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1 Introduction

This is a joint work [3] with H. Dao (Univ. of Kansas).

On a smooth projective variety, we can define the intersection number

for a given divisor and a given curve. By this pairing, we can define the

numerical equivalence on divisors. We get a (finitely generated) lattice if

we divide the set of Weil divisors by the numerical equivalence. In order to

study the intersection pairing, we have some concepts of ”positive” divisors,

e.g., ample, base point-free, nef, etc.. Consider the cone spanned by positive

elements in the lattice tensored with the field of real numbers. The cone

gives us many informations on the given algebraic variety.

In this note, we are interested in the intersection pairing around a fixed

singular point of a scheme, or the vertex of the affine cone of a smooth

projective variety. Let R be a Noetherian (Cohen-Macaulay) local ring cor-

responding to the given point. We first define a pairing between a finitely

generated module, and a module of finite length and finite projective dimen-

sion. Consider the Grothendieck group of finitely generated R-modules, and

divide it by the numerical equivalence. Then, we get a finitely generated

lattice. It is natural to think that Cohen-Macaulay modules are positive ele-

ments under the pairing. So, we study the cone spanned by Cohen-Macaulay

modules in the numerical Grothendieck group tensored with R.
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2 Intersection pairing on SpecR and the Cohen-

Macaulay cone

We always assume that R is a d-dimensional Noetherian Cohen-Macaulay

local domain such that one of the following conditions are satisfied1:

(a) R is a homomorphic image of an excellent regular local ring containing

Q.

(b) R is essentially of finite type over a field, Z or a complete DVR.

In this note, modules are always assumed to be finitely generated.

Let G0(R) be the Grothendieck group of finitely generated R-modules.

The symbol [M ] means the element in G0(R) corresponding to an R-module

M . Let C(R) be the category of modules of finite length and finite projective

dimension. Here, note that R/(x1, . . . , xd) ∈ C(R) for a system of parameters

x1, . . . , xd. In particular, C(R) is not empty.2 For L ∈ C(R), we define

χL : G0(R) −→ Z by χL([M ]) =
∑

i(−1)iℓR(Tor
R
i (L,M)).

Consider the map

C(R)×G0(R)→ Z defined by (L, [M ]) 7→ χL([M ]). (1)

Here, we define numerical equivalence as follows. For α, β ∈ G0(R),

α ≡ β
def⇐⇒ χL(α) = χL(β) for any L ∈ C(R).

Here, we put

G0(R) = G0(R)/{α ∈ G0(R) | α ≡ 0}.

By Theorem 3.1 and Remark 3.5 in [7], we have the following result.

Theorem 1 G0(R) is a finitely generated torsion-free abelian group.

1If either (a) or (b) is satisfied, there exists a regular alteration of SpecR by de Jong’s

theorem [5].
2By the new intersection theorem due to Roberts, we know that, for a Noetherian local

ring R, C(R) is not empty if and only if R is Cohen-Macaulay.
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Remark 2 Maximal Cohen-Macaulay modules behave as positive elements

under the pairing (1) as follows.

Let L be an object in C(R). Then, by Auslander-Buchsbaum formula,

we have

depthL+ pdR L = depthR = d.

Then, we have pdR L = d. Let F. be the minimal free resolution of L. Then,

it is very easy to check that the complex F. has a depth sensitive property,

i.e., for any module N , we have

depthN = d−max{i | Hi(F.⊗R N) ̸= 0}.

We say thatM is a MCM (maximal Cohen-Macaulay) module if depthM =

d. By the depth sensitivity, ifM is MCM, then TorRi (L,M) = 0 for any i > 0.

Therefore, we have

χL([M ]) = ℓR(L⊗R M) > 0.

By Auslander-Buchsbaum formula, any MCM module over a regular local

ring is free. We say that a ring R is of finite (Cohen-Macaulay) representation

type if there are only finitely many isomorphism classes of indecomposable

MCM’s. If R is of finite representation type, then R has only isolated sin-

gularity. It was proved that a Gorenstein local ring of finite representation

type has a simple singularity. Simple singularities are of finite representation

type. We refere the reader to Yoshino [9] for the representation theory of

MCM’s.

Bad Cohen-Macaulay rings have many MCM’s in general. But, if we do

not assume that R is Cohen-Macaulay, it is not known whether there exists

an MCM module. This open problem is called the small Mac conjecture [4].

Example 3 1. If L = R/(x1, . . . , xd) for a system of parameters x1, . . . , xd,

then χL([R]) ̸= 0. Hence, G0(R) ̸= 0.

2. If d ≤ 2, then rankG0(R) = 1. See Proposition 3.7 in [7].

3. Let X be a smooth projective variety with embedding X ↪→ Pn. Let

R (resp. D) be the affine cone (resp. the very ample divisor) of this
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embedding. Then, we have the following commutative diagram:

G0(R)Q
∼−→ A∗(R)Q

∼←− CH ·(X)Q/D · CH ·(X)Q

↓ ↓ ↓
G0(R)Q

∼−→ A∗(R)Q
ϕ←− CH ·

num(X)Q/D · CH ·
num(X)Q

(a) By the commutativity of this diagram, ϕ is a surjection. Therefore,

we have

rankG0(R) ≤ dimQ CH ·
num(X)Q/D · CH ·

num(X)Q. (2)

(b) If CH ·(X)Q ≃ CH ·
num(X)Q, then ϕ is an isomorphism ([7], [8]).

In this case, the equality holds in (2).

(c) There exists an example such that ϕ is not an isomorphism [8].

Further, Roberts and Srinivas [8] proved the following: Assume

that the standard conjecture and Bloch-Beilinson conjecture are

true. Then ϕ is an isomorphism if the defining ideal of R is gen-

erated by polynomials with coefficients in the algebraic closure of

the prime field.

4. It is conjectured that G0(R)Q ≃ Q if R is complete intersection isolated

singularity with d even.

It is true if R is the affine cone of a smooth projective variety X over

C ([2]). In fact, since we have an injection

CH i
hom(X)Q −→ H2i(X,Q) = Q

and the natural surjection

CH i
hom(X)Q −→ CH i

num(X)Q ̸= 0,

we know CH i
num(X)Q = Q for each i = 0, 1, . . . , dimX. Here, remark

that H2i(X,Q) = Q since the dimension of X is odd. Then, we have

CH ·
num(X)Q/D · CH ·

num(X)Q = Q.

Therefore, the rank of G0(R) is one by 3 (a) as above.
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Definition 4 We define the Cohen-Macaulay cone as follows:

CCM(R) =
∑

M :MCM

R≥0[M ] ⊂ G0(R)R.

Here G0(R)R = G0(R)⊗Z R.

We refer the reader to [1] for basic properties on Cohen-Macaulay cones.

It is easy to see that the dimension of the cone is equal to the rank of G0(R).

Further, we have

G0(R)R ⊃ CCM(R)− ⊃ CCM(R) ⊃ Int(CCM(R)−) = Int(CCM(R)) ∋ [R],

where CCM(R)− is the closure of CCM(R) with respect to the classical topol-

ogy on G0(R)R, and Int(−) is the interior.

If R is of finite representation type, then CCM(R) is a strongly convex

polyhedral cone, in particular CCM(R)− = CCM(R).

We have no example that CCM(R)− is not equal to CCM(R), or CCM(R)

is not a polyhedral cone.

Remark that, for any L ∈ C(R), χL induces χL which makes the following

diagram commutative:

G0(R)
χL−→ Z

↓ ↗ χL

G0(R)

The map χL induces

(χL)R : G0(R)R −→ R.

Let x1, . . . , xd be a system of parameters. Consider the map

χR/(x) : G0(R) −→ Z.

Let K. be the Koszul complex with respect to x. This map satisfies

χR/(x)([M ]) = rankM · χR/(x)([R]),

since K. is the minimal free resolution of R/(x) and K. admits this property.

Therefore, we have a map

rk : G0(R) −→ Z
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and

rkR : G0(R)R −→ R

defined by rk([M ]) = rankM . (Here, rk = 1
χR/(x)([R])

χR/(x).)

Let F be the kernel of the map rk. Then, F is generated by cycles [M ]

with dimM < d. Thus, we have

G0(R) = Z[R]⊕ F and G0(R)R = R[R]⊕ FR.

Example 5 1. Put R = k[x, y, z, w](x,y,z,w)/(xy − zw), where k is a field.

Then, F = Z[R/(x, z)] ≃ Z. This ring has only three indecomposable

maximal Cohen-Macaulay modules, R, (x, z) and (x,w).

Then, the Cohen-Macaulay cone is spanned by

[(x, z)] = ([R],−[R/(x, z)]) and [(x,w)] = ([R], [R/(x, z)])

in G0(R)R = R[R]⊕ FR.

2. Put R = k[x1, x2, . . . , x6](x1,x2,...,x6)/(x1x2 + x3x4 + x5x6), where k is

a field. Then, F = Z[R/(x1, x3, x5)] ≃ Z. This ring has only three

indecomposable maximal Cohen-Macaulay modules, R, M1 and M2,

where M1 and M2 are maximal Cohen-Macaulay modules of rank 2.

Then, the Cohen-Macaulay cone is spanned by

[M1] = (2[R], [R/(x1, x3, x5)]) and [M2] = (2[R],−[R/(x1, x3, x5)])

in G0(R)R = R[R]⊕ FR.

The Cohen-Macaulay cone of this ring is not spanned by classes of

modules of rank one.

3. PutR = k[x, y, z, w](x,y,z,w)/(xy−f1f2 · · · ft), where k is an algebraically

closed field of characteristic zero. Here, we assume that f1, f2, . . . , ft

are pairwise coprime linear forms in k[z, w]. In this case, we have

F = (⊕iZ[R/(x, fi)]) /Z([R/(x, f1)] + · · ·+ [R/(x, ft)]) ≃ Zt−1.

We can prove that the Cohen-Macaulay cone is minimally spanned by

the following 2t − 2 MCM’s of rank one.

{{(x, fi1fi2 · · · fis) | 1 ≤ s < t, 1 ≤ i1 < i2 < · · · < is ≤ t}

This ring is of finite representation type if and only if t ≤ 3.
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We shall give the classical topology to G0(R)R. The following is the main

result. By the result, we know that CCM(R)− is a strongly convex cone, that

is, CCM(R)− does not contain a line through the origin.

Theorem 6 Let r be a positive integer. Then, (rkR)
−1 ∩ CCM(R)− is a

compact set.

Corollary 7 Assume that R is a Cohen-Macaulay local domain. Then, for

any positive integer r,

{[M ] ∈ G0(R) |M is a maximal Cohen-Macaulay module of rank r }

is a finite subset of G0(R).

Further, assume that R is a normal domain. Then, we have the determi-

nant map (or the first Chern class map) c1 : G0(R)→ Ad−1(R).

We can also define numerical equivalence on Ad−1(R). Then, we define

the class group modulo numerical equivalence to be

Ad−1(R) = Ad−1(R)/ ≡ .

By Proposition 3.7 and Example 4.1 in [7], we know that it is also a finitely

generated torsion-free abelian group.

Here we can prove that there exists the map c1 which makes the following

diagram commutative:

G0(R)
c1−→ Ad−1(R)

↓ ↓
G0(R)

c1−→ Ad−1(R)

By the commutativity of the above diagram, we have the following:

Corollary 8 Let R be a d-dimensional Cohen-Macaulay local normal do-

main. Assume that

(*) the kernel of the natural map Ad−1(R) −→ Ad−1(R) is a finite group.
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Then, for any positive integer r,

{c1([M ]) ∈ Ad−1(R) |M is a maximal Cohen-Macaulay module of rank r }

is a finite subset of Ad−1(R).

In particular, R has only finitely many maximal Cohen-Macaulay modules

of rank one up to isomorphism.

Assume that R is a standard graded Cohen-Macaulay domain over a field

of characteristic zero. If R has an isolated singularity with dimR ≥ 3, then it

is proved that R has only finitely many maximal Cohen-Macaulay modules of

rank one up to isomorphism. This result is essentially written in Karroum [6].

Theorem 9 (Dao-Kurano, [2]) Let R be a 3-dimensional isolated hyper-

surface singularity with desingularization. Then, the natural map

A2(R) −→ A2(R)

is an isomorphism. In particular (*) in Corollary 8 is satisfied. Therefore R

has only finitely many MCM’s of rank one.

Here, remark that an isolated hypersurface singularity of dimension d is

factorial if d ≥ 4. In this case, R is the only one MCM of rank one. If R is

the affine cone of an elliptic curve, it has infinitely many MCM’s of rank one.

Remark 10 Put B = ⊕n≥0Bn = C[B1] = C[y0, y1, . . . , yn]/I, R = BB+,

and X = Proj(B). Assume that X is smooth over C. (Since dimR = d,

dimX = d− 1.)

CH1(X) −→ CH1(X)/c1(OX(1))CH
0(X) = Ad−1(R)

↓ ↓ f

CH1
num(X) −→ CH1

num(X)/c1(OX(1))CH
0
num(X)

g−→ Ad−1(R)

1. Assume that R is a Cohen-Macaulay local normal ring with d ≥ 3.

Then, CH1(X) is finitely generated and f ⊗Q is an isomorphism.

2. Assume that the ideal I is generated by some elements in Q[y0, y1, . . . , yn].

If some famous conjectures (the standard conjecture and Bloch-Beilinson

conjecture) are true, then g⊗Q is an isomorphism. (Roberts-Srinivas [8])
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Therefore, if R is a Cohen-Macaulay local normal ring with d ≥ 3 such that

X is defined over Q, and if some conjectures are true, then (*) is satisfied.

It is also proved in the case of positive characteristic.

If we remove the assumption that X is defined over Q, then there exists

an example that g ⊗Q is not an isomorphism (Roberts-Srinivas [8]).

3 Proof of Theorem 6

First, we prove the following claim. By this claim, we know that the closure

of the Cohen-Macaulay cone is strongly convex.

Claim 11 We have CCM(R)− ∩ FR = {0}.

Proof. Let {e1, . . . , es} be a free basis of F . Regarding {[R], e1, . . . , es}
as a normal orthogonal basis, we think that G0(R)R is a metric space. For a

vector v in G0(R)R, we denote ||v|| the length of v.

Assume the contrary. Take 0 ̸= α ∈ CCM(R)− ∩ FR . We may assume

that ||α|| = 1.

Then there exists a sequence of maximal Cohen-Macaulay modules M1,

M2, . . . , Mn, . . . such that

lim
n→∞

[Mn]

||[Mn]||
= α (3)

in G0(R)R.

Let x1, . . . , xd be a system of parameters of R. Since Mn is a maximal

Cohen-Macaulay module,

ℓR(Mn/mMn) ≤ ℓR(Mn/(x)Mn) = e(x)(Mn) = rankM · e(x)(R) (4)

where e(x)(−) denotes the multiplicity with respect to the ideal (x). Put

e = e(x)(R) and rn = rankM for each n. If e = 1, then R is a regular local

ring, and therefore, F = 0. The assertion is obvious in this case. Suppose

e ≥ 2. We have an exact sequence of the form

0 −→ Nn −→ Rrne −→Mn −→ 0
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by (4). Remark that Nn is a maximal Cohen-Macaulay module.

Put [Mn] = (rn[R],mn) ∈ Z[R]⊕ F = G0(R). Then, we have

[Nn] = rne[R]− [Mn] = (rn(e− 1)[R],−mn) ∈ Z[R]⊕ F = G0(R).

By (3), we have limn→∞
rn[R]
||[Mn]|| = 0 and limn→∞

mn

||[Mn]|| = α. Hence, we have

lim
n→∞

rn(e− 1)[R]

||[Mn]||
= 0 (5)

lim
n→∞

−mn

||[Mn]||
= −α. (6)

On the other hand, we have

||[Nn]||
||[Mn]||

≤ ||rn(e− 1)[R]||+ ||mn||
||[Mn]||

=
||rn(e− 1)[R]||
||[Mn]||

+
||mn||
||[Mn]||

−→ ||α|| = 1.

Since e ≥ 2, ||[Nn]|| ≥ ||[Mn]||. Hence,

lim
n→∞

||[Nn]||
||[Mn]||

= 1. (7)

Then, by (5), (6) and (7), we have limn→∞
rn(e−1)[R]
||[Nn]|| = 0 and limn→∞

−mn

||[Nn]|| =

−α. Therefore, limn→∞
[Nn]

||[Nn]|| = −α. Then, −α ∈ CCM(R)−.

Let L ∈ C(R). Then, χL(CCM(R)) ⊂ R+. Hence, χL(CCM(R)−) ⊂ R≥0.

Since ±α ∈ CCM(R)−, χL(α) = 0. By definition, we have α = 0. It is a

contradiction. We have completed the proof of Claim 11.

Now, we start to prove Theorem 7. Assume the contrary. Suppose that

there exist infinitely many maximal Cohen-Macaulay modules L1, L2, . . . ,

Ln, . . . such that

• rankLn = r for all n > 0,

• [Li] ̸= [Lj] in G0(R) if i ̸= j.

Put [Ln] = (r[R], ℓn) ∈ Z[R]⊕F = G0(R) for n = 1, 2, . . .. Then, we have

limn→∞ ||ℓn|| =∞ since ℓi ̸= ℓj for i ̸= j. Put S = {v ∈ FR | ||v|| = 1}. Then
ℓn

||ℓn|| ∈ S if ℓn ̸= 0. Since S is compact, {ℓn/||ℓn||}n contains a subsequence

that converges to a point of S, say β. Suppose that limn→∞
ℓn

||ℓn|| = β. Then,

it is easy to check that limn→∞
Ln

||Ln|| = β ∈ S ⊂ FR. Therefore, we have

0 ̸= β ∈ CCM(R)− ∩ FR. It contradicts to Claim 11.
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