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Abstract. This proceeding article is based on the author’s talk
at the Kinosaki symposium on algebraic geometry on 2014/10/23.

We prove a Néron–Ogg–Shafarevich type criterion for good re-
duction of K3 surfaces: unramified Galois action on the second
l-adic cohomology of a K3 surface implies good reduction after a
finite unramified extension of the base field. The proof involves
birational geometry of certain threefolds of mixed characteristic.
This is a joint work with Christian Liedtke.

1. Introduction — complex case

We first consider the problem of good reduction in the classical com-
plex case.

Let ∆ ⊂ C be a (small) disc containing the point 0, and let ∆∗ =
∆ \ {0} the punctured disc. We consider the following problem: given
a family X → ∆∗ of smooth proper varieties, does there exist an exten-
sion X → ∆ (also smooth proper over 0)? If such an extension exists,
we say that X has good reduction.

There is an obvious necessary condition. Fix a point η ∈ ∆∗. Then
the fundamental group π1(∆∗, η) (which is an infinite cyclic group
generated by the loop around 0) acts on (Betti) cohomology groups
H i(Xη,Z) (here Xη denotes the fiber above η). This is called the mon-
odromy action.

Proposition 1.1. If X has good reduction, then the monodromy action
is trivial.

Proof. Indeed, if X extends to a family X → ∆, then the monodromy
action factors the group π1(∆, η), which is trivial. !

One can ask the converse problem: whether trivial monodromy ac-
tion (on all H i) implies good reduction. In general this does not hold,
even for (families of) curves of genus ≥ 2. But it does hold if X is a
family of abelian varieties, see Theorem 2.3.

In the case of K3 surfaces, there is the following result of Kulikov
and Persson–Pinkham.
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2 YUYA MATSUMOTO

Theorem 1.2 (Kulikov [Kul77, Theorems I and II], Persson–Pinkham
[PP81]). Let X → ∆∗ be a family of K3 surfaces.

(1) After replacing ∆∗ by a finite covering (which we also denote by
∆∗), there exists an extension X → ∆ which is proper and semistable
(that is, X0 is a normal crossing divisor of X ), and with relative canon-
ical divisor KX/∆ = 0.

(2) There are three possible types of special fiber X0 of such X . Type
I is smooth K3 surfaces, and types II and III have more than one
irreducible components1. If X0 is of type II or III then the monodromy
action of π1(∆∗, η) on H2(Xη,Z) is non-trivial.

As a consequence, trivial monodromy action implies potential good
reduction2.

Remark 1.3. Even if X → ∆∗ is algebraic, their construction of X
involves non-algebraic transformations, and X may not be algebraic.

2. algebraic case

Now we consider the algebraic version of the problem.
First we explain the setting. In place of the disc∆ and the punctured

disc ∆∗, we consider SpecOK and SpecK, where K is a complete
discrete valuation field and OK ⊂ K is its valuation ring. The point
0 ∈ ∆ corresponds to Spec k, where k = OK/mK is the residue field.

Example 2.1. A typical example is K = Qp (p-adic numbers): then
OK = Zp (p-adic integers) and k = Fp. We can also consider finite
extensions of K, or the maximal unramified extensions of such fields.

Another typical example is OK = F [[t]] (formal power series) for a
field F : then K = F ((t)) = F [[t]][t−1] and k = F . If F = C then this
is very close to the case considered in the previous section. We can also
consider finite extensions of K, but such fields are always of the form
F ′((u)) for some finite extension F ′/F .

In the following we restrict to the case where charK = 0 and k is
perfect (of characteristic p ≥ 0).

As in the previous section we consider the following problem. Given
a smooth proper variety X over K, does there exist an extension X
which is smooth and proper over OK? If such X exists we say that X
has good reduction.

Although this setting looks parallel to the previous section, the
present situation differs from the complex case in the following points.

1They have (and use) further informations on the components and the configu-
ration, but we omit the details.

2“potential” means “after changing the base by a finite extension”.
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GOOD REDUCTION CRITERION FOR K3 SURFACES 3

First, when p > 0, the resolution of singularity and the potential
semistable reduction is only known for special cases (e.g. dimX = 1).
We therefore need some technical assumption on our main theorems.
Second, the residue field k is not necessarily algebraically closed. This
becomes essential in some of our main theorems, as we will see later.

We now explain an (obvious) necessary condition concerning the
monodromy action. For (any) variety X over K, and for any inte-
ger i and prime l, the i-th l-adic étale cohomology group H i

ét(XK ,Zl)
is defined. It is a Zl-module and it is equipped with an action of
GK = Gal(K/K). Define the inertia subgroup IK of GK by IK =
Ker(GK → Gk). We say a representation of GK is unramified if IK
acts trivially.

Proposition 2.2. Assume l ̸= p. If a smooth proper variety X has
good reduction, then H i

ét(XK ,Zl) is an unramified representation.

This is indeed an analogue of Proposition 1.1 because it says that,
if X extends to X → SpecOK , then the action of πét

1 (SpecK) =
Gal(K/K) on H i

ét factors through π
ét
1 (SpecOK) = Gal(k/k) (here πét

1

denotes the étale fundamental group).
In case of abelian varieties the converse is true (and it suffices to

check H1 for a single l):

Theorem 2.3 (Serre–Tate [ST68, Theorem 1]). An abelian variety A
over K has good reduction if and only if H1

ét(AK ,Zl) is an unramified
representation for some prime l ̸= p. (And if these conditions are
satisfied, then H i

ét(AK ,Zl) is unramified for any i and any l ̸= p.)

Our main theorems, stated in the next section, are K3 versions of
this Serre–Tate theorem and algebraic versions of Kulikov and Persson–
Pinkham’s result.

Remark 2.4. Although these results are limited to l-adic cohomology
with l ̸= p, there is also a theory of p-adic representations, in which
crystalline representations are supposed to play the role of unramified
ones in the l-adic theory. But we do not pursue this in this article.

3. main theorems

We state the theorems in this section, and give sketches of proofs in
the later sections.

First we (the author) showed the following.

Theorem 3.1 (M. [Mat14, Theorem 1.1]). Let X be a K3 surface
over K and l ̸= p a prime. Assume p ̸= 2, 3. Assume the following
condition:
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(∗) There exists a smooth proper surface X ′, birational to X, having
potential semistable reduction (in the category of schemes)3.

If H2
ét(XK ,Zl) is an unramified representation, then X has potential

good reduction, that is, there exists a finite extension K ′/K and an
algebraic space X smooth proper over SpecOK′ satisfying X ⊗OK′ K

′ ∼=
XK′.

Remark 3.2. It is essential to consider algebraic spaces: the theo-
rem fails if we replace “algebraic space” with “scheme”. We gave a
counterexample in [Mat14, Section 5.2].
On the other hand, if we allow the model X to have some “mild”

singularities, then we have a positive result in the category of schemes.
We omit the precise statement since it (which required field extensions)
is now superseded by Theorem 3.4 (c) below.

Remark 3.3. If p = 0, assumption (∗) (in fact, the stronger statement
that X has potential semistable reduction) is known to be true for any
variety X. But it is open even for (K3) surfaces if p > 0. One known
case is the following: if (a K3 surface) X admits an ample line bundle
L such that L2 + 4 < p then (∗) is true (see [Mau14, Section 4] and
[Mat14, Section 3]).

Recently we (the author with Christian Liedtke) made this theorem
more precise:

Theorem 3.4 (Liedtke–M. [LM14, Theorems 5.1 and 6.2]). (a) In
Theorem 3.1, we can take K ′/K to be an unramified extension4.

(b) But we cannot take K ′ = K in general.
(c) Under the assumptions of Theorem 3.1, there exists a scheme Z

proper flat over SpecOK (without extending K) such that Z ⊗OK K
is isomorphic to X and (Z0)k has only rational double point (RDP)
singularities.

Summarizing, we have the following equivalence.

Corollary 3.5. A K3 surface (satisfying (∗)) has good reduction over
a finite unramified extension if and only if its l-adic H2 is unramified.
We cannot drop the phrase “over a finite unramified extension”.

Remark 3.6. A natural question is the uniqueness (up to changing
K ′) of X and Z in the theorem, after fixing a polarization L of X

3That is, there exists a finite extension K ′/K and a scheme X ′ proper flat over
OK′ such that X ′ ⊗OK′ K

′ is isomorphic to X ′ and X ′
0 is a strict normal crossing

divisor of X ′.
4K ′/K is said to be unramified if mK generates mK′ as an OK′ -module, or

equivalently, if the inclusion IK′ ⊂ IK of the inertia subgroups is an equality.
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GOOD REDUCTION CRITERION FOR K3 SURFACES 5

and assuming a further condition on extension of L to X or Z. For
(c), there exists a unique Z on which L extends as a polarization. For
(a), if we require L to extend to a polarization on X , then such X do
not exist in general. Instead, it is natural to require L to extend to a
quasi-polarization on X (i.e., to be a big and nef line bundle on X0),
and then such X exists. But in this case uniqueness does not hold
in general. There may be more than one such models, and they are
connected by flops (in the sense of [LM14, Section 3.3]).

4. Proof of Theorem 3.1

(Details: [Mat14, Sections 2, 3])
In this section we freely replace the base field K by finite extensions.
Start from a proper semistable model X ′ of a surface X ′ birational

to X (possibly after extending K) whose existence is assured by (∗).
First we will construct a model as in Theorem 1.2 (1) (that is,

semistable and relative K = 0). To do this, we apply minimal model
program (MMP) to get a “minimal” model, and then resolve the sin-
gularities (which are mild and well-known). This method of obtaining
a semistable model is taken from Maulik’s paper [Mau14, Section 4].

We apply on X the semistable MMP for 3-dimensional mixed char-
acteristic schemes, which is accomplished by Kawamata [Kaw94]. The
program terminates (possibly after extending K) at X ′′ which is either
a minimal model (KX ′′/OK

nef) or a Mori fiber space (whose description
we omit). In our case (of a K3 surface X), always the former occur,
the generic fiber of X ′′ is isomorphic (not only birational) to X, and
we have KX ′′/OK

= 0.
By the classification of log terminal singularities (Kawamata [Kaw94,

Section 4]) and the fact that KX ′′/OK
is Cartier (not only Q-Cartier) in

our case, the possible non-smooth points of X ′′ are of the following two
types: either semistable, or X ′′

0 has rational double point singularity
(over k) at that point (this latter may be viewed as an arithmetic
analogue of compound Du Val singularities).

To get a semistable model, we want to resolve the latter type of
singularities (without changing the generic fiber). Unfortunately, such
resolution does not always exist in the category of schemes. Fortu-
nately, Artin’s result [Art74] assures that such resolution X ′′′ → X ′′

exists in the category of algebraic spaces (possibly after extending K).
Thus we obtain a semistable model X ′′′ of X.

The possible special fibers of such X ′′′ is classified by Nakkajima
[Nakk00, Proposition 3.4] in the positive characteristic case. The con-
clusion is the same as Kulikov’s list.
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Now we want to compute the Galois action on the cohomologyH2
ét(XK ,Zl)

(⊗Zl
Ql) in terms of cohomology of (intersections of) irreducible compo-

nents of X ′′′
0 . If the semistable model X ′′′ is a scheme, then we can do

this using the Rapoport–Zink spectral sequence (parallel to the Steen-
brink spectral sequence in the complex case). We showed [Mat14, Sec-
tion 2] the existence and the needed properties of this spectral sequence
for the case X ′′′ is an algebraic space (with some conditions). Using it
we can compute the Galois action and obtain the same conclusion as
in Kulikov’s complex case: IK acts non-trivially if X ′′′ is not smooth.

5. Proof of Theorem 3.4(b)

(Details: [LM14, Sections 3, 6])
In essence, the non-existence of the resolution of the following type

is the obstruction for having good reduction without extending K.

Lemma 5.1. Let p ≥ 5 and d ∈ Z∗
p be such that d ̸∈ Z∗2

p . Let A =
Zp[x, y, z]/(xy + z2 − dp2). Then A does not admit a simultaneous
resolution over Zp: that is, there does not exist an algebraic space Y
smooth over Zp with a morphism ψ : Y → SpecA which is isomorphic
on the generic fiber and is the resolution of the (RDP) singularities on
the special fiber.

The reader might recall the singularity (xy − zw = 0) ⊂ A4 and the
(Atiyah) flop between the two resolutions.

A ⊗Zp Zp[
√
d] does admit a simultaneous resolution over Zp[

√
d]:

blowing up either (x, z−
√
d·p) or (x, z+

√
d·p) gives a desired resolution

(each of these ideals are principal except exactly at the singular point).
But these ideals are not defined over Zp. This is not a proof, but this
explains the idea of the example.

Now we construct a K3 surface which would be a counterexample.
Let X ′ ⊂ P3

Zp
be a “quartic surface” satisfying the following con-

ditions: X = X ′
Qp

is a smooth K3 surface; X ′ → SpecZp is smooth
outside a finite set Σ ⊂ X ′

0; each q ∈ Σ is a RDP of X ′
0, and the ring

OX ′,q is “as in the previous lemma”.

Proposition 5.2. This X does not have good reduction over Qp. (But
it does have good reduction over Qp(

√
d).)

Since X has good reduction over Qp(
√
d), we see that H2 of X

is unramified as a representation of GQp(
√
d). But since Qp(

√
d)/Qp

is unramified, this is equivalent to saying that it is unramified as a
representation of GQp . Thus this X gives a desired counterexample.
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Assuming the lemma, it is easy to show the non-existence of a smooth
proper model admitting a morphism to X ′. But what we have to show
is the non-existence without assuming such a morphism. To show this,
we prove appropriate versions of existence and termination of flop.

Proof. Assume there exists a smooth proper model Y of X over Zp.
Take an ample line bundle L on X ′ (for example O(1)), and denote

by LY0 the restriction of the transform of L.
If LY0 is (big and) nef on Y0, then the linear system |L⊗m

Y | defines a
morphism Y → X ′, a simultaneous resolution of X ′, which contradicts
the previous lemma.

Now assume LY0 is not nef. We want to replace Y with another
smooth proper model on which L becomes nef. We prove:

(Existence of flop): Take a LY0-negative curve C ⊂ Y0. There exists
another smooth proper model Y+ of X and a rational map

Y ""# Y+,

inducing an isomorphism outside C:

Y \ C ∼→ Y+ \ C+,

with the (“flopped”) curve C+ ⊂ Y+ being LY+
0
-positive.

(Termination of flop): Starting from (Y , L) and repeatedly applying
the flop on the previous paragraph, we eventually obtain Y ""# Y++,
Y++ another smooth proper model such that LY++

0
is big and nef.

Thus we reduce to the nef case and get a contradiction. !

6. Proof of Theorem 3.4(a)(c)

(Details: [LM14, Sections 4, 5])
By Theorem 3.1, we have X smooth proper over OK′ , K ′/K a (pos-

sibly ramified) finite extension. We may assume K ′/K is Galois. Let
M the maximal unramified extension of K inside K ′. The idea is to
equip X with a Gal(K ′/M)-action and take the quotient. However,
the Galois action on the generic fiber XK′ does not always extend to
an action on X , even under the assumption that H2 is unramified. In
order to get a Galois action we have to replace X using flops.
Take an ample line bundle L on X. By the flop technique (as in the

previous section), we replace X with another model such that LX0 is
big and nef. Then |L⊗m

X | defines a morphism π : X → Z ⊂ PN
OK′ .

Clearly Z is a projective scheme with Gal(K ′/K) action. We ob-
serve that π is birational, π is isomorphic on the generic fiber, and the
(possible) singularity of Z0 are rational double points.
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Take a g ∈ Gal(K ′/M), and assume that the action of g on Z does
not extend to X , that is, g∗X ̸∼= X . Then this gives rise to a cycle
in H2 on which g acts non-trivially, and contradicts the assumption
that H2 is unramified. Therefore Gal(K ′/M) acts on X (but the whole
Gal(K ′/K) does not act in general).

Next we show that X /Gal(K ′/M) is smooth. Since K ′/M is totally
ramified (in other words, the corresponding extension of residue fields
is trivial), the action of Gal(K ′/M) on H2 of the special fiber of X0 is
trivial. This implies that its action on X0 itself is trivial. If [K ′ : M ]
is prime to p, then this easily implies that X/Gal(K ′/M) is smooth.
If [K ′ : M ] is divisible by p, the situation is more complicated due to
(possible) existence of infinitesimal actions, but in our case this does
not happen because a K3 surface does not admit a (non-trivial) global
derivation. It follows that X /Gal(K ′/M) is smooth in any case. This
proves (a).

It remains to show (c). Form π : X /(Gal(K ′/M)) → Z ′ as above.
Then Gal(M/K) acts on Z ′ and the quotient Z ′/Gal(M/K) gives a
model satisfying the conditions of (c).
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