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GEPNER TYPE STABILITY CONDITION AND
KUZNETSOV EQUIVALENCE

YUKINOBU TODA

ABSTRACT. This is a proceeding article of my talk ‘Gepner type
stability condition and Kuznetsov equivalence’ at the Kinosaki Al-
gebraic Geometry Symposium 2013.

1. INTRODUCTION

1.1. Conjectural Gepner type stability conditions. Historically,
it has been observed that there is a curious relationship among two
kinds of algebraic varieties: cubic fourfolds and K3 surfaces (cf. [BD85],
[Voi86], [Has00], [Kuz10]). Our purpose is to apply the above classical
observation to a modern problem in graded matrix factorizations.

Definition 1.1. For a homogeneous polynomial
WeA:=Clry,xg,- -, )
of degree d, a graded matriz factorization consists of data
P° %5 Pt 2 PO(d)
where P' are graded free A-modules of finite rank, p' are homomor-

phisms of graded A-modules, P* — P'(1) is the shift of the grading,
satisfying p' o p° = p® o p' = - W.

The homotopy category HMF (V) of graded matrix factorizations of
W has a structure of a triangulated category. In general, there is the
notion of stability conditions on triangulated categories by Bridgeland:

Definition 1.2. ([Bri07]) A stability condition o on a triangulated cat-
egory D consists of a pair (Z,{P(¢)}scr)

Z: K(D) = C, 7P(¢)CD

where Z is a group homomorphism (called central charge) and P(¢) is
a full subcategory (called o-semistable objects with phase ¢) satisfying
the following conditions:

e For 0 # E € P(¢), we have Z(E) € Ryg exp(v/—17).
e For all ¢ € R, we have P(¢p + 1) = P(¢)[1].
e For ¢y > ¢ and E; € P(¢;), we have Hom(Ey, Ey) = 0.
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e For each 0 # E € D, there is a collection of distinguished
triangles

Ei,1—>Ei—>F1i—>Ei,1[1], EN:E, EUZO
with F; € P(¢z) and ¢1 > ¢2 > e > ¢N-

Let 7 be the autequivalence of HMF (W) sending P* to P*(1). We
are interested in constructing a specific type of a Bridgeland stability
condition on HMF (1), which has a symmetric property with respect to
7. It is formulated in the following conjecture [Wal05], [KST07], [Todc]:

Conjecture 1.3. There is a Bridgeland stability condition

oc = (Za,{Pc(®)}per)
on HMF (W), where the central charge Zg is given by

N N R
o (@ ) = @) -3 (5 - =),
=1 i=1

=1

and the set of semistable objects satisfy TPq(d) = Pa(d + 2/d).

An expected stability condition in the above conjecture was called
Gepner type in [Todb], as we will explain below.

1.2. Motivation for Conjecture 1.3. Below we explain the moti-
vation of the above conjecture. Given a triangulated category D, the
set of Bridgeland stability conditions on D is known to form a com-
plex manifold. If D = D’ Coh(X) for a Calabi-Yau manifold X, then
the space of stability conditions Stab(X) is expected to be related to
the stringy Kéahler moduli space Mg of X, that is the moduli space
of complex structures of a manifold X mirror to X. More precisely,
the space M is conjectured to be embedded into the double quotient
stack

[Auteq(X)\ Stab(X)/C]

via solutions of Picard-Fuchs equations which the period integrals on
XV satisfy. For instance if X = (/W = 0) is a quintic 3-fold in P*, then
M is given by the quotient stack

Mic = [{ € C: 4 # 1} /ps)

The point 1) = oo is called large volume limit, the point 1> = 1 is called
conifold point and the point ¢ = 0 is called Gepner point, as described
in Figure 1. We refer to [Toda] for the conjectural description of the
embedding map.

Near the large volume limit, Bridgeland stability conditions are ex-
pected to be approximations of the classical Gieseker stability condition
on Coh(X). On the other hand, the stability condition at the Gepner
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. < Large Volume Limit

@) <--- Conifold point

<--- Gepner point

FiGure 1. Stringy Kahler moduli space of a quintic 3-fold

point is expected to be a stability condition in Conjecture 1.3 (which
is presumably unique in some sense) via Orlov equivalence [Orl09]

HMF (W) = D’ Coh(X).

The name ‘Gepner type’ in [Todc] comes from the above expectation.

Another motivation comes from Donaldson-Thomas (DT) theory
in [Tho00]. If there exists a desired stability condition og in Con-
jecture 1.3, where W is a defining equation of a quintic 3-fold, then it
should define the DT type invariant

DTq(y) € Qv € HHo(W)

which counts og-semistable graded matrix factorizations P*® satisfying
ch(P*®) = . Here HHy(W) is the Hochschild homology of HMF(W),
and ch(x) is the Chern character map for graded matrix factoriza-
tions [PV12]. The Gepner type property in Conjecture 1.3 yields
DTg(y) = DTg(ry) which, together with the wall-crossing argu-
ments [JS12], [KS], imply a non-trivial constraint among classical DT
invariants on a quintic 3-fold. We expect that such a constraint is use-
ful in computing DT invariants, and proving automorphic properties
of the generating series of DT invariants predicted in string theory.

1.3. Main result. It has turned out that proving Conjecture 1.3 is a
hard problem. A crucial issue is that there is no natural heart of a t-
structure on HMF (W) which is intrinsic with respect to graded matrix
factorizations. So far Conjecture 1.3 is known in the following cases:
n =1 [Tak], d < n = 3 [KST07], n < d < 4 [Todc], and some other
weighted cases [KSTO07], [Todc]. The case n = d = 5 is the quintic
3-fold case, and we are not able to prove Conjecture 1.3 in this case at
this moment. The strategy in [Todc] was to apply Orlov’s result [Or]109]
which relates HMF(W) with D° Coh(X) for X = (W = 0) C P"!, and
construct desired stability conditions in the geometric side.

Let us focus on the low degree cases of Conjecture 1.3. It is almost
trivial to prove it in the d < 2 cases for any n, so the d = 3 case is the
non-trivial lowest degree case.

Theorem 1.4. ([Todb]) Conjecture 1.3 is true in the following cases:
e d—=3andn <5.
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e d =3, n =26 and the hypersurface (W = 0) C P° is a general
cubic fourfold containing a plane.

In the next sections, we will give an outline of the proof of the above
theorem for (d,n) = (3,6) case.

1.4. Acknoledgement. The author thanks to the organizers of Ki-
nosaki Algebraic Geometry Symposium 2013.

2. ORLOV/KUZNETSOV EQUIVALENCE

2.1. Orlov equivalence. Let W be a homogeneous polynomial with
n variables of degree d. We recall Orlov’s theorem [Orl09] which re-
lates HMF (W) with the derived category of coherent sheaves on the
hypersurface X := (W = 0) C P" ! by semiorthogonal decomposi-
tions (SOD for short). Since we only use the case of n > d, we give a
statement in this case.

Theorem 2.1. ([Orl09, Theorem 2.5]) If n > d, then there is a fully
faithful embedding for each i € Z

®;: HMF (W) < D" Coh(X)
and SOD
DY Coh(X) = (Ox (=i —n+d+1), - ,Ox(—i), ®; HMF(W)).
In what follows we assume that d = 3, n = 6 so that X = (W = 0)

is a cubic fourfold in P°. Let Dy be the semiorthogonal summand of
D" Coh(X) defined by

(1) D’ Coh(X) = (Ox(—3), 0x(-2), Ox(—1), Dx).

By setting & = ®; in the above notation, Orlov’s theorem gives an
equivalence

(2) ®: HMF(W) = Dx.

2.2. Geometry of cubic fourfolds containing a plane. Let X =

(W = 0) C P° be a cubic fourfold which contains a plane P. Let
a:)}—>X, X — P?

be the blow-up at P, the linear projection from P, respectively. The
morphism 7 is a quadric fibration in the projectivization of the rank
four vector bundle on P2, given by

The degeneration locus of 7 is a sextic C' C P2. Let
(3) f: S =P

be the double cover branched along C'. The curve C' is non-singular for
a general cubic fourfold containing a plane. In this case, the associated
double cover S is a smooth projective K3 surface. In what follows, we
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assume that the cubic fourfold X is general so that C' is non-singular.
We denote by H a hyperplane in P° pulled back to X, and h is a

hyperplane in P? pulled back to X or S. The relevant diagram in this
subsection is summarized below:

Blow-up at P

S
A

Cubic fourfold K3 surface

2.3. Sheaves of Clifford algebras and twisted K3 surfaces. Sim-
ilarly to the classical construction of Clifford algebras, the morphism
7 defines the sheaf of Clifford algebras on P?. It has an even part By
and an odd part B;, which are described as

By = Op> @ (A’E @ Op>(—1)) @ (A*E @ Op>(—2))
B =E® (NE® Op(—1)).

We also define B; for i € Z by the rule B;,» = B;(1). By [Kuz08,
Corollary 3.9], every sheaves B; are flat over By and we have

B; X8, Bj = Bi+j, for all i,j € Z.
In particular, for every 7 there is an equivalence of abelian categories
®BoBi: COh(B[)) :> COh(Bo)

Here Coh(B,) is the abelian category of coherent right By-modules on
P2,

Let S be the K3 surface obtained as a double cover (3). By [Kuz08,
Section 3.5], there exists a sheaf of Azumaya algebras Bg on S such
that f.Bs = By, and an equivalence

f.: Coh(Bs) = Coh(By).

The abelian categories Coh(By), Coh(Bg) are also described in terms
of twisted sheaves. There exists an element in the Brauer group

a € Br(S) = H*(S,0%), o®=id

and an a-twisted vector bundle U of rank two such that Bs = End(Uy)
and the functor

Coh(S,a) > F — Uy ® F € Coh(Bs)
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is an equivalence. Here Coh(S, «) is the abelian category of a-twisted
coherent sheaves on S (cf. [HS05, Section 1]). Combined with the above
equivalences, we obtain the equivalence

(4) T(—):= f.(U) ® —): D" Coh(S,a) = D’ Coh(By).
2.4. Orlov/Kuznetsov equivalence. Let Dx be the semiorthogonal
summand of D°Coh(X) given by (1). In [Kuz10], Kuznetsov estab-

lished an equivalence between D Coh(By) and Dx. A starting point is
the fully faithful functor

U: D’ Coh(By) — D’ Coh(X)
constructed in [Kuz08], defined as a Fourier-Mukai transform
V(=) =7(=) Ones, €.

Here € is a sheaf of left 7*By-modules on X given by the cokernel of
the canonical surjection

7 By(—2H) = m*Bi(—H) - £ — 0.

As O-module, the sheaf & is locally free of rank four. Kuznetsov [Kuz10]

performs a sequence of mutations of SOD of D Coh()z ), and proves
the following result:

Theorem 2.2. ([Kuzl0]) The functor
©: D" Coh(B,) — Dx
given by

O(F) = Tot{R Hom(O (h — H), ¥(F)) ® Ip — R, U(F)
— RHom(¥(F), O%(—h))’ ® Ox(~1)}.

s an equivalence. Here Ip C Ox s the ideal sheaf of P.

We summarize the equivalences obtained so far in the following corol-
lary:

Corollary 2.3. There is a sequence of equivalences
D’ Coh(S, o) = D’ Coh(By) 2 Dy & HMF(W).

Here Y is given in (4), © is given in Theorem 2.2 and ® is given in

(2).
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3. OUTLINE OF THE PROOF OF THEOREM 1.4 FOR (d,n) = (3,6)

Step 1. Description of the grade shift functor.

Our first step is to describe the grade shift functor 7 on HMF (W) in
terms of D° Coh(B,). We define the autequivalence Fp of D’ Coh(By)
to be

Fpp 1= STy! o ®p,B_1[1].
Here ST, is the Seidel-Thomas twist [ST01] associated to Bj:
STg,(—) = Cone (RHom(By, —) @ By — —).
We have the following proposition:

Proposition 3.1. ([Todb, Corollary 3.4]) The following diagram com-
mutes:

DY Coh(By) 22 HMF (W)

FB\L T

DP Coh(Bo) 22 HMF(W).

The above proposition is proved in the following way: the functor
7 is described in terms of Dy under Orlov equivalence ® as Fy =
STo, 0 ®0x(1) by [BFK12]. It is enough to prove the commutativity
of

Db COh(B[)) L‘ DX

| iFX

Db COh(B[)) L‘ Dx.

The above commutativity is proved by proving the commutativity for
objects of the form Y(O,) with € S, and the commutativity of some
numerical classes of objects.

Step 2. Description of the central charge Zg.

The next step is to describe the central charge Z5 in terms of a-
twisted sheaves on the K3 surface S. Recall that by Corollary 2.3,
there is a sequence of equivalences

D" Coh(S, @) = D’ Coh(By) = Dy & HMF(W).

Let Zg be the canonical central charge on HMF(WW) given in Con-
jecture 1.3. We compute the pull-back of the central charge Zs on
HMF(W) by the above sequence of equivalences, using the result of
Proposition 3.1. The resulting central charge on D Coh(S, a) coincides
with an integral over S which appeared in Bridgeland’s paper [Bri08]:
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Proposition 3.2. ([Todb, Proposition 4.7]) There is an element B €
HYY(S,Q) and ¢ € C* such that we have

Zqo® oB@oY(E)=c- / P eh(B)/tdg
S
for any E € D*Coh(S,a). Here h is a hyperplane in P? pulled back to
S.

The Chern character on D(S, ) is the untwisted Chern character,
defined to be the twisted Chern character by Huybrechts-Stellari [HS05],
multiplied by the exponential of the minus of the B-field to get back
to the untwisted one. Although it takes its value in an algebraic class,
it is no longer defined in the integer coefficient.

Step 3. Construction of a Gepner type stability condition.

The final step is to construct a corresponding Gepner type stability
condition on D Coh(S, «), using the above descriptions of the grade
shift functor and the central charge. In this step, we need a further
genericity assumption: the Brauer class a is non-trivial. This condition
is not satisfied only if X lies in a union of countable many hypersurfaces
in the moduli space of cubic fourfolds containing a plane. Let Zi, be
the central charge on D° Coh(S, ) defined by

Z(B) = = [ "= ch(E) /ads,

By the arguments so far, the following result obviously implies Theo-
rem 1.4 as desired:

Theorem 3.3. ([Todb, Theorem 4.13]) Suppose that « # 1. Then
there is a Bridgeland stability condition oy, = (Zg, {P'(¢)}ser) on
D" Coh(S, «) satisfying

Y loFgoY o P'(¢) = P'(p+2/3).

The proof relies on a standard technique on constructions of stability
conditions on K3 surfaces [Bri08]. It requires proving the non-existence
of ‘bad’ spherical objects, in which we use the a # 1 assumption.
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