Linear section Calabi－Yau threefolds in Hibi toric varieties

Makoto Miura

muon＠ms．u－tokyo．ac．jp
University of Tokyo
October， 2014

1 Hibi toric varieties

Let $P=(P, \prec)$ be a finite poset．The order polytope $\Delta(P) \subset \mathbb{R}^{|P|}$ is defined as follows：

$$
\Delta(P):=\left\{x=\left(x_{u}\right)_{u \in P} \mid 0 \leq x_{u} \leq x_{v} \leq 1 \text { for all } u \prec v \in P\right\} .
$$

The projective toric variety associated with $\Delta(P)$ ，i．e．

$$
\mathbb{P}_{\Delta(P)}:=\operatorname{Proj} \mathbb{C}\left[\operatorname{Cone}(\{1\} \times \Delta(P)) \cap\left(\mathbb{Z} \times \mathbb{Z}^{|P|}\right)\right] \subset \mathbb{P}^{l(\Delta(P))-1}
$$

is called the Hibi toric variety for P ．

2 Simple posets

For posets P_{1} and P_{2} ，the sum $P_{1}+P_{2}:=P_{1} \sqcup P_{2}$ is the poset with the partial order \prec extended from those on the posets P_{1}, P_{2} ．
Lemma 2．1． $\mathbb{P}_{\Delta\left(P_{1}\right)} \times \mathbb{P}_{\Delta\left(P_{2}\right)} \simeq \mathbb{P}_{\Delta\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)}$ ．
The ordinary sum $P_{1} \oplus P_{2}:=P_{1} \sqcup P_{2}$ is the poset with the partial order \prec extended from those on the posets P_{1}, P_{2} and imposing $u \prec v$ for all $u \in P_{1}$ and $v \in P_{2}$ ．

Lemma 2．2．1．A projective join of Hibi toric varieties $\mathbb{P}_{\Delta\left(P_{1}\right)}$ ， $\mathbb{P}_{\Delta\left(P_{2}\right)}$ in general $\mathbb{P}^{l\left(\Delta\left(P_{1}\right)\right)-1}, \mathbb{P}^{l\left(\Delta\left(P_{2}\right)\right)-1} \subset \mathbb{P}^{l\left(\Delta\left(P_{1}\right)\right)+l\left(\Delta\left(P_{2}\right)\right)-1}$ is isomorphic to the Hibi toric variety $\mathbb{P}_{\Delta\left(\mathrm{P}_{1} \oplus\{0\} \oplus \mathrm{P}_{2}\right)}$ ．

2．The Hibi toric variety $\mathbb{P}_{\Delta\left(P_{1} \oplus P_{2}\right)}$ is isomorphic to a（special） hyperplane on $\mathbb{P}_{\Delta\left(\mathrm{P}_{1} \oplus\{0\} \oplus \mathrm{P}_{2}\right)}$ ．
We call a poset P simple if it is neither $P_{1}+P_{2}$ nor $P_{1} \oplus P_{2}$ for non－empty posets P_{1} and P_{2} ．

3 Classification

We say that a finite poset P is pure if the length of maximal chains on P is a constant．For a pure poset P ，we denote by h_{P} the length of maximal chains on $\widehat{P}:=\{\widehat{0}\} \oplus P \oplus\{\hat{1}\}$ ．
There are eight simple pure posets with $|P|-h_{P} \leq 2$ upto order duality，listed in the following table．

posets	－	S	W	W W	$!$	\pm	\＄
V	\mathbb{P}^{n}	$G(2,5)$	$L G(3,6)$			$G(2,6)$	$O G(5,10)$

Each poset P defines a Gorenstein terminal Hibi toric variety with $-K_{\mathbb{P}_{\Delta(P)}}=\mathcal{O}\left(h_{P}\right)$ ．Some of them can be regarded as degeneration limits of linear sections of Fano varieties V with Picard number one．

Theorem 3．1．There exist 52 distinct simple pure posets with $|P|-h_{P}=3$ upto order duality．Each poset defines a family of linear section Calabi－Yau threefolds in the Hibi toric variety．

4 Calabi－Yau equations

We consider the diagonal subfamilies of the Batyrev－Borisov mirror families for linear section Calabi－Yau threefolds X in Hibi toric va－ rieties．Some of them give us the fourth order differential operators which vanish the period integrals of the diagonal subfamilies．

Example 4.1 （new CYE）．In the case of $\mathcal{L S}$ ，$\chi_{s t}(X)=-54$ ，

$$
\begin{aligned}
\mathcal{D}_{x}= & \theta^{4}-2 x\left(3+19 \theta+48 \theta^{2}+58 \theta^{3}+33 \theta^{4}\right) \\
& +4 x^{2}\left(75+314 \theta+527 \theta^{2}+448 \theta^{3}+174 \theta^{4}\right) \\
& -8 x^{3}\left(228+953 \theta+1507 \theta^{2}+1096 \theta^{3}+332 \theta^{4}\right) \\
& +96 x^{4}(1+\theta)^{2}(5+6 \theta)(7+6 \theta)
\end{aligned}
$$

where $\theta=x \frac{\mathrm{~d}}{\mathrm{~d} x}$ ．
Example 4.2 （two MUM points）．For \mathcal{K} ，$\chi_{s t}(X)=-66$ ，

$$
\begin{aligned}
\mathcal{D}_{x}= & 3721 \theta^{4}-61 x\left(305+1891 \theta+4677 \theta^{2}+5572 \theta^{3}+3029 \theta^{4}\right) \\
& +x^{2}\left(611586+2572675 \theta+42672288 \theta^{2}+3428132 \theta^{3}+1215215 \theta^{4}\right) \\
& -81 x^{3}\left(37332+142191 \theta+206807 \theta^{2}+140178 \theta^{3}+39370 \theta^{4}\right) \\
& +6561 x^{4}\left(558+2241 \theta+3356 \theta^{2}+2230 \theta^{3}+566 \theta^{4}\right) \\
& -1594323 x^{5}(1+\theta)^{4} .
\end{aligned}
$$

Conjecture 4．3．If there exists the Calabi－Yau operator，the linear section Calabi－Yau threefolds in Hibi toric variety can be deformed into a smooth Calabi－Yau threefold．

5 Non－simple posets

The Hadamard product of two differential equations with power series solutions around $x=0$ given by $\sum_{n} A_{n} x^{n}$ and $\sum_{n} B_{n} x^{n}$ is the equation that has $\sum_{n} A_{n} B_{n} x^{n}$ as its power series solution．

Proposition 5．1．If the Calabi－Yau operator exists for $P_{1} \oplus P_{2}$ ， it becomes the Hadamard product of those for the posets P_{1} and P_{2} with the power series solutions corresponding to the mon－ odromy invariant periods．

$$
\begin{aligned}
\mathcal{D}_{x}= & 25 \theta^{4}-20 x\left(5+30 \theta+72 \theta^{2}+84 \theta^{3}+36 \theta^{4}\right) \\
& -16 x^{2}\left(-35-70 \theta+71 \theta^{2}+268 \theta^{3}+181 \theta^{4}\right) \\
& +256 x^{3}(1+\theta)\left(165+375 \theta+248 \theta^{2}+37 \theta^{3}\right) \\
& +1024 x^{4}\left(59+232 \theta+331 \theta^{2}+198 \theta^{3}+39 \theta^{4}\right) \\
& +32768 x^{5}(1+\theta)^{4} .
\end{aligned}
$$

Example 5.3 （projective join）．In the case of
tion Calabi－Yau threefold can be deformed into a complete inter－ section of two Grassmannians，$G(2,5) \cap G(2,5) \subset \mathbb{P}^{9}$ ．

