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1 Introduction

One of the most basic tool for the study of topology of spaces is the cell
decomposition. For example, the complex projective space has the following
famous decomposition:

CPn = Cn " Cn−1 " · · · " C " {pt}.

On the other hand, the case of affine varieties is more complicated. For
example, C× = C \ {0} is known to be homotopically equivalent to the circle

C× ≈ S1.

The descent of the dimension may be notable. In general, Lefschetz proved
the following.

Theorem 1.1. (Lefschetz, [10]) Let M be a complex smooth affine variety of
dimC M = n. Then M is homotopic to a finite CW-complex X of dimRX ≤
n.

(Sketch of the proof.) Assume that M ⊂ CN is a closed subvariety.
Choose a point p ∈ CN \M generically. Then the distance function

M −→ R≤0, x )−→ ||x− p||

becomes a Morse function. By the Cauchy-Riemann equation, the Morse
index of each critical point is ≤ n. Using the gradient flow, one can construct
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a homotopy equivalence between M and a finite CW-complex of dimR ≤ n.
(Q. E. D.)

Morse theoretic construction of the cell decomposition is a sort of “proof
of existence”. Except for the very special cases, e.g., bouquet of spheres, it
is difficult to deduce the information of the attaching maps of the cells in
general. Next one is an example of Morse function on the two-punctured
plane.

Example 1.2. Let M = C \ {0, 1} and ϕ(z) := (z+1)2√
z(z−1)

. We consider

|ϕ| : M → R as a Morse function which has three critical points z =

−1, 5−
√
17

4 , 5+
√
17

4 with index 0, 1, 1 respectively. Note that all critical points

are real and 0 < 5−
√
17

4 < 1 < 5+
√
17

4 . The unstable manifolds present a
one-dimensional CW complex which is homotopic to M . Since |ϕ(z)| → ∞
as |z| → ∞, the unstable cells are as in Figure 1. It is not easy to describe
the unstable manifolds explicitly even for one-dimensional cases. Neverthe-
less, the stable manifolds can be explicitly described: two open segments
(0, 1), (1,∞) and the remainder U = M \ ((0, 1) ∪ (1,∞)).
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Figure 1: Unstable and stable manifolds (thick and dotted line, respectively).

We have a partition U " (0, 1) " (1,∞) of M by contractible pieces, and
note that the number of codimension zero piece is equal to b0(M) = 1 and
that of codimension one is b1(M) = 2. Also note that codimension one
pieces (0, 1) and (1,∞) are nothing but chambers of the real hyperplane
arrangement {0, 1}. These pieces are expressed in terms of defining linear
forms as follows,

(0, 1) =

{
z ∈ M

∣∣∣∣
z − 1

z
∈ R<0

}
,

(1,∞) =

{
z ∈ M

∣∣∣∣
−1

z − 1
∈ R<0

}
,

(1)

where R<0 is the set of negative real numbers.
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The homotopy types of the unstable cells for higher dimensional cases
are discussed in [14]. The unstable cell itself is highly transcendental. On
the other hand, the stable manifolds are semi-algebraic sets (open segments
and their complements). The purpose of this paper is to explain that similar
description works for the complement of line arrangements (defined over R) in
C2. Then we will apply our semi-algebraic stratification to the computation
of the monodromy of Milnor fibers.

2 Minimal stratification

A real arrangement A = {H1, . . . , Hn} is a finite set of affine lines in the
affine plane R2. Each line is defined by some affine linear form

αH(x1, x2) = ax1 + bx2 + c = 0, (2)

with a, b, c ∈ R and (a, b) ̸= (0, 0). A connected component of R2 \
⋃

H∈AH
is called a chamber. The set of all chambers is denoted by ch(A). The affine
linear equation (2) defines a complex line {(z1, z2) ∈ C2 | az1 + bz2 + c = 0}
in C2. We denote the set of complexified lines by AC = {HC = H ⊗ C |
H ∈ A}. The object of our interest is the complexified complement M(A) =
C2 \

⋃
H∈A HC.

To describe the semi-algebraic stratification, we need a good numbering
of lines associated with a fixed generic line. Let F be an oriented generic line
in R2. We assume that the numbering H1, . . . , Hn satisfies

H1 ∩ F < H2 ∩ F < · · · < Hn ∩ F ,

and for each H the positive half-space {αH > 0} ⊂ R2 covers positive direc-
tion of F .

Definition 2.1. chF(A) := {C : chamber | C ∩ F = ∅}.

Definition 2.2. Set αn+1 = −1. For i = 1, 2, . . . , n, define Si ⊂ M(A) as
follows.

Si =

{
z = (z1, z2) ∈ M(A)

∣∣∣∣
αi+1(z)

αi(z)
∈ R<0

}
.

The following is the main result.

Theorem 2.3. The closed submanifolds S1, . . . , Sn ⊂ M(A) satisfy the fol-
lowing.
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Figure 2: Numbering of lines and chambers.

(i) Si and Sj (i ̸= j) intersect transversely, and Si ∩ Sj =
⊔
C, where C

runs all chambers satisfying αi(C)αi−1(C) < 0 and αj(C)αj−1(C) < 0.

(ii) S◦
i := Si \

⋃
C∈chF (A) C is a contractible 3-manifold.

(iii) U := M(A) \
⋃n

i=1 Si is a contractible 4-manifold.

For the proof, see [15]. We call the above decomposition the minimal
stratification of M(A).

Remark 2.4. It is conjectured that similar construction provides a good
minimal stratification for higher dimensional cases.

3 Milnor fibers

Let A = {H1, . . . , Hn} be an affine line arrangement in R2 with the defining
equation QA(x, y) =

∏n
i=1 αi, where αi is a defining linear equation for Hi.

The coning cA of A is an arrangement of n + 1 planes in R3 defined by
the equation QcA(x, y, z) = zn+1Q(xz ,

y
z ). The line {z = 0} ∈ cA is called

the line at infinity and is denoted by H∞. The complexified complement
M(A) = C2 \ {QA = 0} can be identified with P2

C \ {QcA = 0}. We call
p ∈ RP2 a multiple point if the multiplicity of cA at p (that is, the number
of lines passing through p) is greater than or equal to 3.

Definition 3.1. FA = {(x, y, z) ∈ C3 | QcA(x, y, z) = 1)} is called the Milnor
fiber of A. The automorphism ρ : FA −→ FA, (x, y, z) )−→ (ζx, ζy, ζz), with
ζ = exp(2πi/(n+ 1)), is called the monodromy action.

The automorphism ρ has order n + 1. It generates the cyclic group
⟨ρ⟩ ≃ Z/(n+1)Z. The monodromy ρ induces a linear map ρ∗ : H1(FA,C) −→
H1(FA,C). Since (ρ∗)n+1 is the identity, we have the eigenspace decompo-
sition H1(FA,C) =

⊕
λn+1=1 H

1(FA,C)λ, where H1(FA,C)λ is the the set of
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λ-eigenvectors with eigenvalue λ ∈ C∗. When λ = 1, H1(FA)1 = H1(FA)ρ
∗
is

the subspace of elements fixed by ρ∗, which is isomorphic to H1(FA/⟨ρ⟩). It
is easily seen that the quotient by the monodromy action is FA/⟨ρ⟩ ≃ M(A).
Therefore, the 1-eigenspace of the first cohomology is combinatorially deter-
mined, H1(FA)1 ≃ H1(M(A)) ≃ Cn. In general, let Lλ be a complex rank
one local system associated with a representation

π1(M(A)) −→ C∗, γH )−→ λ,

where γH is a meridian loop of the line H. Then it is known that

H1(FA)λ ≃ H1(M(A),Lλ). (3)

(See [1] for details.)
One can compute the dimension of the monodromy eigen space by using

the minimal stratification.

Theorem 3.2. We can formulate an algorithm computing dimH1(FA)λ in
terms of the “real picture”. (See [16] for details.)

As we mentioned, dimH1(FA)1 = n. Therefore the non-trivial part of
the first cohomology group is

H1(FA) ̸=1 =
⊕

λ ̸=1

H1(FA)λ.

One of the main problem is whether the non-trivial part H1(FA) ̸=1 is com-
binatorially determined or not. Indeed the nontrivial part is conjectured to
be determined by the following combinatorial structure.

Definition 3.3. A k-multinet on cA is a pair (N ,X ), where N is a partition
of cA into k ≥ 3 classes A1, . . . ,Ak and X is a set of multiple points such
that

(i) |A1| = · · · = |Ak|;

(ii) H ∈ Ai and H ′ ∈ Aj (i ̸= j) imply that H ∩H ′ ∈ X ;

(iii) for all p ∈ X , |{H ∈ Ai | H ∋ p}| is constant and independent of i;

(iv) for anyH,H ′ ∈ Ai (i = 1, . . . , k), there is a sequenceH = H0, H1, . . . , Hr =
H ′ in Ai such that Hj−1 ∩Hj /∈ X for 1 ≤ j ≤ r.

Example 3.4. There are infinitely many 3-multinets. See [4] and [16] for
examples.
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Figure 3: Examples of 3-multinets

Example 3.5. (Hessian arrangement) Let fµ(z1, z2, z3) = 3z1z2z3 − µ(z31 +
z32 + z33), with µ ∈ C. It is well-known that fµ factors into linear forms if
and only if µ = 0, 1,ω,ω2, where ω = e2πi/3. For µ = 0, 1,ω,ω2, let us define
Aµ = {fµ = 0} ⊂ P2, which is a union of three lines. Then

A = A0 "A1 "Aω "Aω2

determines a 4-multinet structure. This arrangement is called the Hessian
arrangement.

The following is a consequence of [9], [6, Theorem 3.11] and [5, Theorem
3.1 (i)]

Theorem 3.6. Under the notation as above.

(1) Suppose there exists a k-multinet on cA for some k ≥ 3 and set λ =
e2πi/k. Then

dimH1(FA)λ ≥ k − 2.

(2) If cA has at most triple points (i.e., each intersection is either double or
triple point), then H1(FA) ̸=1 ̸= 0 if and only if cA supports a 3-multinet
structure. (And then non-trivial eigenvalue is λ = e2πi/3.)

These results indicates the following.

Conjecture 3.7. Suppose λ ∈ C× has order k. Then H1(FA)λ ̸= 0 if and
only if cA supports a k-multinet structure.
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Thus, the nontrivial eigenspace of the first cohomology group of the Mil-
nor fiber is conjecturally described combinatorially. Furthermore, Yuzvinsky
[17] proved that there does not exists k-multinet for k ≥ 5. We also note
that the Hessian arrangement (Example 3.5) is the only known 4-multinet,
(hence only known k-multinet with k ̸= 3).

Another problem concerning the topology of the Milnor fiber is the torsion
freeness of the homology groups. We recently proved the following ([2, 12,
13]).

Theorem 3.8. Let us assume that A is defined over R. Then,

(1) cA does not admit 4-multinet structure.

(2) H1(FA,Z) does not have torsion.

Acknowledgement. I would like to thank organizers of wonderful Kinosaki
Conference. This work is supported by the Grant-in-Aid for Scientific Re-
search (C) 25400060.
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