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Abstract. This is an extension of the author’s talk at the Kinosaki Symposium of Algebraic
Geometry, 2013.

One important tool in Complex Dynamics is dynamical degrees for dominant meromorphic
selfmaps. They are bimeromorphic invariants of a meromorphic selfmap f : X → X of a com-
pact Kähler manifold X. The p-th dynamical degree λp(f) is the exponential growth rate of
the spectral radii of the pullbacks (fn)∗ on the Dolbeault cohomology group Hp,p(X). For
a surjective holomorphic map f , the dynamical degree λp(f) is simply the spectral radius
of f∗ : Hp,p(X) → Hp,p(X). Fundamental results of M. Gromov and Y. Yomdin expressed
the topological entropy of a surjective holomorphic map in terms of its dynamical degrees:
htop(f) = log max0≤p≤dim(X) λp(f). Since then, dynamical degrees have played a more and more
important role in dynamics of meromorphic maps. In many results and conjectures in Complex
Dynamics in higher dimensions, dynamical degrees play a central role. Recently J. Silverman
and subsequently Kawaguchi - Silverman proposed several deep conjectures concerning dynam-
ical degrees and their arithmetic analogies to study dynamics of rational maps over a number
field. This topic is a new and promising one. Many fundamental questions are still unanswered.

The plan of the talk is as follows:

First, I will recall the definition of dynamical degrees and relative dynamical degrees of a
surjective holomorphic selfmap and more generally dominant meromorphic selfmaps of a compact
Kähler manifold. Note that the definition of dynamical degrees consist of a limit, whose existence
is a non-trivial fact.

Second, I will present two methods to define dynamical degrees. One is analytic, using
regularization of positive closed currents. The other is purely algebraic, using Chow’s lemma
and intersection theory of algebraic cycles.

Third, I will present some properties of dynamical degrees and sketch of the proofs. These
include: log concavity (proved using Hodge’s index theorem); bimeromorphic invariance (quite
easy); constraints they must satisfy if the map f has an invariant meromorphic fibration (this
is joint work of Dinh, Nguyen and myself, proved using a semi-regularization of positive closed
currents).

Fourth, I will present some applications. These include: Gromov and Yomdin’s formula for
topological entropy of a holomorphic map; Gromov and Dinh-Sibony’s inequality for meromor-
phic maps; dynamical degrees of a pseudo-automorphism map of dimension ≤ 4; dynamical
degrees of an automorphism of a complex 3-tori; constraint on geometry of cohomologically
hyperbolic maps (these maps include polarized endomorphisms); invariant measures, periodic
points, backward orbits of meromorphic maps; and primitive automorphisms of positive entropy
on rational 3 folds.
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1. Definition of dynamical degrees

We first present some simple cases where dynamical degrees can be easily defined. Then we
proceed to the general case.

1) The simplest case: holomorphic maps. If f : X → X is a surjective holomorphic map, we
let rp(f) be the spectral radius of the linear map f∗ : Hp,p(X)→ Hp,p(X). We define the p-th
dynamical degree of f to be λp(f) = rp(f). Since (fn)∗ = (f∗)n for all n ≥ 1, we have that

λp(f) = rp(f
n)1/n for all n ≥ 1.

2) One other simple case: Degree growth (first dynamical degree) of rational maps of projective
spaces. Let f : Pk → Pk be a dominant rational map. We can write f = [P0 : P1 : . . . : Pk]
where P0, . . . , Pk are homogeneous polynomials of the same degree; moreover, we can assume
that P0, P1, . . . , Pk have no non-trivial common divisor. Then we define the degree deg(f) of f
to be the degree of any of the polynomials P0, . . . , Pk. Even though deg(fn) is not the same as
deg(f)n, it is easy to check that deg(fm+n) ≤ deg(fm)deg(fn) for all m,n ≥ 1. Therefore the

limit λ1(f) = limn→∞ deg(fn)1/n exists and is called the degree growth of f . Note that deg(f)
is the same as degree of f−1(H), where H is a generic hyperplane.

3) For a general dominant meromorphic map f : X → X we can define the pullback map
f∗ : Hp,q(X)→ Hp,q(X). This is done as follows: If θ is a smooth closed (p, q) form then f∗(θ)
is a closed (p, q) current with L1 coefficients, which on the open set U where f is defined is
the same as the usual pullback. Note that in general we don’t have (fn)∗ = (f∗)n. T.-C. Dinh
showed that the spectral radius rp,q can be bound by the spectral radius rp := rp,p and rq := rq,q.
This is proved by using the Kunneth’s formula. Hence the growth of the pullback of fn on the
total cohomology group H∗(X) is the same as the growth of the pullback of fn on Hp,p(X) for
p = 0, . . . , dim(X). Russakovskii and Shiffman (the case of compact projective spaces PN ) and
Dinh and Sibony (the case of general compact Kähler manifolds) defined dynamical degrees as
follows:

λp(f) = lim
n→∞

rp(f
n)1/n,

where rp(f
n) is the spectral radius of the linear map (fn)∗ : Hp,p(X)→ Hp,p(X). The existence

of the limit is non-trivial, and the proof uses regularization of positive closed currents, which I
will present later.

4) Relative dynamical degrees. For a dominant meromorphic map f : X → X which preserves
a dominant meromorphic map π : X → Y , i.e.there is a dominant meromorphic map g : Y → Y
such that π ◦ f = g ◦π, Dinh and Nguyen defined relative dynamical degrees λj(f |π), where 0 ≤
j ≤ dim(X)−dim(Y ). Roughly speaking, these measure the growth of the pullback of (fn)∗ on
the cohomology groups of a generic fiber of π. The actual definition is more complicated. These
dynamical degrees are birationally equivalent, in the sense that if π′ : X ′ → Y ′ is birationally
equivalent to π : X → Y , and f ′ : X ′ → X ′ is the induced map then λj(f

′|π′) = λj(f |π)
for all j. In the simplest case where π is holomorphic, then these dynamical degrees can be
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defined as follows. Choose ||.|| to be any norm on the vector space H∗(X). Let k = dim(X)
and l = dim(Y ), let ωX be a Kähler form on X and ωY is a Kähler form on Y . Then for any
0 ≤ p ≤ k − l we define

λp(f |π) = lim
n→∞

||(fn)∗(ωX) ∧ π∗(ωlY )||1/n.

Again, the existence of the limit is non-trivial.

2. Proofs of the existence of the limit

Here, I present two methods to prove the existence of the limit in the definition of dynamical
degrees.

1) Analytic method. This is given by Russakovskii and Shiffman (the case of projective space)
and Dinh and Sibony (the case of compact Kähler manifold). This uses semi-regularization of
positive closed currents. Examples of positive closed currents include currents of integration
over a complex variety and positive closed smooth forms. If X is a compact Kähler manifold
of dimension k with a Kähler form ωX , then for any positive closed (p, p) current T we can

define its mass by ||T || =< T, ωk−pX >. The mass depends only on the cohomology class of T .
Then it is easy to check that there is a constant C > 0 independent of the function f so that
C−1||f∗(ωpX)|| ≤ rp(f) ≤ C||f∗(ωpX)||. The semi-regularization of positive closed currents we
need to use are as follows: If T is a positive closed (p, p) current, then there is a sequence of
positive closed smooth (p, p) forms Tn such that ||Tn|| ≤ C||T || for every n, and the limit point
T ′ satisfies T ′ ≥ T . When X = PN is a projective space then this can be done by using that PN
has a lot of automorphisms. For a general compact Kähler manifold, this semi-regularization
theorem is proved by Dinh and Sibony.

This semi-regularization can be used to prove the following. Let f : X → X be a dominant
meromorphic map, and let U be the maximal open set of X such that f |U is locally invertible.
Then for any positive closed (p, p) current S we have ||(f |U )∗(S)|| ≤ C||f∗(ωpX)||, here C > 0 is
independent of f . Applying this to f = fn and S = (fm)∗(ωpX) we obtain that ||(fn+m)∗(ωpX)|| ≤
C||(fn)∗(ωpX)||||(fm)∗(ωpX)||, and from this obtain the existence of the limit.

2) Algebraic method. For the case of maps over fields of characteristic 0, this method is given
by myself recently. The main idea is to use Chow’s moving lemma to show that under the same
notations as above, if S is a variety of codimension p then there is a pencil Z → P1 of varieties
of codimension p, such that a generic fiber Zt is rationally equivalent to Cdeg(S)f∗(ωpX) where
C > 0 is independent of f and the special fiber Z0 contains the closure of (f |U )∗(S). The case
of maps over a field of positive characteristic is proved in my ongoing joint work with C. Favre,
where we give applications for maps over non-Archimedean fields.

3. Some properties

Let X be a compact Kähler manifold of dimension k and let f : X → X be a dominant
meromorphic map.

1) From definition, it can be seen easily that λ0(f) = 1 and λk(f) = the topological entropy
of f .
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2) Log-concavity: λp(f)2 ≥ λp+1(f)λp−1(f). This is proved by using Hodge index theorem:

If α and β are nef classes on a compact Kähler manifold of dimension k then (αp.βk−p)2 ≥
(αp+1βk−p−1).(αp−1.βk−p+1). Let Γ be a resolution of the graph of fn, and let π, g : Γ→ X be
the two induced maps such that f = g◦π−1. We then apply Hodge index theorem to α = π∗(ωX)
and β = g∗(ωX).

3) Birational invariance: If π : X ′ → X is a birational map and f ′ = π−1 ◦ f ◦ π then
C−1||f∗(ωX)|| ≤ ||f ′∗(ωX′)|| ≤ C||f∗(ωX)|| here C > 0 is independent of f . From this we obtain
that λp(f) = λp(f

′) for any 0 ≤ p ≤ k = dim(X).

4) Good behavior under meromorphic fibrations: Property 3) can be extended to the case
π : X → Y is any dominant meromorphic map preserved by f . Here we don’t assume that a
generic fiber of π is finite. More precisely, if g : Y → Y is a dominant meromorphic map such
that π ◦ f = g ◦ π, then we have a relation: λp(f) = max0,p−k+l≤j≤l,p λj(g)λp−j . We can see
this relation easily in the special case X = Y × Z, f = (g, h) a product map, and π : X → Y is
the projection to Y ; by using the Kunneth formula for the cohomology groups of X and Dinh’s
bound above. In the general case, the main tool is an analogous Kunneth formula, which now
is an inequality rather than an equality. More precisely, if T is a positive closed (p, p) current
which is smooth on a Zariski open dense set and has no mass on proper subvarieties, then in
cohomology:

{T} ≤ A
∑

max{0,p−k+l}≤j≤min{l,p}

αj(T ){π∗(ωjY )}^ {ωp−jX },

where

(1) αj(T ) :=
〈
T, π∗(ωl−jY ) ∧ ωk−l−p+jX

〉
.

If X = Y ×Pk−l, where Y is projective, Dinh and Nguyen proved (1) using Kunneth’s formula
and the fact that Pk−l has a lot of automorphisms. They then prove the relation for dynamical
degrees in case X and Y are projective, using that any dominant meromorphic map π : X → Y
is, upto a finite covering, the canonical projection Y × Pk−l.

For the case of a dominant meromorphic map of compact Kähler manifolds π : X → Y , it is
not known whether π is upto a finite covering, a canonical projection. In joint work with Dinh
and Nguyen, we instead proceed as follows. Let T be a positive closed current on X, and let ∆X

be the diagonal. Then we have T = (π2)∗(π
∗
1(T ) ∧ [∆X ]) (here π1 and π2 are the projections),

and hence it is enough to prove a similar formula for T = [∆X ] and π is replaced by the product
π × π : X ×X → Y × Y . To this end, we observe that ∆X is a subvariety of (π × π)−1(∆Y ).
Then we extend the semi-regularization of Dinh and Sibony to the form: if V is a submanifold
of W and T is a positive closed current on V , then T can be semi-regularized by currents of the
form ι∗(θn), where ι : V ⊂W is the inclusion of V in W and θn is a positive closed smooth form
on W . Dinh and Sibony’s regularization corresponds to the case V = W .

4. Applications

1) Gromov - Yomdin formula to compute topological entropy of holomorphic maps: Let
f : X → X be a surjective holomorphic maps. Then f is in particular continuous, and by
the classical ergodic theory we can define the topological entropy of f . Its topological entropy
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measures how the map separates the orbits of distinct points, and hence is an indication of the
complexity of f . The larger topological entropy, the more complexity. Its definition is given by:

htop(f) = sup
ε>0

(lim sup
n→∞

log max{#F : F is an (n, ε)set}).

Here a set F is called an (n, ε) set if any two distinct points x and y in F are (n, ε) separated, that
is the distance between the two n-orbits (x, f(x), f2(x), . . . , fn(x)) and (y, f(y), f2(y), . . . , fn(y))
is at least ε. Since X is compact, any (n, ε) set is finite.

Surprisingly, we have the following simple formula to compute topological entropy htop(f) =
log max1≤p≤k λp(f). Yomdin proved the inequality htop(f) ≥ max log1≤p≤k λp(f), and his proof
is valid for C∞ maps. Gromov proved the other inequality htop(f) ≥ max log1≤p≤k λp(f). The
argument of Gromov goes as follows. Let Γn ∈ Xn = X ×X × . . .×X (n times), be the graph
of fn, i.e. the set of points of the form (x, f(x), . . . , fn(x)). If we consider the product metric
on Xn, then any (n, ε) set F gives n points in Γn such that the distance between any two points
are at least ε. Now a classical theorem says that for any ball Bε of radius ε in Xn we have
V ol(Γn ∩Bε) ≥ Cε, where Cε is independent of n. From this we obtain

htop(f) ≤ lim sup
n→∞

1

n
log V ol(Γn).

Thus it remains to show that lim supn→∞ V ol(Γn)1/n = max1≤p≤k λp(f). But by definition,
V ol(Γn) ∼

∑
0≤p≤k ||(fn)∗(ωpX)||, and we are done.

For a dominant meromorphic map f : X → X we can define topological entropy using
Gromov’s idea of considering the (n, ε) sets on the graphs Γn. Here Γn = the closure of the points
(x, f(x), f2(x), . . . , fn(x)) where x is such that all f(x), . . . , fn(x) are well-defined. Yomdin’s
inequality fails for a dominant meromorphic map, for example (Guedj’s) for the rational map
f(z, w) = (zd, w + 1) on P2 for d ≥ 2. This map has zero topological degree, but has λ1(f) =
λ2(f) = d > 1.

Meanwhile, Gromov’s inequality still holds, and was proved by Dinh and Sibony. Here the
main tool is again regularization of positive closed currents. Using this we can bound the mass
of currents of the form T1 ∧T2 ∧ . . .∧Tj |U by the product of the masses of each Tj , where U is a

Zariski open dense set on which all Tj ’s are smooth. Applying this to Tj = (fnj )∗(ω
pj
X ) and U a

Zariski open dense set over which all maps fnj are holomorphic gives us the desired inequality.

2) Constraints on the geometry of manifolds with a dynamical degree larger than other dy-
namical degrees: One interesting class of meromorphic maps are those with a dynamical degree
larger than other dynamical degrees. These include the class of polarized endomorphisms. Guedj
called these maps cohomologically hyperbolic, and it was conjectured that if X has such maps
then the Kodaira dimension of X is 0 or −∞ and the Albanese map is surjective. The idea
of the proof is to use my joint result with Dinh and Nguyen on dynamical degrees of semi-
conjugate maps, to show that if f is cohomologically hyperbolic and semi-conjugates with a
map g : Y → Y then g must be itself cohomologically hyperbolic. Now the map from X to its
image Kod(X) under the Kodaira map is preserved by any selfmap f : X → X, and the map
g : Kod(X) → Kod(X) is the restriction of a linear map on a projective space, hence all of
the dynamical degrees of g are 1. For the assertion about the Albanese map, we use that if the
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Albanese map is not surjective then the image of X by the Albanese map has positive Kodaira
dimension, and this contradicts the previous result.

3) Counting periodic points of meromorphic maps whose topological degree is larger than
other dynamical degrees: These maps include polarized endomorphisms. We say that x is an
isolated periodic point of f if there is a neighborhood of x on which f is holomorphic and x is a
usual isolated fixed point of f . My other joint work with Dinh and Nguyen shows that in this
case the isolated periodic points are Zariski dense, the number of them are λk(f)n + o(λk(f)n),
and most of the isolated periodic points are repelling. We also prove that the backward orbit of
a generic point is Zariski dense. In case of polarized endomorphisms, these results were proved
by Briend-Duval.

Two main ideas are used:

For upper bound of the number of periodic points: We use a recent theory of Dinh and
Sibony on tangent currents. These are the analytic analog of the deformation by the diagonal
in intersection theory.

For lower bound, we need to construct enough good inverse branches of the maps fn. This
is done by considering a positive closed (1, 1) current constructed from the indeterminate and
exceptional sets of f .

4) Detect that a map preserves no non-trivial fibration. One interesting problem is to construct
primitive automorphisms of positive entropy on (uni)rational 3 folds. One way to construct
automorphisms of positive entropy is as follows. Let A be a complex 3-torus and f : A→ A be
an automorphism with λ1(f) 6= λ2(f) (there are many problems of such examples). Let G be a
finite subgroup of Aut(A) and let Y = A/G.

Claim. Assume that f descends to an automorphism g of Y . Then f lifts to an automorphism
of a smooth model X of Y , and this map is of positive entropy and is primitive in the sense that
it preserves no meromorphic fibration.

Proof of the claim. By Hironaka’s equivariant resolution of singularity, any automorphism g on
Y lifts to an automorphism h of a desingularization X of Y . Then we have a generically finite
meromorphic map π : A→ Z such that π ◦ f = h ◦ g.

Apply 4) of Section 3, we find that λp(f) = λp(h) for any p. Then Gromov-Yomdin’s formula
shows that the topological entropy of h is positive.

It remains to show that h is primitive. This follows from the following result, which was given
by Oguiso and I: If f : X → X is a dominant meromorphic map with λ1(f) > λ2(f), here X
has dimension ≥ 2, then f is primitive. The latter result is a consequence of 4) of Section 3. �

So if we can show that there are such quotients with interesting geometric properties (such
as rational or unirational), then we have examples of manifolds with interesting geometric prop-
erties and automorphisms. Catanese, Oguiso and I showed that an example, which is a finite
quotient of a complex 3-torus X4 = E3√

−1/ < diag(
√
−1,
√
−1,
√
−1) >, constructed in 1975 by

Kenji Ueno, is unirational. We showed that X4 is birationally equivalent to the quintic 3-fold H
with the equation a22b3(1− b23) = a23b2(1− b22) + b2b3(b

2
2− b23). H is a conic bundle over K(b2, b3).
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Previously, Oguiso and I showed that a similar construction (X6 = E3
ω/ < diag(−ω,−ω,−ω) >,

here ω2 + ω + 1 = 0) is a rational 3-fold having primitive automorphisms of positive entropy.
This gives, for the first time, examples of primitive automorphisms with positive entropy.

Remark. Applying Brauer’s group theory, Colliot-Thélène showed that H is birationally
equivalent to the conic bundle a22 − b2a23 − b3 = 0. The latter is clearly rational, and so is X4.
Hence, X4 is the second known rational smooth 3-fold with primitive automorphisms of positive
entropy.
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