代数幾何学シンポジウム記録

2013年度 pp.158 158 On Blow-Analytic Equivalence of Plane Curves

Cristina Valle

Tokyo Metropolitan University

Motivation

What is a "good" equivalence choice for the classification of real singularities?

• \mathcal{C}^0 -equivalence is very weak,

• C^r -equivalence (r > 0) is too strict:

for example, the Whitney family

 $(\{xy(x-y)(x-\lambda y)=0\},0)$

generates a continuous $\mathcal{C}^1\text{-}\text{moduli}.$

Blow-analytic equivalence: stronger than \mathcal{C}^0 -equivalence, more flexible than analytic type classifications.

Blow-Analytic Invariants

 $({\cal C},0):$ a germ of a real plane curve with an isolated singularity at the origin.

• Take $\beta: X \to \mathbb{R}^2$, a resolution which is

-**simple**: composition of simple blow-ups,

-good: $\beta^{-1}(C)$ is simple normal crossing (components are smooth and meet transversally).

Notation:

o : odd except. curve,o : even except. curve,

 \times : non-compact comp.

• Construct the weighted dual graph Γ associated to X:

Г		X
vertex v_i	\longleftrightarrow	except. curve E_i
edge v_i - v_j	\longleftrightarrow	$E_i \cdot E_j = 1$
	$w(v_i) = E_i^2$	mod 2

Define:

A: the intersection matrix associated to Γ ,

i.e. $A = (a_{ij})$, where $a_{ii} = w(v_i)$ and $a_{ij} = E_i \cdot E_j \mod 2$.

 Δ : the minimal subtree connecting the non-compact components in $\varGamma.$

 Γ' : the subgraph of Γ spanned by the vertices not in Δ .

A': the intersection matrix associated to Γ' .

INVARIANTS:

Explicit Results

Theorem. [1] All unibranched germs of plane curves are blow-analytically equivalent to a line.

Theorem. [2] Bibranched germs of plane curves are blow-analytically equivalent in the level of the graph Γ if and only if they have the same μ' .

Theorem. [2] A germ of a tribranched plane curve with $\mu' = 0$ is blow-analytically equivalent to one of the following:

Definition

 $f: \mathbb{R}^2 \to \mathbb{R}$ is a **blow-analytic function** if there exists a composition of simple blow-ups $\beta = \beta_1 \circ \cdots \circ \beta_n : X \to \mathbb{R}^2$ such that $f \circ \beta$ is analytic. $h: \mathbb{R}^2 \to \mathbb{R}^2$ is a **blow-analytic homeomorphism** if h and h^{-1} have blow-analytic components.

Goal

Classify germs of plane real curves up to blow-analytic homeomorphism. Two plane curves (C, 0), (D, 0) are **blow-analytically equivalent** if there exists a blow-analytic homeomorphism $h : \mathbb{R}^2 \to \mathbb{R}^2$ that carries (C, 0) to (D, 0).

A Finite Classification

Main Theorem. [3] The number of blow-analytic equivalence classes of plane *n*-branched germs of curves with $\mu' = k$ is finite, for any n, k in \mathbb{N} .

The number of possible non-equivalent Γ can be easily estimated by means of graph theory. In the tribranched case this is lower or equal than

 $(k^3 - 2k^2 - k + 11)2^{k-2}$ $(\forall k \in \mathbb{N}).$

From Graphs to Germs

Dual graphs Γ carry less information than resolutions of singularities X.

In some cases, a graph corresponds to two or more blow-analytically distinct curve germs:

INVARIANT: Order of intersection of the demibranches with the boundary of the exceptional set.

We can obtain information about the blow-analytic type of a germ without having to resolve the singularity.

Proposition. A bibranched germ of plane curve is blow-analytically equivalent to $({xy = 0}, 0)$ if and only if the order of its demibranches is 1212.

Proposition. If an *n*-branched germ of plane curve has order of demibranches $12 \dots n12 \dots n$, then $\mu' = 0$.

Conjecture. An *n*-branched germ of plane curve is blow-analytically equivalent to

$$(\{\prod_{i=1}^{n} (x - \lambda_i y) = 0\}, 0) \qquad (\forall i \neq j, \ \lambda_i \neq \lambda_j)$$

if and only if the order of its demibranches is $12 \dots n12 \dots n$.

References

- M. Kobayashi, T-C. Kuo, On Blow-Analytic Equivalence of Embedded Curve Singularities. Proc. Jpn. Acad. 73, 97-99 (1997)
- [2] M. Kobayashi, On Blow-Analytic Equivalence of Branched Curves in \mathbb{R}^2 . (preprint)
- [3] C. Valle, On the Blow-analytic Equivalence of Tribranched Plane Curves. (preprint)