
DEFORMATIONS OF IRRATIONAL AFFINE RULED SURFACES

TAKASHI KISHIMOTO

Abstract. This note consists in a report of my talk about deformations of affine surfaces possessing

A1-fibrations at Kinosaki conference, which concerns a joint work with Adrien Dubouloz (L’Institut
de Mathématiques, l’Université de Bourgogne) [DuKi13]. Certainly the structure of affine surfaces
admitting A1-fibrations themselves are well understood nowadays, but that of deformations of such
surfaces is quite complicated to grasp. We mention a factorization theorem in case of a deformation

of irrational affine surfaces with A1-fibrations by noting that such a factorization is not feasible in
general in case of a deformation of rational ones.

1. Introduction & Motivation

1.1. All varieties treated in this article are defined over the field of complex numbers C. As a general
perception, projective varieties covered by images of projective line P1, so-called uniruled varieties,
play important roles in the theory of birational geometry as outputs of minimal model program. As
an affine counterpart of this concept, affine algebraic varieties swept out by images of the affine line
A1, so-called affine uniruled varieties, should play still important roles in order to deal with problems
on polynomial rings by means of geometry.

Example 1.1. As an example which justifies an importance to observe affine ruled varieties, we can
say about the Zariski cancellation problem which asks, in terms of geometry, whether or not an affine
algebraic variety X of dimension n satisfying the condition X×A1 ∼= An+1 is isomorphic to the affine
n-space An. In case of n = 1, it is an easy exercise to confirm that it is true. Whereas even in case
of n = 2, the problem is never trivial. From the condition X × A1 ∼= A3, it is easy to see that the
coordinate ring A = Γ(OX) is UFD, invertible regular functions on X are non-zero constants and X
contains plenty of affine lines. In fact, these three conditions are enough to ascertain that such an
X is isomorphic to A2 due to Fujita, Miyanishi-Sugie (cf. [MS80], [KM99]). Namely, they show that
a given affine algebraic surface X = Spec(A) is isomorphic to the affine plane A2 if and only if the
following three conditions are simultaneously satisfied:

(i) A is UFD,

(ii) A× coincides with non-zero constants, and

(iii) X is affine uniruled.

For n ≧ 3, the problem is still open being lack of a nice characterization of An as an affine uniruled
variety. Actually, as in case of dimension two, the same properties (i), (ii) and (iii) as above are
satisfied in this case also, but these three are not enough to deduce that X ∼= An.1

1.2. The third condition (iii) in Example 1.1 means, by definition, that for a general point x ∈ X

there exists an algebraic curve x ∈ Cx ⊆ X whose normalization C̃x is isomorphic to the affine line
A1. Hence even with conditions (i) and (ii), it seems that X in question is not so close to the affine
plane A2. But, for a given smooth affine surface Y , the following four conditions (a), (b), (c) and (d)
are equivalent to each other due to [MS80] and [KM99]:

(a) Y is affine uniruled,

(b) the log Kodaira dimension κ(Y ) of Y is equal to −∞,

(c) Y has an A1-fibration over a smooth algebraic curve,

(d) Y contains an open affine subset U ⊆ Y of the form U ∼= V ×A1, where V is an affine curve.

The author was supported by a Grant-in-Aid for Scientific Research of JSPS No. 24740003.
1Nevertheless, it is worthwhile to recall that there are several nice characterizations of the affine 3-space A3 as affine

ruled variety, see e.g. [Mi84a]. For the definition of affine ruledness, see Definition 1.2.
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2 TAKASHI KISHIMOTO

In particular, the existence of plenty of affine lines on Y implies that of a cylinder U ∼= V ×A1 there.
The analogue of this a little bit strange looking peculiarity of smooth affine surfaces is no longer true
in case of higher dimension. For the later use, we prepare the notion arising from the property (d).

Definition 1.2. An affine algebraic variety X is said to be affine ruled if X contains an open affine
subset U ⊆ X such that U ∼= V × A1 with a suitable affine variety V .

By definition, it is obvious that affine ruledness implies affine uniruledness, and as mentioned
above, the converse also holds true in case of smooth affine surfaces. It is worthwhile to notice that
this equivalence holds no longer in case of normal affine surfaces. For instance, affine cones over a
non-rational projective curve are affine uniruled, but not affine ruled.

1.3. On the other hand, once we consider the case of higher dimension, the affine uniruledness
guarantees no longer affine ruledeness in general even for smooth ones.

Example 1.3. Let S ⊆ P3 be a smooth cubic hypersurface and X := P3\S the complement with
respect to S. It follows then that X is affine uniruled (see 1.4 for this), whereas it is not affine ruled
(cf. [DuKi12]). This fact is not trivial to ascertain, and indeed we need to depend on a result due to
Clemens and Griffiths about the non-rationality of smooth cubic threefolds (cf. [ClGr72]). We shall
sketch the proof for it. For a detailed proof, we shall refer readers to [DuKi12]: supposing on the

contrary that X is affine ruled, we can find an effective Ga-action on X.2 Letting µ : X̃ → X be an

étale triple covering associated to a generator of Pic(X) ∼= Z/3Z, we know that the upper variety X̃ is

obtained as a complement of a hyperplane section in a smooth cubic threefold Ṽ ⊆ P4. Since µ is étale,

the Ga-action on X can be lifted to that on X̃ uniquely. Let p̃ : X̃ → Ỹ be the corresponding quotient

map. Then it is well known that there exists an open affine subset Ṽ ⊆ Ỹ such that its inverse image

Ũ := p̃−1(Ṽ ) ⊆ X̃ is the fiber product of Ṽ with the affine line A1, i.e., Ũ ∼= Ṽ × A1. On the other

hand, by virtue of [ClGr72], it follows that Ṽ is unirational but not rational. In consideration of the

property Ũ ∼= Ṽ × A1, we know that Ṽ is unirational as well as Ũ . Notice that in case of dimension

two over C, the unirationality and the rationality coincide to each other. In particular, Ṽ is rational,

so that Ũ is also rational. But this is absurd as Ṽ is not rational.

1.4. In Example 1.3, we asserts that X = P3\S is affine uniruled. In order to relate this fact with
deformations of affine ruled surfaces, we shall verify this fact from now on, which is not so difficult to
see taking the equivalence (b) ⇐⇒ (c) into account. As well known, a smooth cubic surface S does
contain twenty seven lines, so let us denote by l one of them. Let us investigate the base point free
linear pencil L of conics on S that is determined as follows:∣∣OP3(1)⊗ Il

∣∣|S = L + l.

It is easy to see that there exists a special member in L , which is either a smooth conic meeting
l tangentially or a union of lines intersecting l at a common point. In any case, let H ⊆ P3 be a
hyperplane such that H|S − l yields a spacial member of L as above. On the other hand, letting Λ
be the linear pencil on P3 spanned by S and 3H, we shall look into the morphism φ : X → A1, which
is realized as a restriction of the rational map ΦΛ : P3 99K P1 determined by Λ onto X. The general
fiber φ∗(a) of φ is nothing but a complement of a smooth cubic surface in Λ with respect to a union
of the special member of L and l. Then a straightforward computation in aid of adjunction says that
κ(φ∗(b)) = −∞, which means that φ∗(b) admits an A1-fibration. As a consequence, it follows that X
is affine uniruled, as desired.

1.5. With the notation as in 1.4, we can find an open affine subset U of X, which is covered by
mutually disjoint affine lines, more precisely to say, there exists a two-dimensional family F = {Cγ}
of affine lines such that for any point x ∈ U we can find a unique A1 ∼= Cγ ∈ F such that Cγ passes
through x. In consideration of this geometric fact, it seems to be reasonable to expect that the family
F yields an A1-fibration ψ : U → V over a surface to factor φ|U , i.e., the following diagram:

(∗) φ|U = ϕ ◦ ψ : U
ψ−→ V

ϕ−→ W,

2Note that Pic(X) ∼= Z/3Z, in particular, it is finite. Thence the affine ruledness on X is equivalent to the existence

of an effective Ga-action on X (see [Ki13, Remark 4.4], see also [KPZ09, KPZ11]).
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where W is an open subset of the base curve A1 of φ. Provided such a factorization (∗), the result in
[KaMi78] ascertains that we can find an open affine subset V0 ⊆ V such that U0 := ψ−1(V0) ⊆ U is of
the form U0

∼= V0 × A1. But this means that X is affine ruled, which is a contradiction to Example
1.3 above.

Instead of X = P3\S , we shall consider the restriction f := ΦΛ|(P3\H) : P3\H ∼= A3 → A1 of the

rational map ΦΛ onto the complement P3\H ∼= A3. By the same fashion, we know that a general fiber
of f is a smooth affine surface admitting an A1-fibration. Although the affine 3-space A3 is clearly
affine ruled, f is neither factored by an A1-fibration over a surface even if we restrict f onto an open
dense subset of A3.

1.6. We deal with more concrete examples to focus on what happens.

Example 1.4. Let f(x, y, z) := xy(x + y) + z(z + 1) ∈ C[x, y, z], and let us observe the polynomial
map defined by f(x, y, z), i.e.,

f : A3 ∋ (a, b, c) 7→ f(a, b, c) ∈ A1 = Spec(C[f ]).

We can confirm that a general fiber of f is a smooth affine surface with log Kodaira dimension −∞,
in particular, it possesses an A1-fibration. Whereas, f can never be factorized by means of an A1-
fibration even if we take an open dense subset of X and the restriction of f onto it however (see 1.5,
or [Ki13]).

Example 1.5. Instead, let f(x, y, z) := x2z2 − 2xy2z + y4 − z3 ∈ C[x, y, z] and let us consider the
corresponding polynomial map f : A3 → A1 determined by f(x, y, z). Then the fiber f∗(α) ⊆ A3 is
defined in the affine 3-space A3 = Spec(C[x, y, z]) by the polynomial:

f(x, y, z)− α = (xz − y2)
2 − z3 − α ∈ C[xz − y2, z].

The inclusions C[f ] ⊆ C[xz − y2, z] ⊆ C[x, y, z] induce morphisms:

f = h ◦ g : A3 = Spec(C[x, y, z]) g−→ A2 = Spec(C[xz − y2, z])
h−→ A1 = Spec(C[f ]).

Notice that the sub-algebra C[xz − y2, z] ⊆ C[x, y, z] coincides with the kernel Ker(δ) of the locally
nilpotent derivation δ on C[x, y, z] of the form:

δ = 2y
∂

∂x
+ z

∂

∂y
.

In other words, the morphism g gives rise to an A1-fibration over the affine plane A2, which is obtained
as a quotient map with respect to an effective Ga-action on A3. Summarizing, a general fiber f∗(α) of
f admits an A1-fibration, furthermore, f can be decomposed by means of an A1-fibration associated
to an effective Ga-action.

1.7. As demonstrated in 1.4, 1.5 and 1.6, the structure of a deformation f : X → B of affine ruled
surfaces seems to be chaotic from the point of view about the possibility of a factorization of f by
making use of an A1-fibration even in case of X ∼= A3. Then we propose the following problem:

Problem 1.6. Let f : X → B be a morphism from a normal affine algebraic threefold (with certain
kinds of mild singularities, e.g., Q-factorial, terminal singularities) onto a smooth algebraic curve such
that a general fiber of f is an affine ruled affine surface. Then, under which conditions about a general
fiber of f or about the ambient space X, can f be decomposed by means of an A1-fibration over a
surface (by restricting f onto a suitable open dense subset of X if necessary) ?

1.8. We need to mention a result due to Gurjar, Masuda and Miyanishi (cf. [GMM13]) concerning
Problem 1.6. Before stating their result, we shall prepare the notion of type about A1-fibrations on
affine surfaces.

Definition 1.7. Let Y be a normal affine surface with an A1-fibration, say π : Y → C, which is
surjective. We say that π is of affine type (resp. complete type) if the base curve C is affine (resp.
projective).
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It seems that the difference between being of affine type and complete type is geometrically tiny,
however it is crucial in the sense that an A1-fibration on a normal affine surface Y is of affine type if
and only if it is realized as a quotient map with respect to an effective Ga-action on Y (cf. [GMM12]),
which is in turn translated in terms of a purely algebraic object, so-called locally nilpotent derivation
on the coordinate ring Γ(OY ). By experience, A1-fibrations of affine type are more handy to deal with
than those of complete type.

Example 1.8. (1) By an immediate consequence of the famous Abhyankar-Moh-Suzuki’s theo-
rem (cf. [AM75], [Su74], see also [Miy78, Chapter 2, §1]), every A1-fibration on the affine
plane A2 is of affine type.

(2) Let X be the complement of P1×P1 with respect to a diagonal ∆ ⊆ P1×P1. Let pi : P1×P1 →
P1 (i = 1, 2) be the projection, and let li be a fiber of pi such that l1 and l2 meet at a point on
∆. Then the linear pencil L on P1×P1 spanned by ∆ and l1+ l2 gives rise to an A1-fibration
ΦL |X : X → A1 of affine type, where ΦL is the rational map determined by L . Meanwhile,
pi|X : X → P1 is an A1-fibration of complete type. Thus the property of affine or complete
type is not, in general, intrinsic on a given surface.

(3) Let S ⊆ P3 be a smooth cubic surface defined as follows:

S =
{
xy (x+ y) + zu (z + u) = 0

}
⊆ P3

[x:y:z:u].

Then the hyperplane H := {u = 0} cuts S in such a way that H|S = L1 + L2 + L3, where
L1 = {x = u = 0}, L2 = {y = u = 0} and L3 = {x + y = u = 0}. Notice that these lines
L1, L2, L3 meet each other only at P := [0 : 0 : 1 : 0], which is an Eckardt point of S, and
−KS ∼ H|S = L1+L2+L3 by adjunction. Then, by a straightforward computation, it follows
that κ(X) = −∞, where X := S\(L1 ∪ L2 ∪ L3). Thus X admits an A1-fibration by [MS80].
More precisely, we know that any A1-fibration on X is defined over the projective line P1, i.e.,
it is of complete type (cf. [DuKi12]).

1.9. With the notation as in Problem 1.6, it is known that if general fibers of f : X → B are
isomorphic to the affine plane A2, then it is a Zariski-locally trivial A2-bundle after shrinking the
base, namely, there exists an open affine subset W ⊆ B such that U := f−1(W ) is the fiber product
of W with A2, i.e., U ∼= W × A2 (cf. [KaZa01]). Thence for such a case Problem 1.6 is satisfactorily
settled out. Note that as remarked in Example 1.8 (1), every A1-fibration on A2 is of affine type.
Thus in some extent it may be reasonable to expect that a factorization property asked in Problem 1.6
holds true in the case where a general fiber admits an A1-fibration of affine type. However, it seems
that the reality is far from this intuition. Indeed, the work due to Gurjar, Masuda and Miyanishi (cf.
[GMM13, Example 2.6]) yields such an example in which a general fiber of f : X → B is isomorphic to
(P1×P1)\∆ as in Example 1.8 (2), and such an f can not be decomposed by means of an A1-fibration
even if we restrict f onto an open dense subset of X however. But, instead of an f itself, if we perform

a suitable étale finite covering of degree two, the resulting one from f , say f̃ : X̃ → B̃ is factored via
an A1-fibration. In general, Gurjar, Masuda and Miyanishi (cf. [GMM13]) prove the following result:

Theorem 1.9. (cf. [GMM13, Theorem 2.8]) Let f : X → B be a morphism from a smooth affine
algebraic threefold X onto a smooth algebraic curve B such that a general fiber of f is a smooth affine
surface with an A1-fibration of affine type. Then we have the following:

(1) After shrinking the base curve B if necessary, say B0 ⊆ B, and after taking an étale finite

morphism B̃0 → B0, the resulting morphism from f on the fiber product X̃0 := f−1(B0)×B0B̃0,

say f̃ : X̃0 → B̃0 is factored in such a way that:

f̃ = h̃ ◦ g̃ : X̃0
g̃−→ Ỹ0

h̃−→ B̃0,

where g̃ is an A1-fibration over a surface Ỹ0.
(2) If we suppose additionally that there exists a relative completion of f : X → B, say f : X → B,

which satisfies the following conditions: (Notation: Let ∆ := X\X, and for a point b ∈ B, let

us put Xb := f
∗
(b), Xb := f∗(b) and ∆b := ∆ ·Xb.)

(i) (X,X,∆, f , 0) with a fixed point 0 ∈ B is a family of logarithmic deformations of the
triple (X0, X0,∆0),
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(ii) A given A1-fibration of affine type on a general fiber Xb is extended to a P1-fibration on
Xb, say φb, and

(iii) A section of the P1-fibration φ0 found in ∆0 has no monodromy in X,

then after shrinking the base curve B if necessary, say 0 ∈ B0 ⊆ B, the restricted morphism
f |f−1(B0) is factored by an A1-fibration (without the necessity to take an étale finite morphism
as in the assertion (1)).

1.10. Summarizing a deformation f : X → B of smooth affine surfaces admitting A1-fibrations of
affine type can be decomposed by means of an A1-fibration over a surface up to shrinking and taking
an étale finite covering of the base curve B. On the other hand, if a general fiber of f : X → B
is an affine surface that admits A1-fibrations of complete type only, then the structure of f about a
possibility of a factorization by an A1-fibration becomes to be more subtle to grasp. Anyhow, it is
useful to look for criteria to factor by an A1-fibration. In §2, we shall state main results which concern
Problem 1.6, a criterion to factorize by an A1-fibration and several resulting corollaries something like
this, by paying a special attention to the case of X ∼= A3.

2. Main Results

2.1. If we observe a deformation of irrational affine ruled surfaces, then we obtain the following result
about the possibility of factorizations:

Theorem 2.1. (cf. [DuKi13]) Let X be a normal affine algebraic threefold with only Q-factorial,
terminal singularities, and let f : X → B be a morphism onto an algebraic curve such that a general
fiber of f is irrational and affine ruled. Then there exists an open affine subset U ⊆ X such that the
restriction of f onto U is factored in such a way that:

f |U = h0 ◦ g0 : U
g0−→ V

h0−→ W,

where W is an open subset of B, V is a normal affine surface such that U ∼= V ×A1 and g0 coincides
with the projection to the first factor.

Remark 2.2. Note that the assumption in Theorem 2.1 that a general fiber is irrational is crucial
to obtain a desired decomposition. For instance, the discussion in 1.5 and Example 1.4 give rise to
examples where we can not factor by an A1-fibration even if we look at the restriction onto an open
dense subset however.

As a corollary of Theorem 2.1, we see:

Corollary 2.3. With the notation and the assumption as in Theorem 2.1, suppose in addition that
the Picard group Pic(X) of X is finite. Then f itself can be factored in such a way that:

f = h ◦ g : X
g−→ Y

h−→ B,

where g is a quotient map with respect to an effective Ga-action on X. In particular, a general fiber
of f possesses an A1-fibration of affine type.3

Remark 2.4. In Corollary 2.3, we do not impose a priori any condition about the type of an A1-
fibration on a general fiber of f , notwithstanding, a posteriori it follows that it admits an A1-fibration
of affine type.

2.2. In the case where X is isomorphic to the affine 3-space A3, we are able to say further about
properties on a morphism f : A3 → B onto an algebraic curve whose general fibers are irrational and
affine ruled as in the following fashion:

Theorem 2.5. Let f : A3 → B be a morphism from the affine 3-space A3 onto a smooth algebraic
curve B such that a general fiber of f is irrational and affine ruled. Then we have the following:

(1) The base curve B is isomorphic to either P1 or A1,

3In case of Pic(X) = (0), we can see furthermore that every fiber of f admits an effective Ga-action. See also

Theorem 2.5 (3) below.
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(2) The morphism f is decomposed in such a way that:

f = h ◦ g : A3 g−→ A2 h−→ B,

where g : A3 → A2 is an A1-fibration obtained as the quotient morphism of an effective
Ga-action on the affine 3-space A3.

(3) Every fiber of f (taken with the reduced scheme structure) admits an effective Ga-action, in
particular, it possesses an A1-fibration of affine type.

Example 2.6. Notice that the base curve B in Theorem 2.5 is not necessarily affine. For instance,
let us consider the following linear pencil Λ on the affine 3-space A3 = Spec(C[x, y, z]):

Λ =
{
Sλ = VA3

(
(xz − y2)z2 + λ(xz − y2)

3
+ 1

) ∣∣∣ λ ∈ P1
}
.

It is easy to confirm that Λ is free of base points, so that it defines a morphism onto P1:

f := ΦΛ : A3 −→ P1 = P(Λ),
whose fiber f∗(λ) =: Sλ over λ ∈ P1 is isomorphic to Sλ ∼= Cλ × A1, where Cλ is the affine curve in
A2 = Spec(C[xz − y2, z]) defined by the same polynomial as Sλ. For a general λ ∈ P1, it follows that
Sλ is irrational and affine ruled. Moreover, every fiber of f (taken with the reduced scheme structure)
admits an A1-fibration of affine type. The morphism f can be decomposed in such way that:

f = h ◦ g : A3 = Spec(C[x, y, z]) g−→ A2 = Spec(C[xz − y2, z])
h−→ P1,

where g is associated to the inclusion C[xz − y2, z] ↪→ C[x, y, z] and h = ΦL is determined by the
pencil L = {Cλ |λ ∈ P1 }, which is free of base points, on A2.

As a corollary of Theorem 2.5, we can classify, in some sense, morphisms f : A3 → A1 from the
affine 3-space A3 fibered by irrational affine ruled surfaces in terms of locally nilpotent derivation on
C[x, y, z]. In order to state the result, we prepare:

Definition 2.7. Let (δ, h) be a pair composed of a locally nilpotent derivation on C[x, y, z] and a
polynomial h ∈ Ker(δ).4 The pair (δ, h) is called irrational if general fibers of the polynomial map
defined by h:

h : Spec (Ker(δ)) ∼= A2 −→ A1 ∼= Spec(C[h])
are irrational. Two irrational pairs (δ1, h1) and (δ2, h2) are said to be equivalent, denoted by (δ1, h1) ∼
(δ2, h2), if Ker(δ1) = Ker(δ2) and the polynomial maps:

hi : Spec (Ker(δi)) ∼= A2 −→ A1 ∼= Spec(C[hi]) (i = 1, 2)

coincide to each other up to automorphisms of the base, namely, there exists an automorphism α ∈
Aut(A1) such that h2 = α ◦ h1.

With the notion of equivalence as above, we deduce the following result from Theorem 2.5:

Corollary 2.8. There is a one to one correspondence between the set of morphisms f : A3 → A1

whose general fibers are irrational and affine ruled and the set of all irrational pairs modulo equivalence
(see Definition 2.7).

Proof. Let f : A3 → A1 be a morphism such that a general fiber of f is irrational and affine ruled.
Then by virtue of Theorem 2.5, this morphism f can be factorized in such a way that:

f = h ◦ g : A3 = Spec(C[x, y, z]) g−→ A2 h−→ A1,

where g is a quotient map with respect to an effective Ga-action on A3, and letting δ be a locally
nilpotent derivation corresponding to this action, g is obtained associated to the inclusion Ker(δ) ⊆
C[x, y, z]. This implies that the polynomial f(x, y, z) ∈ C[x, y, z] in question is contained in Ker(δ).
For a general point α ∈ A1 of the base curve, we have f∗(α) = g∗(h∗(α)). As f∗(α) is irrational, it
follows that h∗(α) is an irrational curve since an A1-fibration does contain an A1-cylinder. Thus we
deduce that (δ, f) is an irrational pair. The converse direction is also easy to construct, hence we shall
omit the detail. □

4It is known that Ker(δ) is in fact a polynomial ring in two variables by virtue of [Mi84b].
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As an immediate corollary of Theorem 2.5, we see the following result:

Corollary 2.9. There does not exist any polynomial f(x, y, z) ∈ C[x, y, z] which defines a polynomial
morphism f : A3 → A1 such that a general fiber of f is irrational and equipped with an A1-fibration
of complete type only.

Remark 2.10. Corollary 2.9 is remarkable in consideration of the fact that there do exist polynomials
f(x, y, z) ∈ C[x, y, z] defining morphisms f : A3 → A1 = Spec(C[f ]) whose general fibers are rational
and are equipped with A1-fibrations of complete type only (see Example 1.4, for instance).

3. Sketch of the proof of Theorem 2.1

3.1. We shall say about a very rough sketch of the proof of Theorem 2.1. Let f : X → B be a
morphism from a normal affine algebraic threefold X onto a smooth algebraic curve B such that a
general fiber of f is irrational and affine ruled.

3.2. We embed X into a normal projective threefold V with at worst Q-factorial, terminal singular-
ities and we denote by ∆ the boundary divisor. Further, let us denote by π : V 99K C a rational map
induced by f : X → B, where C is a smooth projective curve containing B as an open subset. If π
is not a morphism, then the indeterminacy of π is located in ∆, hence by performing a succession of
blowing-ups whose centers are outside X, we may assume that π is a morphism from the beginning.
Then we apply an usual minimal model program (mmp) for V (not for (V,∆)) with respect to the
morphism π : V → C to obtain a diagram:

(∗) V = V0
φ199K V1

φ299K V2 99K · · · 99K Vt−1
φt99K Vt = V ′,

where φi : Vi 99K Vi+1 is a birational map, i.e., it is either a divisorial contraction or a flip, and the
right terminal V ′ is an output of an (mmp). Since the process (∗) is done with respect to π : V → C,
each Vi possesses a morphism πi : Vi → C induced from π. For the simplicity of the notation, we use
π′ : V ′ → C instead of πt.

3.3. We can check that π′ is factored in such a way that π′ = η′ ◦ ξ′, where ξ′ : V ′ → W ′ is a Mori
conic bundle structure (MCB) associated to an extremal ray in NE(V ′/C). In this step, we make use
of the assumption that a general fiber of f is irrational.

3.4. Usually, an application of birational geometry for studies of affine algebraic varieties has several
crucial obstacles. By experience, the most crucial one consists in how to understand the change of
the inside affine parts via the process of (mmp). In our present situation neither, we are not able to
describe in an explicit manner how the initial affine algebraic threefold X = V \∆ varies via (∗). More
precisely to say, letting ∆′ be the proper transform on V ′ of ∆, we do not know how to look into a
difference between X and X ′ := V ′\∆′. (The same difficulties occur even if we perform (KV + ∆)-
mmp in a relative setting instead.) For instance, we do not know whether or not X ′ is still affine once
a flip emerges in the process of (∗). However, for our purpose, we have only to observe how a general
fiber of f : X → B varies via (∗) taking an influence of (MCB) ξ′ : V ′ →W ′ into account.

3.5. For a point b ∈ B, let us denote by Sb := f∗(b) the fiber over b, meanwhile, we put S′
b :=

π′∗(b)\(∆′ ∩ π′∗(b)). Notice that if a fiber Sb is contracted in (∗), then S′
b = ∅. Anyway, if b ∈ B

is general, then Sb has no effect from flips appearing in (∗). Moreover, we may assume that Sb is
disjoint from all exceptional divisors emerging in (∗) whose proper transforms on V are mapped onto
points with respect to π by choosing b ∈ B generally. Whereas, the most troublesome matter for
our purpose lies in an effect arising from horizontal exceptional divisors, i.e., exceptional divisors
appearing in the process (∗) such that their proper transforms on V dominates C via π. Namely, such
exceptional divisors may violate the structure of an A1-fibration found on a general fiber Sb. But,
we can guarantee that effects coming from these exceptional divisors on Sb with b ∈ B general is to
delete several fiber components of an A1-fibration by noticing that Sb is irrational, which means that
S′
b possesses still an A1-fibration.
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3.6. Letting E the union of proper transforms on V of exceptional divisors appearing in (∗), and
let us denote by F the union of fibers of π, which have effects arising from flips in (∗). Then U ′ :=
X\(X∩(E∪F )) is an open dense subset of V and V ′ simultaneously. Let us investigate the restriction
ξ′|U ′ of (MCB) ξ′ onto U ′. In fact, the observation in 3.5 above combined with the assumption that
general fibers of f are irrational implies that ξ′|U ′ yields an A1-fibration. Then [KaMi78] ascertains

that there exists an open affine subset V ⊆ W ′ such that the inverse image U := (ξ′|U ′)
−1

(V ) is
isomorphic to the fiber product with the affine line A1, that is, U ∼= V × A1, which is what we want
to show.
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