Linear section Calabi–Yau threefolds in Hibi toric varieties

Makoto Miura

muon@ms.u-tokyo.ac.jp
University of Tokyo

October, 2014

1 Hibi toric varieties

Let $P=(P,\prec)$ be a finite poset. The order polytope $\Delta(P)\subset \mathbb{R}^{|P|}$ is defined as follows:

 $\Delta(P) := \left\{ x = (x_u)_{u \in P} \mid 0 \le x_u \le x_v \le 1 \text{ for all } u \prec v \in P \right\}.$

The projective toric variety associated with $\Delta(P)$, i.e.

 $\mathbb{P}_{\Delta(P)} := \operatorname{Proj} \mathbb{C}[\operatorname{Cone}(\{1\} \times \Delta(P)) \cap (\mathbb{Z} \times \mathbb{Z}^{|P|})] \subset \mathbb{P}^{l(\Delta(P))-1}$

is called the Hibi toric variety for P.

2 Simple posets

For posets P_1 and P_2 , the sum $P_1 + P_2 := P_1 \sqcup P_2$ is the poset with the partial order \prec extended from those on the posets P_1, P_2 .

Lemma 2.1. $\mathbb{P}_{\Delta(P_1)} \times \mathbb{P}_{\Delta(P_2)} \simeq \mathbb{P}_{\Delta(P_1+P_2)}$.

The ordinary sum $P_1 \oplus P_2 := P_1 \sqcup P_2$ is the poset with the partial order \prec extended from those on the posets P_1, P_2 and imposing $u \prec v$ for all $u \in P_1$ and $v \in P_2$.

- **Lemma 2.2.** 1. A projective join of Hibi toric varieties $\mathbb{P}_{\Delta(P_1)}$, $\mathbb{P}_{\Delta(P_2)}$ in general $\mathbb{P}^{l(\Delta(P_1))-1}$, $\mathbb{P}^{l(\Delta(P_2))-1} \subset \mathbb{P}^{l(\Delta(P_1))+l(\Delta(P_2))-1}$ is isomorphic to the Hibi toric variety $\mathbb{P}_{\Delta(P_1 \oplus \{o\} \oplus P_2)}$.
- The Hibi toric variety P_{Δ(P1⊕P2)} is isomorphic to a (special) hyperplane on P_{Δ(P1⊕{0}⊕P2)}.

We call a poset P simple if it is neither $P_1 + P_2$ nor $P_1 \oplus P_2$ for non-empty posets P_1 and P_2 .

3 Classification

We say that a finite poset P is pure if the length of maximal chains on P is a constant. For a pure poset P, we denote by h_P the length of maximal chains on $\widehat{P} := \{\widehat{0}\} \oplus P \oplus \{\widehat{1}\}.$

There are eight simple pure posets with $|P|-h_P\leq 2$ up to order duality, listed in the following table.

posets	•	N	W	W	W	H	И	ĸ
V	\mathbb{P}^{n}	G(2, 5)	LG(3, 6	5)		(G(2, 6)	OG(5, 10)

Each poset P defines a Gorenstein terminal Hibi toric variety with $-K_{\mathbb{P}_{\Delta(P)}} = \mathcal{O}(h_P)$. Some of them can be regarded as degeneration limits of linear sections of Fano varieties V with Picard number one.

Theorem 3.1. There exist 52 distinct simple pure posets with $|P| - h_P = 3$ upto order duality. Each poset defines a family of linear section Calabi-Yau threefolds in the Hibi toric variety.

Remark 3.2. These include the case of V=G(2,7),G(3,6) and a Schubert variety $\mathbf{\Sigma}\subset\mathbb{OP}^2.$

4 Calabi–Yau equations

We consider the diagonal subfamilies of the Batyrev–Borisov mirror families for linear section Calabi-Yau threefolds X in Hibi toric varieties. Some of them give us the fourth order differential operators which vanish the period integrals of the diagonal subfamilies.

Example 4.1 (new CYE). In the case of χ , $\chi_{st}(X) = -54$,

 $\begin{aligned} \mathcal{D}_x &= \theta^4 - 2x(3 + 19\theta + 48\theta^2 + 58\theta^3 + 33\theta^4) \\ &+ 4x^2(75 + 314\theta + 527\theta^2 + 448\theta^3 + 174\theta^4) \\ &- 8x^3(228 + 953\theta + 1507\theta^2 + 1096\theta^3 + 332\theta^4) \\ &+ 96x^4(1 + \theta)^2(5 + 6\theta)(7 + 6\theta), \end{aligned}$

where $\theta = x \frac{\mathrm{d}}{\mathrm{d}x}$.

Example 4.2 (two MUM points). For \mathcal{U} , $\chi_{st}(X) = -66$,

$$\begin{split} \mathcal{D}_x &= 3721\theta^4 - 61x(305 + 1891\theta + 4677\theta^2 + 5572\theta^3 + 3029\theta^4) \\ &+ x^2(611586 + 2572675\theta + 4267228\theta^2 + 3428132\theta^3 + 1215215\theta^4) \\ &- 81x^3(37332 + 142191\theta + 206807\theta^2 + 140178\theta^3 + 39370\theta^4) \\ &+ 6561x^4(558 + 2241\theta + 3356\theta^2 + 2230\theta^3 + 566\theta^4) \\ &- 1594323x^5(1 + \theta)^4. \end{split}$$

Conjecture 4.3. If there exists the Calabi–Yau operator, the linear section Calabi–Yau threefolds in Hibi toric variety can be deformed into a smooth Calabi–Yau threefold.

5 Non-simple posets

The Hadamard product of two differential equations with power series solutions around x = 0 given by $\sum_n A_n x^n$ and $\sum_n B_n x^n$ is the equation that has $\sum_n A_n B_n x^n$ as its power series solution.

Proposition 5.1. If the Calabi–Yau operator exists for $P_1 \oplus P_2$, it becomes the Hadamard product of those for the posets P_1 and P_2 with the power series solutions corresponding to the monodromy invariant periods.

Example 5.2 (direct sum). In the case of $\mathcal{V}\mathcal{A}$, $V = Q^3 \times Q^3$.

$$\begin{split} \mathcal{D}_x &= 25\theta^4 - 20x(5+30\theta+72\theta^2+84\theta^3+36\theta^4) \\ &\quad -16x^2(-35-70\theta+71\theta^2+268\theta^3+181\theta^4) \\ &\quad +256x^3(1+\theta)(165+375\theta+248\theta^2+37\theta^3) \\ &\quad +1024x^4(59+232\theta+331\theta^2+198\theta^3+39\theta^4) \\ &\quad +32768x^5(1+\theta)^4. \end{split}$$

Example 5.3 (projective join). In the case of \mathbf{k} , the linear sec-

tion Calabi–Yau threefold can be deformed into a complete intersection of two Grassmannians, $G(2,5) \cap G(2,5) \subset \mathbb{P}^9$.