Multiplicity and invariants in birational geometry Kosuke shibata
 Graduate School of Mathematical Sciences The University of Tokyo

Definition 1
Let X be a variety and let x be a point of X ．The multiplicity of X on X ，denoted mult ${ }_{x} X$ ，means mult $O_{X, x}$ ．

For a normal variety X ，a prime divisor E over X means that a prime divisor E appears on a resolution $f: Y \rightarrow X$ ．Let E be a prime divisor over X and appear on a log resolution $f: Y$
$\rightarrow X$ of X ．The log discrepancy of X with respect to E is

$$
a_{E}(X):=\operatorname{ord}_{E}\left(K_{Y}-f^{*} K_{X}\right)+1 .
$$

For a closed subset Z of X ，the minimal log discrepancy $\operatorname{mld}_{Z}(X)$ over Z is the infimum of $a_{E}(X)$ for all prime divisor E over X with center in Z ．

Let $I \subset O_{X}$ be a nonzero ideal．The log－canonical threshold of I in X is defined as follows：
$\operatorname{lct}(I)=\sup \left\{c \in \mathrm{Q} \mid\left(X, I^{c}\right)\right.$ is \log canonial $\}$ ．

Conjecture 1

Let X be an n－dimensional locally a complete intersection variety．Then mult $x_{x} X \leqq 2^{n-\operatorname{mld}_{x} X}$ for a closed point x of X and equality holds if and only if emb $(X, X)=2 n-\operatorname{mld}_{x} X$ ．

Conjecture 2

Let X be an n－dimensional locally a complete intersection variety with log canonical singularities．Then mult ${ }_{x} X$ $\left.\leqq 2^{n-\Gamma} \operatorname{lct}\left(m_{x}\right)\right\rceil$ for a closed point x of X and equality holds if and only if emb $(X, x)=2 n-\Gamma_{\operatorname{lct}}\left(m_{x}\right)$ ．

Watanabe＇s Conjecture

Let X be an n－dimensional locally a complete intersection variety with canonical singularities．Then mult $_{x} X \leqq 2^{n-1}$ for a closed point x of X and equality holds if and only if $\operatorname{emb}(X, x)=2 n-1$ ．

Remark
－$\left.\Gamma_{\operatorname{lct}}\left(m_{x}\right)\right\rceil \leqq \operatorname{mld}_{x} X$
－Conjecture $1 \Rightarrow$ Conjecture $2 \Rightarrow$ Watanabe＇s Conjecture
－Watanabe＇s Conjecture is a generalization of Proposition 3.1 in［W］．

Proposition 1

Let X be an n－dimensional Gorenstein variety with canonical singularities and let X in X be a closed point．Let $\mathrm{emb}(X, X)=v$ and $\left\lceil\operatorname{lct}\left(m_{x}\right)\right\rceil=c$ ．
（1）If $n+1-c=2 r+1$ ，then

$$
\operatorname{mult}_{x} X \leqq\binom{ v-n+r}{r}+\binom{v-n+r-1}{r-1}
$$

（2）If $n+1-c=2 r$ ，then

$$
\operatorname{mult}_{x} X \leqq 2\binom{v-n+r-1}{r-1}
$$

Remark
This Proposition 1 is a generalization of Theorem 3.1 in ［HW］of characteristic zero．But our proof is just an imitation of the proof of Theorem 3.1 in［HW］．

Proposition 2

Let X be an n－dimensional normal locally complete intersection variety with canonical singularities．
If $n \leqq 5$, mult $_{x} X \leqq 2^{n-\operatorname{mld}_{x} X}$ for a closed point x of X ．
If $n \leqq 4$, mult $_{x} X \leqq 2^{n-\operatorname{mld}_{x} X}$ for a closed point x of X and equality holds if and only if emb $(X, X)=2 n-\operatorname{mld}_{x} X$ ．

Theorem 1

Let X be an n－dimensional locally a complete intersection variety with canonical singularities．Let $\left.{ }^{\lceil } \operatorname{lct}\left(m_{x}\right)\right\rceil=c$ ．Let $\mathrm{e}=\operatorname{emb}(X, x)-n$ ．Let $c+2 e-n>0$ ．
（1）If $n-c+1=2 r$ ，then

$$
\operatorname{mult}_{x} X \leqq 2 \sum_{j=0}^{c+2 e-n}\binom{c+2 e-n}{j}\binom{n-c-e+r-j-1}{r-j-1}
$$

（2）If $n-c+1=2 r+1$ ，then mult $_{x} X$

$$
\leqq \sum_{j=0}^{c+2 e-n}\binom{c+2 e-n}{j}\left\{\binom{n-c-e+r-j-1}{r-j-1}+\binom{n-c-e+r-j}{r-j}\right\} .
$$

Key idea
By the formula（13）in［IR］，we obtain
$\operatorname{mld}_{x} X=\inf _{m}\left\{(m+1) n-\operatorname{dim} \pi_{m}^{-1}(x)\right\}$ ，where $\pi_{m}: X_{m} \rightarrow X$ is a truncation map．By this equality，we get a regular sequence consisting the initial terms of some defining polynomials of X ．Using this fact and Proposition 1， I proved Proposition 2 and Theorem 1.

Corollary 1

Let X be an n－dimensional locally a complete intersection variety with canonical singularities．If $n \leqq 32$ ，then mult $_{x} X \leqq 2^{n-\left\lceil\operatorname{lct}\left(m_{x}\right)\right\rceil}$ for a closed point x of X and equality holds if and only if emb $\left.(X, X)=2 n-\Gamma_{\operatorname{lct}}\left(m_{x}\right)\right\rceil$ ．

Corollary 2

Watanabe＇s Conjecture is true if $n \leqq 32$ ．

Theorem 2

Let X be an n－dimensional locally a complete intersection simplicial toric variety．Then $\left.\operatorname{mld}_{x} X=\Gamma \operatorname{Ict}\left(m_{x}\right)\right\rceil$ for a fixed closed point x of X ．

Theorem 3

Let X be an n－dimensional locally a complete intersection simplicial toric variety．Then mult $x_{x} X \leqq 2^{n-\operatorname{mld}_{x} X}$ for a fixed closed point x of X and equality holds if and only if $\operatorname{emb}(X, X)=2 n-\operatorname{mld}_{x} X$ ．

Key idea
Nakajima classified cones corresponding to locally a complete intersection toric varieties in［ N ］．Using this classification，I proved Theorem 2 and Theorem 3.

Reference

［HW］C．Huneke and K．Watanabe，Upper bound of multiplicity of F－ratonal rings and F－pure rings，http：／／arxiv．org／abs／1310．0584
［IR］S．Ishii and A．J．Reguera，Singularities with the highest Mather minimal log discrepancy．Math．Z． 275 （2013），no．3－4，1255－1274．
［N］H．Nakajima，Affine torus embeddings which are complete
intersections，Tôhoku Math．Journal 38，1986，85－98．
［W］K．Watanabe，Invariant subrings which are complete intersections，I． （Invariant subrings of finite Abelian groups），Nagoya Math．J．77（1980），89－98．

