Sakai－Sugimoto model in QCD，five－dimensional Yang－Mills theory，and the Chern character appearing in the associated chiral anomaly

Tomohiro IWAMI（Kyushu Sangyo Univ．）

The Symposium of Algebraic Geometry，Kinosaki，Oct．20－Oct．24，2014

1 Introduction

－D－branes probed systems［5］in the context of AdS／CFT correspondence：
－the study of quiver moduli［2］．
－the Bogomolov－Gieseker type inequality on Calabi－Yau 3－folds［1］．
－D4／D8／$\overline{\mathrm{D} 8}$ probed system model（the so－called Sakai－ Sugimoto model［4］）：
－mostly successful to describing Hadron mod－ els in QCD（quantum chromodynamics）without quark models．
－to give the configurations of＂skyrmions＂（just like solitons）in five－dimensional Yang－Mills （YM）theory．（M．Atiyah et al，1988）．

In this note，based on the result［4］，we discuss a chi－ ral anomaly［4］associated to the WZW term of Sakai－ Sugimoto model with regards to the Chern character ap－ pearing in the conjectural form of stability condition［1］．

2 Sakai－Sugimoto D4／D8／$\overline{\mathrm{D} 8}$ model and the associated five－dimensional Yang－Mills theory

Brief explanations［4］defines the chiral symmetry $\mathrm{U}\left(N_{f}\right)_{L} \times \mathrm{U}\left(N_{f}\right)_{R}$ gravitational model in 10－dimensional space，having the configurations of N_{c} D4 branes in（01234）－direction with compactification for（0123）－ direction as S^{1} by $\tau \sim \tau+2 \pi / U_{K K}$ ，and of N_{f} D8－D8 branes（ $\overline{\mathrm{D} 8}$ means having the inverse charge of D8）in （012356789）－direction，where N_{c}, N_{f} the numbers of colors and flavors，resp．，$U_{K K}$ the Kalza－Klein mass，and τ the angle coordinate in（4）－direction of S^{1}－compactification．
（1）Then，D4－brane solution is $d s^{2}=\left(\frac{2 U}{3}\right)^{3 / 2}\left(\eta_{\mu v} d x^{\mu} d x^{\nu}+\right.$ $\left.f(U) d \tau^{2}\right)+\left(\frac{3}{2 U}\right)^{3 / 2}\left(\frac{d U^{2}}{f(U)}+U^{2} d \Omega_{4}^{2}\right)$ ，where $f(U):=$ $1-\frac{1}{U^{3}}, x^{\mu}(\mu=0,1,2,3)$ the 4 －dimensional Minkowski coordinates，τ the above angle coordinate，U the ra－ dius coordinate in the 5 －dimensional space orthogo－ nal to D4－brane with $U \geq U_{K K}$ ，and $d \Omega_{4}^{2}$ the metric of 4－dimensional sphere S^{4} surrounding D4－brane［4， （3．1）］．（Assume $U_{K K}=1$ for simplicity in the sequel．）
（2）Then，for introducing flavor－branes［3］of D8－$\overline{\mathrm{D} 8}$ as probes（assuming $N_{f} \ll N_{c}$ ），i．e．embedding D8 on D4－ background as（1）with $U=U(\tau)$ ，the action of D 8 is $S_{D 8} \propto \int d^{4} x d \tau e^{-\phi} \sqrt{\operatorname{det}\left(-g_{D 8}\right)}$ ，where ϕ is dilaton，and $g_{D 8}$ is the metric induced on the world－sheet of D8．
（3）Chiral fermions ϕ_{L}, ϕ_{R} are induced from open string between D4 and D8（ $\overline{\mathrm{D} 8})$ ．
（4）Setting $(y, z)=\sqrt{U^{2}-1}\left(\cos \left(U_{K K} \tau\right), \sin \left(U_{K K} \tau\right)\right)$ ，the configuration of continuing $\mathrm{D} 8(\overline{\mathrm{D} 8})$ is given by $y=0$ ． Then，world－volume of probe D8 is given by x^{μ}, z and S^{4}－direction surrounding D4，i．e．（8＋1）－dimensional．
（5）Assume that S^{4}－dependency is ignored．Then，the 5－dimensional YM theory is given as $S_{D 8}^{Y M}=$ $\kappa \int d^{4} x d z \operatorname{tr}\left\{\frac{1}{2} K^{-1 / 3} F_{\mu \nu}^{2}+K U_{K K}^{2} F_{\mu \nu}^{2}\right\}$ ，where $\kappa=$ $\frac{\lambda N_{c}}{108 \pi^{3}}, K(z)=1+z^{2}, \lambda=g_{Y M}^{2} N_{c}, g_{Y M}$ the YM coupling at $U_{K K}$ ，and $F_{\mu \nu}$ the field strengths．The associated Chern－Simons（CS）term is $S_{D 8}^{C S}=\frac{N_{c}}{24 \pi^{2}} \int_{M^{4} \times \mathbb{R}} \omega_{5}(A)$ ， where $\omega_{5}(A)=\operatorname{tr}\left(A F^{2}-\frac{1}{2} A^{3} F+\frac{1}{10} A^{3}\right)$ the 5 －form， $A=A\left(x^{\mu}, z\right)$ the gauge field on D8，and $F=\left(F_{\mu \nu}\right)$ ．

3 Chiral anomaly on probe D8 and the associated Chern characters

Main Result By［4，（5．76），（5．77）］，$S_{D 8}^{C S}=\mu \int_{D 8} C_{3} \operatorname{tr} F^{3}=$ $\mu \int_{D 8} F_{4} \omega_{5}(A)$ ，where $F_{4}=d C_{3}$ the RR（Ramond－Ramond） 4－form field strength，$\mu=\frac{1}{48 \pi^{3}}$ and $d \omega_{5}=\operatorname{tr} F^{3}$ holds．For the infinitesimal gauge transformation $\delta_{\Lambda} A=d \Lambda+[\Lambda, A]$ ， $\delta_{\Lambda} \omega_{5}(A)=d \omega_{4}^{1}(\Lambda, A)$ ，where $\omega_{4}^{1}(\Lambda, A)=\operatorname{tr}(\Lambda d(\operatorname{Ad} A+$ $\left.\frac{1}{2} A^{3}\right)$ ）．Then，the gauge transformation of CS－term $\delta_{\Lambda} S_{C S}^{D 8}=$ $\frac{N_{c}}{24 \pi^{2}} \int_{M^{4} \times \mathbb{R}} d \omega_{4}^{1}(\Lambda, A)$ is given by taking $z \rightarrow \pm \infty$ for the gauge potentials $A_{L}(z, \Lambda)$（resp．$A_{R}(z, \Lambda)$ ）of $\phi_{L}\left(\right.$ resp．$\left.\phi_{R}\right)$ ． So，$\delta_{\Lambda} S_{C S}^{D 8}$ induces WZW terms．By considering tr F^{3} as the third term of the Chern character $\operatorname{ch}(F)=\operatorname{tr} e^{\sqrt{-1} F /(2 \pi)}$ ，the followings are settled：Let X be the smooth projective com－ plex 3－fold as smooth compactification of $M^{4} \times \mathbb{R} \times \mathbb{R} \ni$ $\left(x^{\mu}, z, u\right)$ and let $\left(\tilde{x}^{\mu}\right)=\left(x^{\mu}, z, u\right)$ with $\tilde{x}^{6}=u$ ．Let $B_{1}=$ $A_{\mu v}(\mu, v=0,1, \cdots, 5)$ and $B_{2}=A_{\mu v}(\mu, v=0,1,2,3)$ the 2－forms in $H^{2}(X, \mathbb{C})$ such that B_{2} is ample when X as a com－ plex 3－fold．Define $\tilde{A}=\tilde{A}\left(x^{\mu}, z, u\right)=\tilde{A}(\tilde{x})$ the gauge field on X such that $\tilde{A}_{u}=0$ ．Let the 2 －forms $\tilde{F}=\left(\tilde{A}_{\mu v}\right)(\mu, v=$ $0,1, \cdots, 5)$ on X and $\operatorname{ch}_{X}(\tilde{F})$ the Chern character for \tilde{F} on X ，and define $Z_{B_{1}, B_{2}}(\tilde{F})=\int e^{-\left(B_{1}+\sqrt{-1} B_{2}\right)} \mathrm{ch}_{X}(\tilde{F})$ ．Then；

Theorem As the chiral anomaly works even when $A_{z}=0$ gauge $[4, \mathrm{pp} .869],\left.Z_{B_{1}, B_{2}}(\tilde{F})\right|_{M^{4} \times \mathbb{R}}=\delta_{\Lambda} S_{C S}^{D 8}$ is satis－ fied．Therefore，if［1，I，Conj．3．2．7］holds for $Z_{B_{1}, B_{2}}(\tilde{F})$ ，then $\delta_{\Lambda} S_{C S}^{D 8}$ or $Z_{B_{1}, B_{2}}(\tilde{F})$ reproduces the chiral anomaly．

References

［1］A．Bayer，A．Bertram，E．Macri，and Y．Toda：Bogomolov－ Gieseker type \cdots ，［math．AG］ $1103.5010,1106.3430$.
［2］A．Ishii and K．Ueda：［math．AG］1012．5449v1，et al
［3］A．Karch，E．Katz：Adding flavor \cdots ，hep－th／0205236．
［4］T．Sakai and S．Sugimoto：Low energy hadron physics in holographic QCD，Prog．Theor．Phys．，113（2005）．
［5］E．Witten：Anti－de－Sitter space \cdots ，hep－th／9803131．

