

Moduli space -

There exists a relative coarse moduli scheme

$$\begin{split} \pi: \mathcal{M}^{\boldsymbol{\mu}, g, d}_{Hod, \operatorname{GL}(n, \mathbb{C})} &\longrightarrow \Xi^{\boldsymbol{\mu}, k}_n(d) \\ (E, \nabla, \{l_*^{(i)}\}_{1 \leq i \leq k}) &\mapsto (\lambda, \boldsymbol{\xi}) \end{split}$$

of α -stable ξ -parabolic λ -connections of rank r and degree d of type μ . Moreover, π is smooth and $\mathcal{M}^{\boldsymbol{\mu},g,d}_{Hod,\mathrm{GL}(n,\mathbb{C})}$ is nonsingular.

We denote the fiber of (λ, ξ) by $\mathcal{M}_{Hod, \mathrm{GL}(n, \mathbb{C})}^{\mu, \lambda, \xi, g, d}$. In particular, we put $\mathcal{M}_{DR,\mathrm{GL}(n,\mathbb{C})}^{\mu,\xi,g,d}$ and $\mathcal{M}_{Dol,\mathrm{GL}(n,\mathbb{C})}^{\mu,\xi,g,d}$ in the case of $\lambda=1$ and $\lambda=0$ respec-

Compactification of the moduli space

There exists a natural \mathbb{C}^{\times} -action on $\mathcal{M}^{\mu,g,d}_{Hod,\mathrm{GL}(n,\mathbb{C})}$.

$$t \cdot (E, \nabla, \{l_*^{(i)}\}) = (E, t \nabla, \{l_*^{(i)}\}).$$

The following \mathbb{C}^{\times} -action on $\Xi_n^{\mu, k}(d)$ is well-defined,

$$t \cdot (\lambda, \xi) = (t\lambda, t\xi).$$

 $\text{Then, } \pi: \mathcal{M}^{\mu,g,d}_{Hod,\operatorname{GL}(n,\mathbb{C})} \to \Xi^{\mu,k}_n(d) \text{ is a } \mathbb{C}^{\times}\text{-equivariant morphism}.$ Let \mathcal{M}' be the base change of $\mathcal{M}^{\mu,g,d}_{Hod,\mathrm{GL}(n,\mathbb{C})}$ via $\mathbb{C}\times\Xi^{\mu,k}_n(d)\to\Xi^{\mu,k}_n(d)$, given by $(x,(\lambda,\xi)) \mapsto (x\lambda,x\xi)$. Here the \mathbb{C}^{\times} -action on $\mathbb{C} \times \Xi_n^{\mu,k}(d)$ is given by $t \cdot (x, (\lambda, \xi)) = (tx, (\lambda, \xi))$. Then, the set $U \subset \mathcal{M}'$ of points $u \in U$ such that $\lim_{t\to\infty} t\cdot (E,\nabla,\{l_*^{(t)}\})$ does not exist is open, and there exists a geometric quotient $\overline{\mathcal{M}}:=U//\mathbb{C}^\times$ which is proper over $\Xi_n^{\mu,k}(d)$ via the induce map $\pi:\overline{\mathcal{M}}\to\Xi_n^{\mu,k}(d)$.

Theorem 1 -

The induce map $\bar{\pi}: \overline{M} \to \Xi_n^{\mu,k}(d)$ is topologically trivial. Moreover any two fibers of π have isomorphic cohomology, and the mixed Hodge structure of the cohomology is pure.

Sketch of proof.

$$\begin{array}{ccc} U/\mathbb{R}_+^\times & \stackrel{\text{(ii)}}{\longrightarrow} & \Xi_n^{\mu,k}(d) \\ & & & \parallel \\ \overline{\mathcal{M}} & & \frac{\overline{\pi}}{\longrightarrow} & \Xi_n^{\mu,k}(d), \end{array}$$

where (i) is a U(1)-bundle, and (ii) is topologically trivial. Then, we obtain π is topologically trivial. Note that

$$\overline{\mathcal{M}} \setminus \mathcal{M} = \{ \mathbb{C}^{\times}((E, \nabla, \{l_*^{(i)}\}), 0, (\lambda, \xi)) \mid \lim_{t \to \infty} t \cdot (E, \nabla, \{l_*^{(i)}\}) \text{ exists } \}$$

is trivial over $\Xi_n^{\mu,k}(d)$. Then we can show that any fibers of π have isomorphic cohomology; in particular, $H^*(\mathcal{M}^{\mu,\lambda}_{Hod,\mathrm{GL}(n,\mathbb{C})})\cong H^*(\mathcal{M}^{\mu,0,g,d}_{Dol,\mathrm{GL}(n,\mathbb{C})})$ for all $(\lambda, \xi) \in \Xi_n^{\mu, k}(d)$.

Since $\mathcal{M}^{H,0g,d}_{Dd(\mathrm{GL}[n,\mathbb{C}])}$ is a proper orbifold (in particular a rational homology manifold), its cohomology has pure mixed Hodge structure. By standard Morse theory arguments, $H^*(\mathcal{M}^{H,0g,d}_{Dd(\mathrm{GL}[n,\mathbb{C}])}) \to H^*(\mathcal{M}^{H,0g,d}_{Dd(\mathrm{GL}[n,\mathbb{C}])})$ is surjective. Thus, $H^*(\mathcal{M}_{Dol,\mathrm{GL}[n,\mathbb{C}]}^{\mu,0,g,d})$ also has pure mixed Hodge structure.

Character variety

We now construct a variety, called character variety, whose points we now Constitute a vary; character character variety, where permits parametrize representation of the fundamental group of k-punctured Riemann surface of genus g into $\mathrm{GL}(n,\mathbb{C})$ with prescribed images in semi-simple conjugacy classes $\mathcal{C}_1,\dots,\mathcal{C}_k$ at the puncture. Assume that

$$\prod_{i=1}^{k} \det C_i = 1$$

and that $(C_1, ..., C_k)$ has type $\mu = (\mu^1, ..., \mu^k)$; that is, C_i has type μ^i To each $i=1,\ldots,k$, where the type of a semi-simple conjugacy class $\mathcal{C}_i\subset \mathrm{GL}(n,\mathbb{C})$ is defined as the partition $\mu^i=[\mu^i_1,\ldots,\mu^i_{r_i}]$ describing the multiplicities of the eigenvalues of any matrix in \mathcal{C}_i .

Character Variety —

For a k-tuple of conjugacy classes $(\mathcal{C}_1, \ldots, \mathcal{C}_k)$ of type μ ,

$$\label{eq:update} \begin{split} \mathcal{U}^{\mu,\lambda,g}_{\mathrm{GL}[n,\mathbb{C}]} := & \{(A_1,B_1,\ldots,A_g,B_g,X_1,\ldots,X_k) \in \mathrm{GL}(n,\mathbb{C})^{2g} \times \prod_{i=1}^k \mathcal{C}_i \\ & | [A_1,B_1] \cdots [A_g,B_g]X_1 \cdots X_k = Id \}. \end{split}$$

We call the affine GIT quotient by conjugation

$$\mathcal{M}_{B,\operatorname{GL}(n,\mathbb{C})}^{\boldsymbol{\mu},\boldsymbol{\lambda},g}:=\mathcal{U}_{\operatorname{GL}(n,\mathbb{C})}^{\boldsymbol{\mu},\boldsymbol{\lambda},g}//\operatorname{PGL}(n,\mathbb{C})=\operatorname{Spec}(\mathbb{C}[\mathcal{U}_{\operatorname{GL}(n,\mathbb{C})}^{\boldsymbol{\mu},\boldsymbol{\lambda},g}]^{\operatorname{PGL}(n,\mathbb{C})})$$

a character variety of type μ .

If $(\mathcal{C}_1, \dots, \mathcal{C}_k)$ is a generic k-tuple of semi-simple conjugacy classes in $\mathrm{GL}(n,\mathbb{C})$ of type μ , then the quotient $\pi\mu: \mathcal{M}_{B,\mathrm{GL}(n,\mathbb{C})}^{\mu,\lambda,g} \to \mathcal{U}_{\mathrm{GL}(n,\mathbb{C})}^{\mu,\lambda,g}$ is a principal $\operatorname{PGL}(n,\mathbb{C})$ -bundle. Consequently, when nonempty, the affine variety $\mathcal{M}_{B,GL(n,\mathbb{C})}^{\mu,\lambda,g}$ is nonsingular.

Riemann-Hilbert correspondence

For each member $(E, \nabla, \{i_j^{(i)}\}) \in \mathcal{M}_{DR, \mathrm{GL}(n, \mathbb{C})}^{\mu, \xi, gd}$, $\mathrm{Ker}(\nabla^{an}|_{\Sigma_0})$ becomes a local system on Σ_0 , where ∇^{an} means the analytic connection corresponding to ∇ . The local system $\mathrm{Ker}(\nabla^{an}|_{\Sigma_0})$ corresponds to a representation of $\pi_1(\Sigma_0)$. Then, we obtain an analytic isomorphism,

$$\mathbf{RH}_{\boldsymbol{\xi}}: \mathcal{M}_{DR,\mathrm{GL}(n,\mathbb{C})}^{\boldsymbol{\mu},\boldsymbol{\xi},g,d} \to \mathcal{M}_{B,\mathrm{GL}(n,\mathbb{C})}^{\boldsymbol{\mu},\boldsymbol{\lambda},g,d},$$

where $\lambda^i_j=\exp(-2\pi\sqrt{-1}\xi^i_j)$ and we take ξ generic, that is, parabolic connections and local systems are irreducible.

We consider the family $\{\mathbf{R}\mathbf{H}_{\pmb{\xi}}\}$ over the locus of generic elements in $\Xi_n^{\mu,\lambda=1,\,k}(d)$, then we obtain the following theorem by Theorem 1,

Theorem 2 -

The mixed Hodge structure of the cohomology of $\mathcal{M}_{B,\mathrm{GL}(n,\mathbb{C})}^{\mu,\lambda,g}$ is independent of the choice of generic eigenvalues of multiplicities μ .

Mixed Hodge structure of character varieties

We consider the cohomology of $\mathcal{M}_{B,\operatorname{GL}(n,\mathbb{C})}^{\mu,\lambda,g}$. Since $\mathcal{M}_{B,\operatorname{GL}(n,\mathbb{C})}^{\mu,\lambda,g} \cong (\mathcal{M}_{B,\operatorname{GL}(n,\mathbb{C})}^{\mu,\lambda,g} \times (\mathbb{C}^{\times})^{2g})//\nu_{\tau}^{2g}$, where $\nu_n = \{(e^{2\pi}\sqrt{-1}d/n}I_n, e^{-2\pi}\sqrt{-1}d/n) \mid$ $d=1,\ldots,n$ we obtain that

$$H^*(\mathcal{M}^{\boldsymbol{\mu},\boldsymbol{\lambda},g}_{B,\mathrm{GL}(n,\mathbb{C})})\cong H^*(\mathcal{M}^{\boldsymbol{\mu},\boldsymbol{\lambda},g}_{B,\mathrm{SL}(n,\mathbb{C})})^{\nu_n^{2g}}\otimes H^*((\mathbb{C}^\times)^{2g}).$$

Construction of generators of $H^*(\mathcal{M}_{R}^{\mu,\lambda,g}|_{SL(n\mathbb{C})})^{\nu_n^{2g}}$

(I) $\operatorname{PGL}(n, \mathbb{C})$ -principal bundle on $\mathcal{M}_{B,\operatorname{SL}(n,\mathbb{C})}^{\mu,\lambda,g} \times \Sigma_0$:

$$\mathbb{U} := (\operatorname{PGL}(n, \mathbb{C}) \times \mathcal{U}_{\operatorname{SL}(n, \mathbb{C})}^{\boldsymbol{\mu}, \boldsymbol{\lambda}, g} \times \bar{\Sigma_0}) / (\pi_1(\Sigma_0) \times \operatorname{GL}(n, \mathbb{C})),$$

where $\bar{\Sigma_0}$ is the universal covering of Σ_0 and the action is $(p,g)\cdot (h,\rho,x)=(\bar{g}\rho(p)h,\bar{g}^{-1}\rho\bar{g},p\cdot x)$. The characteristic classes:

$$\bar{c}_i(\mathbb{U}) = \beta_i + \sum_{j=1}^{2g} \gamma_{i,j} e_j + \sum_{k=1}^n \delta_{i,k} f_k \ (i = 2, \dots, n),$$

 $\beta_i \in H^{2i}(\mathcal{M}_{B\,\operatorname{SL}(n,\mathbb{C})}^{\boldsymbol{\mu},\lambda,g}), \gamma_{i,j}, \delta_{i,k} \in H^{2i-1}(\mathcal{M}_{B,\operatorname{SL}(n,\mathbb{C})}^{\boldsymbol{\mu},\lambda,g}).$ (II) Let $b_i \in C^{2i-1}(G \times_G BG)$ be a singular cochain complex $(G = \operatorname{SL}(n,\mathbb{C}))$ such that $j^*(b_i) = 0$, where j is the inclusion $BG \to G \times_G EG$ as $\{e\} \times_G EG$, and generate the cohomology of the fibar G of filtration $G \times_G EG \to G$ as a ring. For

$$\Phi^G:G^{2g}\times\prod\mathcal{C}_l\to G$$

$$(A_1, B_1, \dots, A_g, B_g, X_1, \dots, X_k) \mapsto [A_1, B_1] \cdots [A_g, B_g] X_1 \cdots X_k,$$

we can show that $\Phi^{G^*}(b_i)=0$ in $H^{2i-1}_G(G^{2g}\times\prod_l \mathcal{C}_l)$. We take $a_i\in C^{2i-2}((G^{2g}\times\prod_l \mathcal{C}_l)\times_G EG)$ such that $da_i=\Phi^{G^*}(b_i)$. Then,

$$\alpha_i:=[a_i|_{\mathcal{U}_G^{\boldsymbol{\mu},\boldsymbol{\lambda},\boldsymbol{g}}}]\in H_G^{2i-2}(\mathcal{U}_G^{\boldsymbol{\mu},\boldsymbol{\lambda},\boldsymbol{g}})\cong H^{2i-2}(\mathcal{M}_{B,G}^{\boldsymbol{\mu},\boldsymbol{\lambda},\boldsymbol{g}}).$$

(III) We fix diagonal matrices D_1, \cdots, D_k in each conjugacy classes

$$GL(n, \mathbb{C})/H_l \rightarrow C_l; [g] \mapsto g^{-1}D_lg,$$

$$\begin{split} '\mathcal{U}_{\mathrm{SL}(n,\mathbb{C})}^{H,\lambda,g,l} := & \{(A_1,B_1,\ldots,A_g,B_g;X_1,\ldots,M_l,\ldots,X_k) \\ \in & \mathrm{SL}(n,\mathbb{C})^{2g} \times \Pi_{j=1}^{l-1}\mathcal{C}_j \times \mathrm{GL}(n,\mathbb{C}) \times \Pi_{j=l+1}^k\mathcal{C}_j \\ & | \prod_{i=1}^g (A_i,B_i)X_1\cdots M_l^{l-1}D_lM_l\cdots X_k = I_n \}. \end{split}$$

A natural map

$${}^{\prime}\mathcal{U}_{\mathrm{SL}(n,\mathbb{C})}^{\mu,\lambda,g,l} \to \mathcal{U}_{\mathrm{SL}(n,\mathbb{C})}^{\mu,\lambda,k}; \quad (\ldots,M_i,\ldots) \mapsto (\ldots,M_l^{-1}D_lM_l,\ldots).$$

We put ${}^{\prime}\mathcal{M}_{B,\mathrm{SL}(n,\mathbb{C})}^{\mu,\lambda,g,l}:={}^{\prime}\mathcal{U}_{\mathrm{SL}(n,\mathbb{C})}^{\mu,\lambda,g,l}//\mathrm{PGL}(n,\mathbb{C})$ by a natural $\mathrm{PGL}(n,\mathbb{C})$ action, which is a H_l principal bundle on $\mathcal{M}_{R \operatorname{SL}(n,\mathbb{C})}^{\mu,\lambda,g}$ we consider the classifying map,

$$\begin{array}{l} {}^{t}\mathcal{M}_{B,\operatorname{SL}(n,\mathbb{C})}^{h,\lambda,g,l} \\ \downarrow \\ \downarrow \\ \mathcal{M}_{B,\operatorname{SL}(n,\mathbb{C})}^{\mu,\lambda,g} \xrightarrow{f} BH_{l} \cong B\operatorname{GL}(\mu_{1}^{l},\mathbb{C}) \times \cdots \times B\operatorname{GL}(\mu_{r_{l}}^{l},\mathbb{C}). \end{array}$$

The characteristic classes

$$\epsilon_{k_1,...,k_{r_i}}^l := f^*(c_{k_1} \otimes \cdots \otimes c_{k_{r_i}}) \quad (0 \le k_j \le \mu_j^l),$$

where $c_{k_i} \in H^{2k_j}(BGL(\mu_i^l, \mathbb{C}))$ and $c_0 := 1$.

Theorem 3 -The classes $\alpha_i, \beta_i, \gamma_{i,j}$, and $\epsilon^l_{k_1,...,k_n}$ generate $H^*(\mathcal{M}_{B,\mathrm{SL}(n,\mathbb{C})}^{\mu,\lambda,g})^{\nu_n^{2g}}$

The generators α_i , β_i , $\gamma_{i,j}$ (resp. $\epsilon^l_{k_1,...,k_r}$) have homogeneous weight i(resp. $k_1 + \cdots + k_{r_1}$). On the other hand, generators of $H^*((\mathbb{C}^{\times})^{2g})$ have also homogeneous weight. Then,

Theore m 4 The cohomology of $\mathcal{M}_{B,\operatorname{GL}(n,\mathbb{C})}^{\mu,\lambda,k}$ i.e. $\dim_{\mathbb{C}}\operatorname{Gr}_F^p\operatorname{Gr}_{p+q}^WH^j(\mathcal{M}_{B,\operatorname{GL}(n,\mathbb{C})}^u)=0$ unless p=q.

References

- T. Hausel, E. Letellier, F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quive varieties, Duke Math. Journal, vol. 160 (2011) 323-400.
- [2] T. Hausel, F. Rodriguez-Villegas, Mized Hodge polynomials of character varieties, with an app by N. M. Katz, Invent. Math. 174 (2008), 555-624.