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1. Introduction

This article is devoted to virtual Hodge polynomials of the moduli
spaces of representations for free monoids. Especially, we deal with the
moduli spaces of representations with Borel mold and 2-dimensional
representations.

Let Γ be a monoid (or a group). Let k be a field. We say that
ρ : Γ → Mn(k) is an n-dimensional representation of Γ if ρ is a monoid
homomorphism. We can regard kn as a Γ-module by ρ.

Definition 1.1. We say that a representation ρ : Γ → Mn(k) is ir-
reducible if the Γ-module kn has no non-trivial Γ-invariant subspace.
We say that a representation ρ : Γ → Mn(k) is absolutely irreducible if

Γ
ρ→ Mn(k) → Mn(k) is irreducible, where k is an algebraic closure of

k.

The following theorem gives us a characterization of absolutely irre-
ducible representations.

Theorem 1.2. For a representation ρ : Γ → Mn(k), ρ is absolutely
irreducible if and only if the subalgebra k[ρ(Γ)] ⊆ Mn(k) generated by
ρ(Γ) is equal to Mn(k).

Definition 1.3. For representations ρ1, ρ2 : Γ → Mn(k), we say that ρ1
and ρ2 are equivalent if there exists P ∈ GLn(k) such that P−1ρ1(γ)P =
ρ2(γ) for each γ ∈ Γ.

Definition 1.4. Let ρ1, ρ2 : Γ → Mn(k) be representations. Let Mρ1

and Mρ2 be the Γ-modules induced by ρ1 and ρ2, respectively. Suppose
that

Mρ1 = V1 ⊃ V2 ⊃ V3 ⊃ · · · ⊃ Vs = 0
Mρ2 = W1 ⊃ W2 ⊃ W3 ⊃ · · · ⊃ Wt = 0

are sequences of Γ-invariant subspaces such that Vi/Vi+1 and Wj/Wj+1

are irreducible for each i, j. We say that ρ1 and ρ2 are S-equivalent if
s = t and there exists σ ∈ Ss−1 such that Vi/Vi+1

∼= Wσ(i)/Wσ(i)+1 for
each i.
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Our main goal is the following:

Goal : Construct the moduli of equivalence classes of
representations of Γ.

However, by ordinal methods we can only construct the moduli of
S-equivalence classes of representations. We can not construct the mod-
uli of equivalence classes of representations. Hence we introduce a new
notion for constructing the moduli of equivalence classes of represen-
tations.

Definition 1.5. Let A,B ⊆ Mn(k) be k-subalgebras. We say that A
and B are equivalent if there exists P ∈ GLn(k) such that P−1AP = B.

Fix a subalgebra A ⊆ Mn(k). We regard the fixed subalgebra A
as a mold, molding, or Igata ( 鋳型 ) for constructing the moduli of
equivalence classes of representations.

Igata (mold) Program : Construct the moduli of
equivalence classes of representations ρ of Γ such that

k[ρ(Γ)] is equivalent to the fixed subalgebra A.

2. Representations on schemes

For constructing the moduli of representations, we need to define
representations on schemes.

Definition 2.1. Let X be a scheme. By a monoid homomorphism
ρ : Γ → Mn(Γ(X,OX)), we understand a representation of Γ on X.

Proposition 2.2. The following contravariant functor

Repn(Γ) : (Sch)op → (Sets)
X 7→ {ρ : n-dim rep. of Γ on X }

is representable by an affine scheme over Z.

Proof. Let us consider the polynomial ring P := Z[aij(γ) | 1 ≤
i, j ≤ n, γ ∈ Γ], where each aij(γ) is an indeterminate. Set σ(γ) :=
(aij(γ))i,j ∈ Mn(P ). Put An(Γ) := P/I(Γ), where I(Γ) is the ideal of
P generated by all entries of σ(γ)σ(δ) − σ(γδ) and σ(e) − In for all
γ, δ ∈ Γ. Then SpecAn(Γ) represents the functor Repn(Γ). �

The group scheme PGLn over Z acts on Repn(Γ) by ρ 7→ P−1ρP for
ρ ∈ Repn(Γ) and P ∈ PGLn.
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Definition 2.3. Let ρ : Γ → Mn(Γ(X,OX)) be a representation of Γ
on X. We say that ρ is absolutely irreducible if for each x ∈ X the

induced representation Γ
ρ→ Mn(Γ(X,OX)) → M(k(x)) is absolutely

irreducible, where k(x) is the residue field of x. It is equivalent to that
the subsheaf OX [ρ(Γ)] of OX-algebras generated by ρ(Γ) is equal to
Mn(OX).

Definition 2.4.

Repn(Γ)air := { n-dim absolutely irreducible rep. of Γ }
Note that Repn(Γ)air is an PGLn-invariant open subscheme of Repn(Γ).

Definition 2.5. Let ρ1, ρ2 be n-dimensional representations of Γ on a
scheme X. We say that ρ1 and ρ2 are locally equivalent (or ρ1 ∼ ρ2)
if there exist open covering X = ∪i∈IUi and Pi ∈ GLn(OX(Ui)) such
that P−1

i ρ1(γ)Pi = ρ2(γ) on Ui for each γ ∈ Γ and i ∈ I.

Theorem 2.6 (· · · , K.Saito [11], N- [4] ). There exists a universal
geometric quotient

Chn(Γ)air := Repn(Γ)air/PGLn

for arbitrary monoid (or group) Γ. The quotient Repn(Γ)air → Chn(Γ)air
is a PGLn-fibre bundle. Moreover, Chn(Γ)air is the coarse moduli scheme
over Z associated to the contravariant functor

EqAIRn(Γ) : (Sch)op → (Sets)
X 7→ { n-dim. abs. irr. rep. of Γ on X}/ ∼ .

In other words, there exists a natural transformation τ : EqAIRn(Γ) →
hChn(Γ)air satisfying the following two conditions:

(i) For any scheme Z, τ induces the following isomorphism

τ : Hom(EqAIRn(Γ), hZ) ∼= Hom(hChn(Γ)air , hZ).

(ii) For any algebraically closed field Ω, the morphism

τ : EqAIRn(Γ)(Ω) → hChn(Γ)air(Ω)

is bijective.

Here we denote Hom(−, Z) by hZ for a scheme Z.

3. Borel mold

We construct several moduli spaces of representations by using the
notion of molds on schemes. More precisely, see [5], [7], [8], and [9].

Definition 3.1. Let A ⊆ Mn(OX) be a subsheaf of OX-algebras on a
scheme X. We say that A is a mold (or Igata) if A and Mn(OX)/A
are locally free sheaves on X.
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Definition 3.2. Let A,B ⊆ Mn(OX) be molds on X. We say that A
and B are locally equivalent if there exist open covering X = ∪i∈IUi

and Pi ∈ GLn(OX(Ui)) such that P−1
i · A|Ui

· Pi = B|Ui
for each i ∈ I.

Definition 3.3. Let ρ be a representation of Γ on X. We say that ρ
has a mold A if A = OX [ρ(Γ)].

Borel mold is a typical example. The moduli of representations with
Borel mold can be described by configuration spaces.

Definition 3.4. Let Bn :=




∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
. . . . . .

...
0 0 0 · · · ∗


 ⊂ Mn(Z) be

the mold which consists of upper triangular matrices on SpecZ. For a
mold A on X, we say that A is a Borel mold on X if A and Bn ⊗Z OX

are locally equivalent on X.

Let Repn(Γ)B := { n-dim rep. with Borel mold of Γ }. Note that
Repn(Γ)B is a PGLn-invariant subscheme of Repn(Γ).

Theorem 3.5 (N- [5]). There exists a universal geometric quotient

Chn(Γ)B := Repn(Γ)B/PGLn

for arbitrary monoid (or group) Γ. The quotient Repn(Γ)B → Chn(Γ)B
is a PGLn-fibre bundle which has locally trivialization with respect to
Zariski topology. Moreover, Chn(Γ)B is the fine moduli scheme over Z
associated to the sheafification (with respect to Zariski topology) of the
contravariant functor

EqBn(Γ) : (Sch)op → (Sets)

X 7→
{

n-dimensional representation
with Borel mold of Γ on X

}/
∼ .

Remark 3.6. By a generalized representation with Borel mold of de-
gree n on a scheme X, we understand pairs {(Ui, ρi)}i∈I of an open
set Ui and a representation with Borel mold ρi : Γ → Mn(Γ(Ui,OX))
such that X = ∪i∈IUi and for each i, j ∈ I, ρi and ρj are locally
equivalent on Ui ∩ Uj. We say that generalized representations with
Borel mold {(Ui, ρi)}i∈I and {(Vj, ρj)}j∈J are equivalent if {(Ui, ρi)}i∈I∪
{(Vj, ρj)}j∈J is a generalized representations with Borel mold again.
For any scheme X, EqBn(Γ)(X)(= hChn(Γ)B(X)) is equal to the set of
equivalence classes of generalized representations of degree n on X.
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Let Γm := ⟨α1, α2, . . . , αm⟩ be the free monoid of rank m. Put
Repn(m)B := Repn(Γm)B and Chn(m)B := Chn(Γm)B. Denote by
Repn(m)B(C) and Chn(m)B(C) the sets of C-valued points of Repn(m)B
and Chn(m)B, respectively.

Remark 3.7 ([7]). Let us consider the case n = 1 or the case n ≥ 2 and
m ≥ 2. Then Repn(m)B(C) and Chn(m)B(C) are non-empty connected
complex smooth manifolds. There exist fibre bundle structures

YR → Repn(m)B(C) → Fn(Cm)
YC → Chn(m)B(C) → Fn(Cm)

with fibers YR and YC
∼= (CPm−2)n−1 × Cm(n−1)(n−2)/2 ≃ (CPm−2)n−1.

Here Fn(Cm) := {(p1, p2, . . . , pn) | pi are n-distinct points of Cm}. The
smooth algebraic variety YR also has a fibre bundle structure

YB → YR → Flag(Cn)

with fibre YB
∼= (Cm − C1)n−1 × Cm(n−1)(n−2)/2 ≃ (S2m−3)n−1, where

Flag(Cn) is the flag variety which consists of complete flags in Cn.

We can determine not homotopy types, but rational homotopy types
of Repn(m)B(C) and Chn(m)B(C).

Theorem 3.8 (Torii [8]). Repn(m)B(C) and Chn(m)B(C) are ratio-
nally homotopy equivalent to Fn(Cm) × YR and Fn(Cm) × YC, respec-
tively. Moreover, the Sullivan’s minimal models M(Repn(m)B(C)) and
M(Chn(m)B(C)) with mixed Hodge structure are equivalent to the ten-
sor products of M(Fn(Cm))⊗M(YR) and M(Fn(Cm))⊗M(YC), re-
spectively.

Let X be a smooth complex algebraic variety. Let ap,q(Hm(X;Q))
be the dimension of the (p, q)-component of the pure Hodge structure
GrWp+q(H

m(X;Q)) of weight p+q. Set hp,q :=
∑

m(−1)map,q(Hm(X;Q)).
The virtual Hodge polynomial of X is defined by

VHP(X) :=
∑
p,q

hp,qxpyq.

Let VHPc(X) be the virtual Hodge polynomial of X based on compact
support cohomology. If dimX = m, then

VHP(X)(x, y) = (xy)mVHPc(X)(x−1, y−1).
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Theorem 3.9 (Torii and N- [7], [8]). For simplicity, z = xy.

VHPc(Repn(m)B(C)) =

zm(n−1)(n−2)/2(zm − z)n−1
∏n−1

k=0(z
m − k)

∏n
k=1(z

k − 1)

(z − 1)n
.

VHPc(Chn(m)B(C)) =

z(m−1)(n−1)(n−2)/2(zm−1 − 1)n−1
∏n−1

k=0(z
m − k)

(z − 1)n−1
.

Remark 3.10. Let X be a separated scheme of finite type over Z. If
there exists P (t) ∈ Z[t] such that |X(Fq)| = P (q) for all finite fields
Fq, then VHPc(X) = P (z), where z = xy. For details, see [1, §6].

The next theorem can be obtained independently from the result on
virtual Hodge polynomials. By counting rational points directly we
can obtain the following:

Theorem 3.11 (Torii and N- [10]).

|Repn(m)B(Fq))| =
qm(n−1)(n−2)/2(qm − q)n−1

∏n−1
k=0(q

m − k)
∏n

k=1(q
k − 1)

(q − 1)n
.

|Chn(m)B(Fq))| =
q(m−1)(n−1)(n−2)/2(qm−1 − 1)n−1

∏n−1
k=0(q

m − k)

(q − 1)n−1
.

4. The degree 2 case

This section is devoted to the moduli of representations of degree
2. For details, see [9] and [10]. Recall that k-subalgebras A and B of
Mn(k) are equivalent if there exists P ∈ GLn(k) such that P−1AP = B.

Proposition 4.1. Let k = k. Let A ⊆ M2(k) be a k-subalgebra. Then
A is equivalent to one of the following:

(i) M2(k)

(ii) B2(k) =

{(
∗ ∗
0 ∗

)}
Borel mold

(iii) D2(k) =

{(
∗ 0
0 ∗

)}
semi-simple mold

(iv) U2(k) =

{(
a b
0 a

)
| a, b ∈ k

}
unipotent mold
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(v) k · I2 =
{(

a 0
0 a

)
| a ∈ k

}
scalar mold

In the cases (i) A = M2(k) and (ii) A = B2(k), we have constructed
the moduli of equivalence classes of representations with mold A in
the previous section. In the case (ii) A = B2(k), we have computed
the virtual Hodge polynomials of the moduli of equivalence classes of
representations with mold A for free monoids. In this section, we deal
with another molds of degree 2.

4.1. Semi-simple mold.

Definition 4.2. Let ρ be a 2-dimensional representation of Γ on X.
We say that ρ is a representation with semi-simple mold if OX [ρ(Γ)] is
a rank 2 mold on X and for each x ∈ X there exists γ ∈ Γ such that
tr(ρ(γ))2 − 4 det(ρ(γ)) ̸= 0 in the residue field k(x) of x.

Definition 4.3. For a monoid (or group) Γ, we define Rep2(Γ)s.s. :=
{ 2-dim rep. with semi-simple mold of Γ }. Note that Rep2(Γ)s.s. is a
PGL2-invariant subscheme of Rep2(Γ).

Theorem 4.4 (N- [9]). There exists a universal geometric quotient

Ch2(Γ)s.s. := Rep2(Γ)s.s./PGL2

for arbitrary monoid (or group) Γ. Moreover, Ch2(Γ)s.s. is the fine
moduli scheme over Z associated to the sheafification (with respect to
Zariski topology) of the contravariant functor

EqSS2(Γ) : (Sch)op → (Sets)

X 7→
{

2-dim. rep. with semi-simple
mold of Γ on X

}/
∼ .

Theorem 4.5 (Torii and N- [10]). For simplicity, z = xy. For free
monoids Γ = Γm,

VHPc(Rep2(m)s.s.(C)) = zm+2(zm − 1)

VHPc(Ch2(m)s.s.(C)) = zm(zm − 1).

Theorem 4.6 (Torii and N- [10]).

|Rep2(m)s.s.(Fq)| = qm+2(qm − 1)

|Ch2(m)s.s.(Fq)| = qm(qm − 1).
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4.2. Unipotent mold of ch ̸= 2. We need to divide (iv) unipotent
molds into two cases. One is the case ch ̸= 2, and another is the
case ch = 2. One of the reasons why we need to consider two cases
is that we can construct “good” moduli spaces of representations with
unipotent mold by dividing two cases. By constructing “good” moduli
spaces, we understand constructing smooth moduli spaces at least for
free monoids.

Definition 4.7. Let ρ be a 2-dimensional representation of Γ on a
scheme X over Z[1/2]. We say that ρ is a representation with unipotent
mold if OX [ρ(Γ)] is a rank 2 mold on X and tr(ρ(γ))2−4 det(ρ(γ)) = 0
for each γ ∈ Γ.

Definition 4.8. Rep2(Γ)u := { 2-dim rep. with unipotent mold of Γ }.
Note that Rep2(Γ)u is a PGL2⊗Z[1/2]-invariant subscheme of Rep2(Γ)⊗
Z[1/2].

Theorem 4.9 (N- [9]). There exists a universal geometric quotient

Ch2(Γ)u := Rep2(Γ)u/(PGL2 ⊗ Z[1/2])

for arbitrary monoid (or group) Γ. Moreover, Ch2(Γ)u is the fine mod-
uli scheme over Z[1/2] associated to the sheafification (with respect to
Zariski topology) of the contravariant functor

EqU2(Γ) : (Sch/Z[1/2])op → (Sets)
X 7→ { rep. with unip. mold on X}/ ∼ .

Theorem 4.10 (Torii and N- [10]). For simplicity, z = xy. For free
monoids Γ = Γm,

VHPc(Rep2(m)u(C)) = zm(z + 1)(zm − 1)

VHPc(Ch2(m)u(C)) =
zm(zm − 1)

z − 1
.

Theorem 4.11 (Torii and N- [10]). If 2 does not divide q, then

|Rep2(m)u(Fq)| = qm(q + 1)(qm − 1)

|Ch2(m)u(Fq)| =
qm(qm − 1)

q − 1
.

4.3. Unipotent mold of ch = 2.

Definition 4.12. Let X be a scheme over F2. Let ρ be a 2-dimensional
representation of Γ on X. We say that ρ is a representation with unipo-
tent mold over F2 if OX [ρ(Γ)] is a rank 2 mold on X and tr(ρ(γ)) = 0
for each γ ∈ Γ.
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Definition 4.13. For a monoid (or group) Γ, we define Rep2(Γ)u/F2 :=
{ 2-dim rep. with unipotent mold over F2 of Γ }. We see that
Rep2(Γ)u/F2 is a PGL2 ⊗ F2-invariant subscheme of Rep2(Γ)⊗ F2.

Theorem 4.14 (N- [9]). There exists a universal geometric quotient

Ch2(Γ)u/F2 := Rep2(Γ)u/F2/(PGL2 ⊗ F2)

for arbitrary monoid (or group) Γ. Moreover, Ch2(Γ)u/F2 is the fine
moduli scheme over F2 associated to the sheafification (with respect to
Zariski topology) of the contravariant functor

EqU2/F2
(Γ) : (Sch/F2)

op → (Sets)

X 7→
{

rep. with unip. mold
over F2 on X

}/
∼ .

Theorem 4.15 (Torii and N- [10]). If 2 divides q, then

|Rep2(m)u/F2(Fq)| = qm(q + 1)(qm − 1)

|(Ch2(m)u/F2(Fq)| =
qm(qm − 1)

q − 1
.

Remark 4.16. As in Remark 3.6, we can define 2-dimensional gen-
eralized representations with semi-simple mold (unipotent mold, or
unipotent mold over F2) of Γ on a scheme X over Z (over Z[1/2]
or F2, respectively). We can also define equivalence classes of gen-
eralized representations with given mold. We see that EqSS2(Γ)(X),
EqU2(Γ)(X), and EqU2/F2

(Γ)(X) are the set of equivalence classes
of generalized representations with the corresponding mold of Γ on
X. Then Ch2(Γ)s.s., Ch2(Γ)u, and Ch2(Γ)u/F2 represent EqSS2(Γ),
EqU2(Γ), and EqU2/F2

(Γ), respectively.

4.4. Scalar mold. For scalar mold, we see that

Rep2(Γ)sc = Ch2(Γ)sc = Rep1(Γ) (= Ch1(Γ) := Rep1(Γ)//PGL1)

for arbitrary Γ. For Γ = Γm, we have

VHPc(Rep2(m)sc(C)) = VHPc(Ch2(m)sc(C)) = zm

|Rep2(m)sc(Fq)| = |Ch2(m)sc(Fq)| = qm.

4.5. Absolutely irreducible representations. Note that

M2(Fq)
m =

⨿
∗=sc,ss,u,B,air

Rep2(m)∗(Fq).

Hence

|Rep2(m)air(Fq)| = q4m −
∑

∗=sc,ss,u,B

|Rep2(m)∗(Fq)|.
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Theorem 4.17 (Torii and N- [10]). For simplicity, z = xy. For Γ =
Γm,

VHPc(Rep2(m)air(C)) = z2m+1(zm − 1)(zm−1 − 1),

VHPc(Ch2(m)air(C)) =
z2m(zm − 1)(zm−1 − 1)

z2 − 1
.

Theorem 4.18 (Torii and N- [10]).

|Rep2(m)air(Fq))| = q2m+1(qm − 1)(qm−1 − 1),

|Ch2(m)air(Fq))| =
q2m(qm − 1)(qm−1 − 1)

q2 − 1
.

Corollary 4.19. The number of equivalence classes of 2-dimensional
absolutely irreducible representations over Fq of the free algebra
Fq⟨X1, X2, . . . , Xm⟩ is

q2m(qm − 1)(qm−1 − 1)

q2 − 1
.

Remark 4.20. These results are compatible with Hua’s result on the
number of absolutely indecomposable representations of quivers over
Fq. Let Sm be the quiver with one vertex and m edge loops. Let
AIDSm(n, q) be the number of isomorphism classes of n-dimensional
absolutely indecomposable representations of Sm over Fq. By [2, The-
orem 4.6], we have

AIDSm(2, q) =
q2m−1(q2m − 1)

q2 − 1
.

This number is equal to

|Ch2(m)air(Fq)|+ |Ch2(m)B(Fq)|+ |Ch2(m)u(Fq)|.

Remark 4.21. Let An(Γ) be the affine ring of Repn(Γ) (cf. Proposi-
tion 2.2). Let An(Γ)

PGLn be the PGLn-invariant ring of An(Γ). We set
Chn(Γ) := SpecAn(Γ)

PGLn . For Γ = Γm and n = 2, we have

|Ch2(m)(Fq)| = |Ch2(m)air(Fq)|+ |Ch2(m)s.s.(Fq)|+ |Ch2(m)sc(Fq)|

=
q2m+2(q2m−3 − qm−2 − qm−3 + 1)

q2 − 1

by considering closed PGL2-orbits of Rep2(m).
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The Weil zeta functions of Rep2(m)air and Ch2(m)air are

Z(Rep2(m)air, q, t) := exp(
∞∑
n=1

|Rep2(m)air(Fqn)|
n

tn)

=
(1− q3m+1t)(1− q3mt)

(1− q4mt)(1− q2m+1t)
,

Z(Ch2(m)air, q, t) := exp(
∞∑
n=1

|Ch2(m)air(Fqn)|
n

tn)

=

[m
2
]∏

i=1

(1− q2m+2i−2t)

[m
2
]∏

i=1

(1− q4m−2i−1t)

.

The Hasse-Weil zeta functions of Rep2(m)air and Ch2(m)air are

ζ(Rep2(m)air, s) :=
∏
p

Z(Rep2(m)air, p, p
−s)

=
ζ(s− 4m)ζ(s− 2m− 1)

ζ(s− 3m− 1)ζ(s− 3m)
,

ζ(Ch2(m)air, s) :=
∏
p

Z(Ch2(m)air, p, p
−s)

=

[m
2
]∏

i=1

ζ(s− 4m+ 2i+ 1)

[m
2
]∏

i=1

ζ(s− 2m− 2i+ 2)

,

where ζ(s) is the Riemann zeta function.
The completions of these zeta functions are defined as

ζ̂(Rep2(m)air, s) :=
ζ̂(s− 4m)ζ̂(s− 2m− 1)

ζ̂(s− 3m− 1)ζ̂(s− 3m)
,

ζ̂(Ch2(m)air, s) :=

[m
2
]∏

i=1

ζ̂(s− 4m+ 2i+ 1)

[m
2
]∏

i=1

ζ̂(s− 2m− 2i+ 2)

,

-155-

11



where ζ̂(s) := π−s/2Γ(s/2)ζ(s) is the completion of the Riemann zeta

function. Since ζ̂(1−s) = ζ̂(s), the following functional equations hold:

ζ̂(Rep2(m)air, 6m+ 2− s) = ζ̂(Rep2(m)air, s)

ζ̂(Ch2(m)air, 6m− 2− s) = ζ̂(Ch2(m)air, s)
−1.

Remark 4.22. In the degree 3 case, there exist 26 types of equivalence
classes of k-subalgebras of M3(k) for algebraically closed fields k. We
will discuss this topic in another paper.

In the degree ≥ 4 case, there are special types of irreducible represen-
tations, which is called “thick” and “dense”. The moduli of equivalence
classes of absolutely thick representations (or absolutely dense repre-
sentations) are open subschemes of Chn(Γ)air. In [6], Omoda classified
thick (or dense) finite dimensional representations of complex simple
Lie groups. It is very interesting to describe the moduli spaces of non-
thick absolutely irreducible representations for a given groups, which
we will discuss in the future.
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