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RATIONALITY AND IRRATIONALITY OF
MOTIVIC CHOW SERIES

SHUN-ICHI KIMURA

ABSTRACT. Classical Weil Conjecture was generalized to the ratio-
nality of motivic zeta function by Kapranov in 2000. We introduce
the notion of Motivic Chow series, which is a generalization of the
motivic Zeta, and study its rationality and irrationality behavior.

The first half is just a definition and advertisement of the notion of
the K-rings and the motivic zeta, and is presented in Japanese.
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3. Motivic Zeta of Algebraic Varieties
One variation of Weil conjectures (and Dwork’s theorem) says:

Theorem 9. When X is an algebraic variety over a finite field Iy,
then

> # (Sym?(X)(F,)) 1!
d=0

is rational in Z[[t]].
Kapranov [Kapranov00] observed the following:

Theorem 10. When X/k is a curve, then

> [Sym*(X

d=0
is rational in K(AlgVar/k)[[t]].
Proof. When X = U I1 C, one easily checks that (y(t) - (c(t) = (x(t),
and the motivic zeta of a point is clearly rational, so we may assume
that X is smooth projective. When d > 2g — 2, then the natural
morphism Sym?X — Jacobian(X) =: Jac(X) is a projective (d — g)-
bundle.

Lemma 11. When m : X — Y is a projective d-bundle, then [X]| =
Y] x [PY] in K(AlgVar).

Proof. One can decompose Y into a stratification Y = IIY; so that
7-1(Y;) = Y; x P4 Then we have

=) m(¥) =) ¥ x [P =[Y]x [P
(end of the proof of Lemma 11) O

To prove the rationality of (x(t), it is enough to show that the sum
for d > 2g — 2 is rational. Using the equaltiy
1 — [Al]d+1
P =11+ A +[A]+. .. .+ [AY) =1
P = 1]+ (4] + (A% + -+ (4] = =

one calculates
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Z [Sym? Xt

d>2g—2
1 — [Al]d—g—l—l

= > [JaC(X)]l_—[Al]

[Jai:(X)]t?g‘l 1 [AAAY]
1—[A] (1 —t 1 —t[Al])
[Jac(X)]t>~" (1 —[A9]) —t[A'](1 — [A971])
(1 —6)(1 —t[AY]) 1 —[Al]

You may worry if the denominator 1 — [A'] could be a zero-divisor,
(1 —[A%]) — t{AT)(1 — [A*1])

but you can easily check that in the last term, T—[A]]

is actually a polynomial.

Unfortunately, the motivic zeta (x(t) is not rational in general for
higher dimension (see [Larsen-Lunts04]). On the other hand, it is
known that there is a natural morphism K (AlgVar) — K(ChowM otive)
which sends [X] to [M(X)] where M (X) is the Chow motive of X, for
smooth projective X in characteristic 0 (see [Bittner04]). And we con-
jecture that the motivic zeta of Chow motive (y(x)(t) is always ratio-
nal. This conjectured rationality is closely related with big conjectures
in motivic world, for example, Bloch’s conjecture for the representabil-
ity of the Chow group of surfaces with p, = 0.

4. Motivic Chow Series

When X is an algebraic variety and v € Hyy(X,Z), we can define
C,(X) to be the Chow variety of X, which parametrizes the effective
algebraic cycles with the homology class v. For example, whenn € Z =
Hy(X,7Z), it is parametrized by Sym"(X), the n-th symmetric product
of X. Recall that the motivic zeta is the formal power series with the
coefficient Symd(X ). Then we can ask what happens when we replace
the symmetric products by Chow varieties which parametrize higher
dimensional cycles. There is an interesting result by Javier Elizondo:

Theorem 12. [Elizondo94] When X is smooth projective toric variety,
then the Fuler Series

-10-
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is rational in Z[[Heq(X, Z)]], where e(Y') is the Euler character of Y (C).
We regard t as a formal variable, and when 7y, 1 € Haq(X,7Z), we define

17 X th = TTH,

Recall that the morphism K (AlgVar/C) — Z sending [X] to e(X)
is a ring homomorphism because when C' C X is a closed subset with
U C X its compliment, we have e(C) 4 e(U) = e(X). So the natural
thing to try is to define the motivic Chow series M Cy(X) to be

MCy(X):= ) [Cy(X)]

YEH24(X)

and see if it is rational. I visited Mexico to solve this problem, we
started to work together, and we got our result in a few hours.

Theorem 13. [Elizondo-K09] The motivic Chow series MC1(P?) is
not rational in K (AlgVar)[[Hs(P?)]] nor in K(ChowMotive)[[Hy(P?)]].

Proof. One can compute

MGE) = Y (G

de Hy(P2)~7Z,

= > [P(H'(P*, 0(a)))]t!

deZ
_ Z[P%(d2+3d)]td
d>0
Al] L(d+1)(d+2)

1-] d
- Z 1- [A]] L

d>0

If it were rational, then S [AY]2(@DE@+2)¢d nyst be rational, namely,
there must exist ag,aq,...,ay € K(AlgVar), not all zero, such that
for d > 0,

N
Z ai[Al]%((d+i)2+3(d+i)+2) —0.
i=0

One can easily see that this condition implies that the dimensions of
a;’s are unbounded, hence impossible. O

-11-
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Now we wonder why taking the Euler character makes Chow series
rational. The idea is to add a new relation [A'] ~ [Pt], say “Al-

2
2
A 3d2 [Pt], hence

homotopy” relation, which makes []P’%(d2+3d)} ~ 5

d* + 3d + 2 1
M) ~ ) ————t' = 11

It looks as if we count the number of [F-valued points, then the motivic
Chow series becomes rational.

Let us denote the image of M Cy(X) in K (AlgVar/k)/([AY]—[Pt])[[Haa(X, Z)]]
by MOd(X)Al .

Theorem 14. [Elizondo-K12] When X is a toric variety, then we have
1
MCd(X)Al = H HTgV
v:d-dim Orbit
where V is the Zariski closure of the orbit V., and degV is homology

class of [V].

Proof. By Thomason’s Torus generic slice theorem [Thomason86], when
a torus T'= G}, acts on Y, then Y has a stratification Y = II(U; x T;)
with 7" — T; quotient tori. Unless T; = Pt, we have [T;] = ([A'] —
[Pt])4mTi ~ 0 modulo Al-homotopy, hence [Y] ~ [T-fixed locus].
When X is a toric variety and v € Hyy(X,Z), the torus T acts on
C,(X), and an algebraic cycle > n;[V;] is a T-fixed point if and only if
each V; is a closure of an orbit. As there are only finitely many orbits
in the toric variety X, Theorem easily follows. 0

Using a similar technique, we can calculate as in Example 15.

Example 15. [Elizondo-K12] Let 7 : X — P? be a blow-up along r
colinear points, with FE; exceptional curve and L the strict transform
of a general line in P?, and set t, := ¢t/ and s, := /%], then we have

r—2 T 1
(1—t051~~~§j~~~sr)(1—si)

Corollary 16. The motive of X does not determine the Motivic Chow
series.

(1 — t08152 cee ST)

MCy (X ) = =

i=1

In fact, the motive a blow-up of P? along points depends only on
the number of points, not their configuration. In particular, 3 points
blow-ups of P? have the same motive whichever the points are colinear
or not. But if the 3 points are not colinear, then the blow-up is a
toric variety, and hence its motivic Chow series have no numerator

-12-
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by Theorem 14. On the other hand, Example 15 says that if the 3
points are colinear, the motivic Chow Series modulo A'-homotopy has
non-trivial numerator.

One may hope that the motivic Chow series is always rational modulo
suitable equivalence relation, but this hope is shattered by the following
result.

Theorem 17. [K-Kuroda-Takahashi] When X is a blow-up of P* along
many general points, then the Euler Series Ey(X) in Z[[H2(X)]] is
wrrational.

(sketch of the proof) By Nagata’s theorem, the closure of the effective
cone is not finitely generated. If F1(X) can be written as f(t)/g(t) in
Z[[Hs(X)]] with f(t) and g(t) coprime polynomials, then the closure of
the effective cone is generated by the non-zero terms of f(¢) and g(¢),
hence should be finitely generated.

Summary:
The Status of the rationality/irrationality

of Motivic zeta and Motivic Chow Series

motivic zeta is .
rational for '((-:OHJ) |
Algebraic Curves| | Motivic Zetais
(Kapranov) rational in general

K(AlgVar) = K(ChMot) = K(¥'*)
Euler

| / Character

K(AlgVar) , = K(ChMot), Z,

All Motivic Chow Irrational

Series Rational

for divisors on
Nagata Surfaces

for Toric Varieties

-13-
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