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1. Introduction

We let B be a curve (i.e., a compact Riemann surface) of genus g = g(B), and S ⊂ B

a finite set of points with s = #S. A family of varieties f : X → B, where X is smooth

projective, is said to be isotrivial, if general fibers are isomorphic. We say f : X → B is

admissible over (B, S), if f is smooth over B \ S and non-isotrivial. We are interested

in the case when general fibers F are canonically polarized i.e. KF ample, with a Hilbert

polynomial h i.e. h(m) = χ(F,mKF ) =
∑n

i=0 h
i(F,mKF ), where n = dimF . Our main

result is the following

Theorem 1.1. For a given (B, S) and a Hilbert polynomial h as above, there exist effective

positive integers N = N(g, s, h) and d = d(g, s, h) depending only on g, s and h with the

following properties. For any admissible family f : X → B over (B, S) of canonically

polarized manifolds with Hilbert polynomial h, there exists a rational map Φ : X 99K PN ,

which is birational onto its image and gives a regular embedding on X \ f−1(S), such that

the degree of the image of X is bounded by d, i.e., deg Φ(X) ≤ d.

A crucial point is the upper bound of the degree deg Φ(X) ≤ d, which will lead a

finiteness/boundedness of some families of varieties, as is generally known. In the case

g ≥ 2, one can take Φ to be a pluricanonical map Φ|m0KX | with m0 = O(n3) depending

only on n = dimF . As we will explain, this Φ is given by a linear system of adjoint type

related to relative pluri-canonical divisors in general.

As an application of this effective birationality, we can obtain an effective version of the

so-called Shafarevich type conjecture, which is the main motivation of 1.1. By a technical

reason, we suppose S = ∅ in the following theorem, although we still use the symbol S.

Theorem 1.2. Let B and S be as above (but, read S = ∅ and s = 0).

(1) For a given Hilbert polynomial h, there exist an effective positive number C(g, s, h)

depending only on g, s and h, such that the number of deformation types, of all admissible

family f : X → B over (B, S) of canonically polarized manifolds with Hilbert polynomial

h, is bounded from above by C(g, s, h).
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(2) For a given positive integer v, there exist an effective positive number C(g, s, n, v)

depending only on g, s, n and v, such that the number of deformation types, of all admis-

sible family f : X → B over (B,S) of n-dimensional canonically polarized manifolds with

canonical volume Kn
F = v, is bounded from above by C(g, s, n, v).

As h(x) = (v/n!)xn+ (lower order terms), (2) clearly implies (1). However if we look at

the estimates of N(g, s, h) and d(g, s, h) in 1.1 carefully how the estimates depend on h,

we can see an estimate of the leading term of h (the volume v = Kn
F ) is enough, and we

can obtain (2) from (1). See §3 for some general effective bounds on Hilbert polynomials.

To obtain 1.2 from 1.1, we adapt an effective result of the complexity bound of Chow

varieties due to Catanese [Cat92], Kollár [Kol96], Tsai, ..., it states that the number of

irreducible components of Chowk,δ(PN) (the parameter space of effective k-dimensional

cycles of degree δ in PN) is bounded by an effective number C(N, k, δ).

In this notes, we do not try to give effective numbers explicitly, because these numbers

can be huge in general, and as combinations of these numbers, the final estimate becomes

messy. For example, the complexity bound of Chowk,δ(PN) mentioned above is like

C(N, k, δ) =

(
(N + 1)δ

N

)(N+1)(δ(δ+k−1
k )+(δ+k−1

k−1 ))
,

where
(
a
b

)
is a binomial coefficient.

I would like to thank the organizers for a kind invitation to Kinosaki symposium. This

is a joint work with Gordon Heier.

2. Effective Birationality

We shall prove 1.1. We explain how to obtain the map Φ in §2.1, and the degree bound

degΦ(X) ≤ d in §2.2.

2.1. Birationality. We use the following set up.

Setup 2.1. Let f : X → B be any admissible family over (B, S) of canonically polarized

n-folds with Hilbert polynomial h. We take a positive integer m0 = O(n3) so that |m0KF |
is very ample for any smooth fiber F (this is Angehrn=Siu’s bound [AS95]), and an ample

divisor A on B with degA = a ≥ 2. We let

L = f ∗(KB + A) +m0KX/B,

E = f∗OX(L) = OB(KB + A)⊗ f∗OX(m0KX/B).

Both L and E are “adjoint type”. We note that E is a vector bundle of rank r := h(m0).

We let π : P(E) → B be the Pr−1-bundle associated to E, O(1) the universal quotient

line bundle for π, and H a divisor on P(E) with OP(E)(H) = O(1). □

We also use the following notations. Let ωB = OB(KB), ω
m0

X/B = OX(m0KX/B), A =

OB(A),L = OX(L). We denote, as usual, by Φ|L| : X 99K PN0 the rational map associated

to the complete linear system |L|, and by Φ|L|(X) the closure Φ|L|(X \ Bs |L|) ⊂ PN0 ,

where Bs |L| is the base locus of the linear system.

-128-

2



We will use the following fundamental facts.

Fact 2.2. (1) f∗OX(m0KX/B) is ample (it is nef in general over curves), due to Kawamata

[Kaw82], Viehweg, Kollár, . . ., because of the ampleness of KF and the non-isotriviality

of f .

(2) rank f∗OX(m0KX/B) = h0(F,m0KF ) = h(m0).

(3) deg f∗OX(m0KX/B) ≤ δ(g, s, h,m0). Here, for every integer m ≥ 2, we set

δ(g, s, h,m) = (n(2g − 2 + s) + s) ·m · (mnKn
F + 1) · h(m).

This is an essential term in our effective estimate, and comes from a theorem of Bedulev-

Viehweg [BV00, 1.4(c)]. We note that 2g − 2 + s > 0 by [BV00, 1.4(a)]. □

We shall denote vaguely various effective positive integers depending only on g, s and

h by N(g, s, h), d(g, s, h), C(g, s, h) for example. Because of m0 = O(n3) and n = deg h,

we can regard “δ(g, s, h,m0) = δ(g, s, h)”.

The next proposition gives a more explicit form of 1.1. In the case g ≥ 2, we can take

A = (m0−1)KB above, then L = m0KX and Φ|L| is the m0-th pluricanonical map. Hence

if we put a = (m0 − 1)(2g− 2), we have the bounds with respect to Φ|m0KX |. In any case,

every smooth fiber F is embedded by |m0KF |.

Proposition 2.3. In Setup 2.1, one has:

(1) h0(X,L) = h0(P(E),O(1)), and N0 := h0(X,L)− 1 ≤ N(g, s, h).

(2) Φ|L| : X 99K PN0 gives an embedding on X \ f−1(S).

(3) Φ|H| : P(E) → PN0 gives an embedding.

(4) The natural homomorphism π∗E → L is surjective on X \ f−1(S), and the induced

rational map φ0 : X 99K P(E) gives an embedding on X \ f−1(S) with Φ|L| = Φ|H| ◦ φ0.

(5) degΦ|L|(X) ≤ d(g, s, h).

X
φ0−−−→
rat’l

P(E)
Φ|H|−−−→
emb.

PN0

f

y yπ

B B

Proof. (0) We first note that E = f∗L = ωB ⊗A⊗ f∗ω
m0

X/B commutes with arbitrary base

change on B \S (cf. [Vie95, 2.40]). In our case, this is simply due to [Har77, III.12.11] and

H i(F,L|F ) ∼= H i(F, ωm0

X/B|F ) ∼= H i(F, ωm0
F ) = 0 for any i > 0 and any smooth fiber F . In

particular, the base change map: f∗L⊗OB/m
k
P → H0(XP ,L⊗OX/Ik

XP
) is an isomorphism

for any point P ∈ B \ S and for any positive integer k, where mP (respectively IXP
) is

the ideal sheaf of P in B (respectively XP in X).

(1) It is immediate that h0(X,L) = h0(B,E) = h0(P(E),O(1)). We shall estimate

h0(B,ωB ⊗A⊗ f∗ω
m0

X/B) = N0 − 1. The key ingredient is an estimate of deg f∗ω
m0

X/B due

to Bedulev-Viehweg. We apply 2.2 to obtain

deg f∗ω
m0

X/B ≤ (n(2g − 2 + s) + s) ·m0 · (mn
0K

n
F + 1) · h(m0) = δ(g, s, h,m0).
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On the other hand, as f∗ω
m0

X/B is ample by 2.2, the vector bundle A ⊗ f∗ω
m0

X/B is also

ample, and in particular H1(B,ωB ⊗ A ⊗ f∗ω
m0

X/B) = 0. Then, by Riemann-Roch on B,

we have

h0(B,ωB ⊗A⊗ f∗ω
m0

X/B) = deg(ωB ⊗A⊗ f∗ω
m0

X/B) + (1− g) rank (ωB ⊗A⊗ f∗ω
m0

X/B)

= deg f∗ω
m0

X/B + (2g − 2 + a)h(m0) + (1− g)h(m0).

Combining with the estimate for deg f∗ω
m0

X/B, we have our estimate for N0.

Using degE = deg f∗ω
m0

X/B+deg(ωB⊗A) rank f∗ω
m0

X/B and the same reasoning as above,

we have

degE ≤ δ(g, s, h,m0) + (2g − 2 + a)h(m0).

(2) Let P and Q be two points on B, not necessarily distinct. By the same token as

above, we have H1(B,ωB ⊗A⊗ f∗ω
m0

X/B ⊗OB(−P −Q)) = 0. Then the restriction map

(∗) H0(X,L) ∼= H0(B,E) −→ H0(B,E ⊗OB/(mP ·mQ))

is surjective. Let us now suppose P,Q ∈ B \ S and P ̸= Q. Then by the base change

property,

H0(B,E ⊗OB/(mP ·mQ)) ∼= H0(XP , ω
m0
XP

)⊕H0(XQ, ω
m0
XQ

).

Since |m0KXP
| and |m0KXQ

| are very ample, we can see, by varying P and Q in B\S with

P ̸= Q in the surjection (∗), that the map Φ|L| : X 99K PN0 is regular on X \ f−1(S), and

bijective on X \f−1(S) onto its image. Moreover, on every smooth fiber F , the restriction

Φ|L||F : F → PN0 gives an embedding by |m0KF |. We can adapt a similar argument to

separate tangent vectors, at least over X \ f−1(S).

(3) Recall r = rankE = h(m0). We note the base change property for E = π∗O(1),

due to the fact that H1(π−1(P ),O(1)) = H1(Pr−1,OPr−1(1)) = 0 for any P ∈ B. Again,

recall that H1(B,E⊗OB(−P −Q)) = 0 for any P,Q ∈ B, not necessarily distinct. Hence

the restriction map

(∗′) H0(P(E),O(1)) ∼= H0(B,E) −→ H0(B,E ⊗OB/(mP ·mQ))

is surjective for any P,Q ∈ B. On every π−1(P ), we have H0(π−1(P ),O(1)) = H0(Pr−1,

OPr−1(1)), and see that |H|π−1(P )| is very ample. The remaining arguments to obtain the

very ampleness of |H| are the same as in (2) above.

(4) On X \ f−1(S), we have Φ|L| = Φ|H| ◦ φ0, because of (Φ|H| ◦ φ0)
∗OPN0 (1) =

φ∗
0(Φ

∗
|H|OPN0 (1)) = φ∗

0O(1) = L over X \ f−1(S). Since Φ|L| gives an embedding on

X \ f−1(S), so does φ0.

(5) This degree bound will be given separately in 2.7. □

2.2. Degree bound. We devote this subsection to proving the effective degree bound of

Φ|L|(X) ⊂ PN0 , stated in Proposition 2.3(5). The argument in the previous subsection is

not very new. While the one in this subsection is original. We first fix some notations

and make remarks.
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Remark 2.4. (1) We let X ′ := φ0(X) ⊂ P(E) with reduced structure, and let f ′ : X ′ →
B be the induced morphism. We denote by IX′ ⊂ OP(E) the ideal sheaf of X ′, and let

IX′(k) = IX′ ⊗OP(E)(k) for every integer k.

(2) SinceH is very ample on P(E) and Φ|L| = Φ|H|◦φ0, we have deg Φ|L|(X) = X ′·Hn+1.

Thus we shall estimate the intersection number X ′ ·Hn+1.

(3) In the course of the proof of Proposition 2.3, we observed that deg f∗ω
m
X/B ≤

δ(g, s, h,m) for any m ≥ m0, r = dimP(E) = rankE = h(m0), and the top self-

intersection number Hr = degE ≤ δ(g, s, h,m0) + (2g − 2 + a)h(m0). □

X
φ0−−−→
rat’l

P(E)
Φ|H|−−−→
emb.

PN0

f

y yπ

B B

;

X
φ0−−−→ X ′ ⊂ P(E) ⊂ PN0

f

y yf ′

yπ

B B B

Let us introduce a key invariant of a Hilbert polynomial, which is not familiar in

geometric situations.

Definition 2.5. Let Y ⊂ P be a closed subscheme of dimension n in a projective space

P. We denote by O(1) the ample line bundle on Y which is the restriction of OP(1).

Let P (x) ∈ Q[x] be the Hilbert polynomial of Y with respect to O(1), i.e., P (m) =

χ(Y,OY (m)) holds for all sufficiently large integersm. By a theorem of Gotzmann [Got78]

([Laz04a, 1.8.35], [BH93, 4.3.2]), there exists a unique finite sequence of integers a1 ≥
a2 ≥ . . . ≥ aℓ ≥ 0 such that

P (x) =

(
x+ a1
a1

)
+

(
x+ a2 − 1

a2

)
+ . . .+

(
x+ aℓ − (ℓ− 1)

aℓ

)
.

We will refer to the integer ℓ as the length of the binomial sum expression of P (x). □

Recall that
(
x
a

)
= 1

a!
x(x − 1) . . . (x − a + 1), which is a polynomial of degree a for a

positive integer a, and
(
x
0

)
= 1. If we write P (x) = pnx

n + pn−1x
n−1 + . . .+ p1x+ p0 with

pi ∈ Q, we can write a1, . . . , aℓ and ℓ in terms of pn, . . . , p0 and n in recursive relations. For

example, the sequence starts with aj = n for 1 ≤ j ≤ n!pn, and aj < n for j > n!pn. We

can also give an effective bound of ℓ in terms of pn, . . . , p0 and n, see 3.1. We particularly

denote by

ℓ0

the length of the binomial sum expression of the Hilbert polynomial h0(m) = h(m0m).

We can say ℓ0 = ℓ0(g, s, h) is effectively bounded from g, s and h.

We now come to the main point of the whole story. To bound the degree X ′ ·Hn+1, we

aim to find hypersurfaces in P(E) with “degree bound.” The precise statement is

Lemma 2.6. Let P0 ∈ B be a point. Then there exists an effective integer d0 =

d0(g, s, h,m0) depending only on g, s, h and m0 such that IX′(ℓ0)⊗ π∗OB(d0P0) is gener-

ated by global sections.
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Because we know well the intersection theory on P(E) at least for H and π∗OB(P0), if

we know 2.6, we can estimate the degree in the following form as a consequence.

Corollary 2.7. The degree is bounded by

deg Φ|L|(X) = X ′ ·Hn+1 ≤
(
ℓ0 + 1

)r−n−1
Hr + (r − n− 1)d0

(
ℓ0 + 1

)r−n−2
= d(g, s, h)

with r = rankE = h(m0) and Hr = degE.

Let us discuss the global generation Lemma 2.6. We note that φ0 : X 99K X ′ is

biregular over B \ S, and that X ′ may be singular along f ′−1(S). On the other hand,

OX′(1) := O(1)|X′ is very ample, and f ′ : X ′ → B is a flat family of subschema of Pr−1

with Hilbert polynomial χ(X ′
P ,OX′

P
(m)) ([Har77, III.9.7, III.9.9]), where X ′

P = f ′∗P is

the scheme theoretic fiber for P ∈ B. Since OX′
P
(1) ∼= ωm0

XP
if P ∈ B \ S, the Hilbert

polynomial χ(X ′
P ,OX′

P
(m)) is h0(m) = h(m0m). For the original f : X → B, although

smooth fibers have the same Hilbert polynomial h(m), we did not have a natural way to

make all fibers have the same Hilbert polynomial.

The next lemma, essentially due to Gotzmann, on Castelnuovo-Mumford regularity will

give a surprising input in our effective estimate.

Lemma 2.8. In 2.4, for every scheme theoretic fiber X ′
P = f ′∗P over P ∈ B, the ideal

sheaf IX′
P
⊂ OPr−1 is ℓ0-regular. In particular,

(1) IX′
P
(ℓ0) is generated by global sections in H0(Pr−1, IX′

P
(ℓ0)),

(2) π∗IX′(ℓ0) commutes with arbitrary base change,

(3) R1π∗(IX′(ℓ0)) = 0, and

(4) the natural sequence 0 → π∗IX′(ℓ0) → π∗O(ℓ0) → f ′
∗OX′(ℓ0) → 0 is exact.

Proof. Every fiber of f ′ : X ′ → B has the same Hilbert polynomial h0(m). By a theorem

of Gotzmann [Got78] ([Laz04a, 1.8.35], [BH93, 4.3.2]), every IX′
P
is ℓ0-regular. By defi-

nition, IX′
P
is ℓ0-regular if H i(Pr−1, IX′

P
(ℓ0 − i)) = 0 for all i > 0 ([Laz04a, 1.8.1]). As

a consequence, for every k ≥ ℓ0, IX′
P
(k) is generated by global sections, and IX′

P
is k-

regular ([Laz04a, 1.8.3]). From this, we obtain that, for any P ∈ B, IX′
P
(ℓ0) is generated

by global sections, and H1(Pr−1, IX′
P
(ℓ0)) = 0 by the (ℓ0+1)-regularity. In particular, the

direct image sheaf π∗IX′
P
(ℓ0) commutes with arbitrary base change, and hence every fiber

at P ∈ B is naturally isomorphic to H0(Pr−1, IX′
P
(ℓ0)). The vanishing R1π∗(IX′(ℓ0)) = 0

is a consequence of H1(Pr−1, IX′
P
(ℓ0)) = 0 for any P ∈ B. □

We are now ready to prove Lemma 2.6.

Proof of Lemma 2.6. (1) We first establish “how negative” π∗IX′(ℓ0) is. Let π∗IX′(ℓ0)

→ M be a quotient line bundle with kernel N . We claim degM > −d0 for some

d0 = d0(g, s, h,m0), i.e., there exists a uniform effective bound.

Since N can be seen as a subbundle of π∗O(ℓ0) = Sℓ0(E) and Sℓ0(E) is ample, we

have degN < deg π∗O(ℓ0). Then degM = deg π∗IX′(ℓ0) − degN = deg π∗O(ℓ0) −
deg f ′

∗OX′(ℓ0) − degN > − deg f ′
∗OX′(ℓ0) ≥ − deg f∗L⊗ℓ0 . For the second equality, we
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used the exact sequence in Lemma 2.8, and for the last inequality we used the following

fact that there exists a natural injective homomorphism f ′
∗OX′(k) → f∗L⊗k for every

k ≥ 1, which is isomorphic on B \ S. Thus, it is enough to show that deg f∗L⊗ℓ0 ≤ d0.

Since f∗L⊗ℓ0 = (ωB ⊗ A)⊗ℓ0 ⊗ f∗ω
m0ℓ0
X/B , we have deg f∗L⊗ℓ0 = deg f∗ω

m0ℓ0
X/B + ℓ0(2g −

2 + a) rank f∗ω
m0ℓ0
X/B . The key is again [BV00, 1.4(c)], and we have deg f∗ω

m0ℓ0
X/B ≤ δ(m0ℓ0)

by Remark 2.4. Since rank f∗ω
m0ℓ0
X/B = h(m0ℓ0), we have deg f∗L⊗ℓ0 ≤ d0 for some d0 =

d0(g, s, h,m0).

(2) Now, in view of (1), ω−1
B ⊗ π∗IX′(ℓ0)⊗OB((d0 + 2g)P0 − P −Q) is ample for any

P,Q ∈ B by Hartshorne’s theorem [Har71] ([Laz04b, 6.4.15]), because any quotient line

bundle has positive degree. Thus, we have a vanishing H1(B, π∗IX′(ℓ0) ⊗ π∗OB((d0 +

2g)P0 − P −Q)) = 0 for any P,Q ∈ B. Hence the restriction map

H0(P(E), IX′(ℓ0)⊗OB((d0 + 2g)P0)) −→ H0(Pr−1, IX′
P
(ℓ0))⊕H0(Pr−1, IX′

Q
(ℓ0))

is surjective, where P ̸= Q in this expression. Here we used Lemma 2.8 that π∗IX′(ℓ0)

commutes with arbitrary base change. Since IX′
P
(ℓ0) and IX′

Q
(ℓ0) are generated by global

sections by Lemma 2.8, we also have the global generation of IX′(ℓ0)⊗π∗OB((d0+2g)P0)

on P(E). The d0 in the statement is d0 + 2g in the last sentence. □

3. Effective bounds on Hilbert polynomials

In this final section, we just mention some effective bounds regarding Hilbert polyno-

mials, which were mentioned in the argument in §2.

3.1. The bound on length. We give an effective bound for (ℓ0 for example) the length

of the binomial sum expression defined in 2.5 in a general context.

Let Y ⊂ P be a closed subscheme of dimension n in a projective space P. For the

Hilbert polynomial P (x) of Y with respect to O(1), by Gotzmann [Got78] ([Laz04a,

1.8.35], [BH93, 4.3.2]), there exists a unique sequence of integers a1 ≥ a2 ≥ . . . ≥ aℓ ≥ 0

such that

P (x) =

(
x+ a1
a1

)
+

(
x+ a2 − 1

a2

)
+ . . .+

(
x+ aℓ − (ℓ− 1)

aℓ

)
.

We write P (x) = pnx
n + pn−1x

n−1 + . . . + p1x + p0 with pi ∈ Q. Noting
(
x+a−j

a

)
=

xa/a!+ (lower order terms), we see that the sequence starts with aj = n for 1 ≤ j ≤ n!pn,

and aj < n for j > n!pn. In view of this, we set ℓn+1 = 0, and

ℓk = max{j ≥ 0; aj ≥ k}

for k = n, n− 1, . . . , 0. Then 0 = ℓn+1 < ℓn = n!pn ≤ ℓn−1 ≤ . . . ≤ ℓ1 ≤ ℓ0, and ℓ0 is the

length of P (x). By an elementary argument to comparing coefficients of the polynomial

and the binomial sum, we obtain

Proposition 3.1. One can compute ℓn, ℓn−1, . . . , ℓ0 recursively in terms of pn, pn−1, . . . , p0

and n. If one prefers an explicit effective bound, one has for example

ℓ0 ≤
∑n

k=0
γkµ

(k+1)!
P ,
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where γ0 = 1, γ1 = 2, γk = kk+1γk+1
k−1 = kk+1(k − 1)k(k+1) . . . 34·5...k(k+1)(23·4...k(k+1))2 for

k ≥ 2, and µP = max{n!pn, |(n− 1)!pn−1|, . . . , |p0|, n}.

3.2. The bound on coefficients. At least for a Hilbert polynomial of a canonically

polarized manifold, a length bound can be reduced to the volume bound.

Proposition 3.2. Let F be a canonically polarized manifold of dimension n, and let

χ(F,OF (xKF )) =
∑

i=n,...,1,0 hix
i ∈ Q[x] be the Hilbert polynomial. Then hn = Kn

F/n!

and

|hn−k| < n! a1 · · · an mk
n (1 +mn)

nk Kn
F

for k = 0, 1, . . . , n, where mn = 1 + 1
2
(n+ 1)(n+ 2) and ap = 2p(p+3)/2−2/p! for p ≥ 1.

The proof is done by induction on the dimension by cutting out by very ample pluri-

canonical divisors.
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