
UNIRATIONALITY AND PURELY INSEPARABLE
ISOGENIES OF SUPERSINGULAR K3 SURFACES

CHRISTIAN LIEDTKE

Rationality and Unirationality – the Lüroth problem

In 1876, Lüroth proved that if k ⊂ L ⊂ k(t) is a field extension such that
L is of transcendence degree 1 over k, then L itself is a purely transcendental
extension of k, that is, L = k(u) for some u ∈ L. Then, he asked, whether
it is true in general that for every field extension

k ⊂ L ⊂ k(t1, ..., tn)

such that L is of transcendence degree n over k, it is true that L itself is of
the form k(u1, ..., un) – this question is known as the Lüroth problem. The
answer is “yes” in the following cases

• If n = 1 (Lüroth).
• If n = 2 and k = C (Castelnuovo).
• If n = 2, k is algebraically closed of positive characteristic, and the
extension k(t1, t2)/L is separable (Zariski).

On the other hand, the answer is in general “no” in the following cases

• If n = 2 and k is algebraically closed of positive characteristic
(Zariski).

• If n = 3 and k = C (Iskovskikh–Manin, Clemens–Griffiths, Artin–
Mumford).

Now, let us recall the following notions from algebraic geometry, which
translate Lüroth’s problem into birational geometry of algebraic varieties.

Definition. A n-dimensional variety X over a field k is called rational (resp.
unirational) if there exists a dominant rational (resp. birational) map Pn

k !!"
X.

We note that X is unirational if and only if there exists an inclusion of
function fields k ⊂ k(X) ⊆ k(Pn), and that k(Pn) = k(t1, ..., tn). Thus,
Lüroth’s problem is equivalent to asking whether unirational varieties are
rational. By the above, unirational curves are rational, unirational surfaces
over C are rational, and separably unirational surfaces over algebraically
closed fields of positive characteristic are rational.
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2 CHRISTIAN LIEDTKE

Supersingular surfaces

In 1958, Zariski [Za58] gave the first examples of unirational surfaces over
algebraically closed fields of positive characteristic that are not rational.
Interestingly, it is still a difficult question to decide whether a given surface
is unirational or not. Let us first give a necessary condition. To state it, we
denote for a smooth and proper variety by ρ the rank of its Néron–Severi
group, and by bi the rank of its i.th (ℓ-adic, crystalline) cohomlogy group.
By a classical result of Igusa [Ig60], we have ρ ≤ b2.

Theorem (Shioda [Sh74]). If X is a smooth, proper, and unirational vari-
ety, then ρ(X) = b2(X).

Thus, unirational varieties have no transcendental cycles in their second
étale and crystalline cohomology. Moreover, if X is a smooth and proper
over an algebraically closed field k of positive characteristic, then the image
of the crystalline first Chern class map c1 from Pic(X) to H2

cris(X/W ) gives
rise to an F -subcrystal of H2

cris(X/W ) that is of slope 1. In particular, if X
satisfies ρ(X) = b2(X), then the whole F -isocrystal H2

cris(X/W ) ⊗ K is of
slope 1. These two results give rise to the following definitions.

Definition. Let X be a smooth and proper surface over an algebraically
closed field of positive characteristic. Then, X is called

• Shioda-supersingular if ρ(X) = b2(X), and
• Artin-supersingular if H2

cris(X/W ) is of slope 1.

By the above discussion, these notions are related as follows

X is unirational
⇒ X is Shioda-supersingular
⇒ X is Artin-supersingular.

Quite generally, Tate [Ta65] conjectured that for a smooth and proper
variety X over Fp the F -sub-isocrystal of H2

cris(X/W ) ⊗ K arising from
c1(Pic(X)) is not only contained in, but actually equal to the slope 1 sub-
isocrystal of H2

cris(X/W ) ⊗ K. This conjecture thus characterizes classes
in H2

cris(X/W ) arising from Chern classes of line bundles, and should be
thought of as a characteristic-p analog of the Lefschetz theorem on (1, 1)-
classes. This conjecture is still wide open. However, if true, it would im-
ply the equivalence of the notions of Shioda-supersingularity and Artin-
supersingularity.

On the other hand, there do exist Godeaux surfaces (minimal surfaces of
general type with pg = q = 0 and K2 = 5) in every characteristic p ≡ 1
mod 5 that are Shioda-supersingular but not unirational [Sh77]. Thus, a
Shioda-supersingular surface need not be unirational in general.
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SUPERSINGULAR K3 SURFACES 3

Supersingular K3 surfaces

Since the question of unirationality of surfaces in positive characteristic
is still far from settled, we now consider a particular interesting special class
that is a good testing ground.

Definition. A K3 surface is a smooth and proper surface X over a field k
such that ωX

∼= OX and h1(OX) = 0.

Classical examples of K3 surfaces are smooth quartic hypersurfaces in
P3, as well as Kummer surfaces. By definition, the latter are the unique
minimal resolution of singularities of A/±id, where A is an Abelian variety of
dimension 2 in characteristic ̸= 2. By recent progress on the Tate-conjecture
for K3 surfaces, we now have the following theorem.

Theorem (Charles [Ch13], Madapusi-Pera [M13], Maulik [Mau14]). In odd
characteristic, a K3 surface is Shioda-supersingular if and only if it is Artin-
supersingular.

Thus, in odd characteristic, we may and will simply talk about supersingu-
lar K3 surfaces. Their study was initiated around 1973 by Artin [Ar74] and
Shioda [Sh72], [Sh73], [Sh74], [Sh75]. Then, it was continued by Rudakov
and Shafarevich (see [RS81], for example), and Ogus [Og79], [Og83], and is
still an active area of research. For a survey, we refer the interested reader
to [Sh79] or [RS81].

Conjecture (Artin, Rudakov, Shafarevich, Shioda). A K3 surface is unira-
tional if and only if it is supersingular.

Until 2013, this conjecture was established in the following cases:

• For Shioda-supersingular K3 surfaces in characteristic 2 (Rudakov–
Shafarevich [RS78]).

• For σ0 ≤ 6 in characteristic 3 (Rudakov–Shafarevich [RS78]).
• For σ0 ≤ 3 in characteristic 5 (Pho–Shimada [PS06]).
• For supersingular Kummer surfaces in every characteristic p ≥ 3
(Shioda [Sh77]).

Here, σ0 denotes the Artin invariant of the supersingular K3 surface, to
which we will come back below. In particular, thanks to Shioda’s result,
we have at least examples of supersingular K3 surfaces that are unirational
in every odd characteristic. This result is achieved by explicitly finding
dominant and rational maps from P2 to certain Fermat surfaces, which was
established in [Sh74].

For a supersingular K3 surface in odd characteristic, the Néron–Severi
group is of rank 22, and its discriminant satisfies

discNS(X) = −p2σ0 for some integer 1 ≤ σ0 ≤ 10.

This integer is called the Artin-invariant of the supersingular K3 surface
and was introduced in [Ar74]. By [RS78], this integer σ0 already determines
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4 CHRISTIAN LIEDTKE

the Néron–Severi lattice of the supersingular K3 surface up to isometry and
such lattices are called supersingular K3 lattices. For example, Ogus [Og79]
showed that a supersingular K3 surface satisfies σ0 ≤ 2 if and only if it
is a Kummer surface associated to a supersingular Abelian surface (for an
Abelian variety A, being supersingular means that the p-torsion subgroup
scheme A[p] is an infinitesimal group scheme).

The crystalline Torelli theorem

For supersingular K3 surfaces, there exists a period domain in terms of
crystals, as well as a Torelli theorem, both of which are due to Ogus [Og79],
[Og83]. More precisely, if X is a supersingular K3 surface of Artin invariant
σ0, then the second crystalline cohomology group H := H2

cris(X/W ) has the
following properties:

• H is a free W -module of rank 22, where W denotes the ring of Witt
vectors of k.

• It carries a Frobenius-linear operator Φ, as well as an intersection
form ⟨−,−⟩.

• The Tate-module

TH := {x ∈ H |Φ(x) = px} ⊂ H

is a free Zp-module of rank 22 and the intersection form restricted
to TH is Zp-valued of discriminant −p2σ0 .

The collection of this data (plus some compatibility conditions) is called
a supersingular K3 crystal, and we refer to [Og79] for details and precise
definitions. Given a supersingular K3 lattice N of Artin invariant σ0, a
supersingular K3 crystal (H,TH ,Φ, ⟨−,−⟩) together with an isometric em-
bedding N → TH is called an N -rigidified supersingular K3 crystal.

Theorem (Ogus [Og79]). Given a supersingular K3 lattice N of Artin-
invariant σ0, there exists a moduli space

MN → Spec Fp

of N -rigidified supersingular K3 crystals. It is smooth, projective, and of
dimension σ0 − 1 over Fp. Over Fp, it has two components.

This moduli space MN will serve as the period domain for N -marked
supersingular K3 surfaces. More precisely, there exists a moduli space SN →
Spec Fp of N -marked supersingular K3 surfaces, that is, a moduli space
for pairs (X, ı) consisting of a supersingular K3 surface X together with
an isometric embedding ı : N → NS(X). Then, the assignment X /→
H2

cris(X/W ) gives rise to the period map

πN : SN → MN

for N -marked supersingular K3 surfaces. If p ≥ 5, then πN is étale, but
only locally of finite type and not separated by [Og83]. To get a period map
that is an isomorphism, one has to consider the moduli space PN → MN
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SUPERSINGULAR K3 SURFACES 5

of N -marked supersingular K3 crystals together with ample (or effective)
cones as introduced and described in [Og83]. One of the most important
applications is the following Torelli theorem.

Theorem (Ogus [Og83]). Two supersingular K3 surfaces in characteristic
p ≥ 5 are isomorphic if and only if their associated supersingular K3 crystals
are isomorphic.

We refer to [Og79] and [Og83] for details and precise statements, as well
as to [Li14] for a recent overview.

The formal Brauer group

In this section, we rephrase supersingularity for K3 surfaces in terms of its
formal Brauer group. Let us recall that Artin and Mazur [AM77] associated
to a proper variety X over some field k the functors from local Artinian
k-algbras with residue field k to Abelian groups

Φi
X/k : (Art/k) → (Abelian groups)

S /→ ker
(
H i

ét(X ×k S,Gm) → H i
ét(X,Gm)

)

For example, since H1(−,Gm) is isomorphic to the Picard group, it is not
difficult to see that Φ1

X/k is the completion of the Picard scheme PicX/k along

its zero-section, which is why Φ1
X/k is called the formal Picard group, denoted

P̂icX/k. Thus, Φ
1
X/k encodes the infinitesimal structure of PicX/k around the

zero-section, such as (non-)reducedness, dimension, the Lie algebra,... For a
K3 surface, the formal Picard group is zero, and thus, carries no interesting
information about the surface.

In general, Artin and Mazur established a deformation-obstruction theory
à la Schlessinger for the functors Φi

X/k, where the tangent space is H i(OX)

and the obstruction space is H i+1(OX). Thus, if X is a K3 surface, then
Φ2
X/k is pro-representable by a one-dimensional formal scheme that is for-

mally smooth and an Abelian group object in the category formal schemes,
that is, by an Abelian formal group law of dimension one. Since H2(−,Gm)
is the (cohomological) Brauer group, we have the following definition.

Definition. The formal group law Φ2
X/k is called the formal Brauer group

of X, denoted B̂rX/k.

Quite generally, if G is a one-dimensional formal group law over a field k,
then G = Spf k[[t]] and the multiplication map µ : G×G → G gives rise to
a map of completed k-algebras µ# : k[[t]] → k[[x]]⊗̂k[[y]] = k[[x, y]]. Then,
f(x, y) := µ#(t) is formal power series that completely encodes the group
law. The easiest examples are the following.

• If f(x, y) = x+ y, then G = Ĝa, the formal additive group law.
• If f(x, y) = x+y+xy, then G = Ĝm, the formal multiplicative group
law.
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6 CHRISTIAN LIEDTKE

It turns out that f(x, y) is congruent to x+y modulo higher order terms, that
associativity of G translates into f(f(x, y), z) = f(x, f(y, z)), and that being
Abelian translates into f(x, y) = f(y, x). Now, if k is a field, then all one-
dimensional group laws are Abelian, and if, moreover, k is of characteristic
zero, then they are all isomorphic to Ĝa. If k is algebraically closed of
positive characteristic p, then the multiplication-by-p-map [p] : G → G
gives rise to a discrete invariant of G: namely, on the level of k-algebras, [p]
corresponds to a map [p]# : k[[x]] → k[[t]], which is completely determined
by its value at g(t) := [p]#(x) ∈ k[[t]]. It turns out that either g(t) = 0 or

that it is of the form g(t) = tp
h
plus higher order terms for some integer

h ≥ 1. By definition, h is called the height of the formal group law, and one
sets h = ∞ in first case. For example, we have

h(Ĝa) = ∞ and h(Ĝm) = 1 .

In fact, there exists a formal group law over k of height h for every positive
integer h. Moreover, two one-dimensional formal group laws over an alge-
braically closed field of positive characteristic are isomorphic if and only if
they have the same height.

Another way of classifying such formal group laws (which has the advan-
tage of generalizing to Abelian formal group laws of larger dimension) is
the following: associated to a one-dimensional formal group law G over an
algebraically closed field k of positive characteristic, there exists its Cartier–
Dieudonné module DG, which is a module over the Witt ring W = W (k) to-
gether with two operators, called Frobenius and Verschiebung. For example,
the height h of G is equal to the number of generators of DG as W -module.
The point is that for a smooth and proper variety X, the Cartier–Dieudonné
module DB̂rX/k controls the slope < 1 sub-F -isocrystal of H2

cris(X/W )⊗K.
For a thorough introduction to formal group laws, their classification, and
Cartier–Dieudonné theory, we refer the interested reader to [Ha12]. For a
K3 surface, these general facts translate into the following.

Proposition. A K3 surface X over an algebraically closed field k of positive
characteristic is Artin-supersingular if and only if B̂rX/k is of infinite height.

In fact, the condition h(B̂rX/k) = ∞ was Artin’s original definition of
supersingularity for K3 surfaces in [Ar74]. For details and references, we
refer to [Ar74] and [Li14].

Moving torsors and purely inseparable isogenies

Now, we use the formal Brauer group to construct for a supersingular
K3 surface over k a very special deformation over Spec k[[t]] that has the
property that special and the generic fiber of this family are related by purely
inseparable isogenies. More precisely, let X → P1 be a K3 surface together
with an elliptic fibration that has a section, called the zero-section. Let
A → P1 be the identity component of the associated Néron model, which
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SUPERSINGULAR K3 SURFACES 7

arises from X → P1 by removing the components of the fibers that do not
meet the zero-section, as well as removing the remaining singularities of the
fibers. Note that A → P1 is a relative group scheme. If S is the (formal)
spectrum of some complete, local, and Noetherian k-algebra with residue
field k, then we call a Cartesian diagram of A-torsors

A → A
↓ ↓
P1 → P1 × S
↓ ↓

Spec k → S

a moving torsor family. For technical reasons (algebraizability), we will also
assume that there exists some relative invertible sheaf of some fixed degree
N on A → P1 × S.

Now, moving torsor families are related to the formal Brauer group:
namely, if f : A → P1×S is a moving family of A-torsors, it corresponds to a
class in ker(H1

ét(P1×S,A) → H1
ét(P1, A)). The condition on the existence of

a relative degree-N invertible sheaf on f translates into being an N -torsion
element in this kernel. From the Grothendieck–Leray spectral sequence

H i
ét(P1 × S,Rjf∗Gm) ⇒ H i+j

ét (A,Gm)

and the fact that R1f∗Gm is the relative Picard scheme, we see that there is
a contribution of H1

ét(P1 × S,A) to H2
ét(A,Gm). Putting these observations

together, and chasing through several commutative diagrams and spectral
sequences, we obtain the following proposition, part of which was already
obtained in [AS73].

Proposition. Let X → P1 be a K3 surface with an elliptic fibration that
has a section. Let R be a local, complete, and Noetherian k-algebra with
residue field k. Then, there exists a bijection of sets between

• Moving-torsor families f : A → P1 × Spf R such that there exists a
relative invertible sheaf of degree N , and

• Elements of B̂rX/k(R)[N ], where [N ] denotes N -torsion.

We shall be mainly interested in the case where R = k[[t]], that is, non-
infinitesimal families over DVR’s. If G is a one-dimensional formal group
law over k, and N is an integer, then it turns out that G(k[[t]])[N ] is non-
zero if and only if k is of positive characteristic p, and p|N , and G is of
infinite height.

Corollary. Let X → P1 be a K3 surface with an elliptic fibration that has
a section. Then, non-trivial moving torsor families over k[[t]] exist if and
only if X is Artin-supersingular.

In some form, this corollary must have been known already to Artin: in
[Ar74], he found that the supersingular locus is 9-dimensional, conjectured
that all supersingular K3’s are elliptic, but then, in characteristic 2, he
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8 CHRISTIAN LIEDTKE

computed the space of supersingular K3’s that are elliptic with a section to
be of dimension 8. He explained this defect by what we called above moving
torsor families, and remarked that “the unusual phenomenon of continuous
families of homogeneous spaces occurs only for supersingular surfaces”.

Now, given a non-trivial moving torsor family A → P1 × S, it can be
compactified, its singularities can be resolved, it is algebraizable, and we
eventually obtain a family X → S of supersingular K3 surfaces with special
fiber X. Let us now assume that S = Spec R with R = k[[t]], and that the

family comes from a p-torsion element of B̂rX/k(R). Then, the Picard group
of the generic fiber injects into the Picard group of the special fiber and
the cokernel is cyclic of order p, generated by the class of the zero-section of
X → P1 (the class of the zero-section does not extend to the generic fiber for
otherwise it would trivialize the family of torsors, which would contradict
the non-triviality of the family). Before proceeding, we have to introduce a
new notion.

Definition. A purely inseparable isogeny between two K3 surfaces X, Y in
characteristic p is a dominant, rational, and generically finite map X !!" Y
such that the induced extension of function fields k(Y ) ⊆ k(X) is purely
inseparable.

Coming back to our family A → P1 × S, there exists a relative invertible
sheaf of degree p (since we constructed it from a p-torsion element in the
formal Brauer group), which gives rise to a multisection of degree p of that
family. This multisection can be chosen to be purely inseparable over the
base of the family, and thus, A → P1 × S can be trivialized after a purely
inseparable base change of degree p. From this, it follows that the generic
fiber and the special fiber of such a moving torsor family are related by
purely inseparable isogenies. Putting all these observations together, we
obtain the following result, which is the technical heart of [Li13].

Theorem. Let X → P1 be a supersingular K3 surface with an elliptic fibra-
tion that has a section. Then, there exists a smooth family of supersingular
K3 surfaces

X → X
↓ ↓

Spec k → Spec k[[t]]

such that

• there exists a short exact sequence

0 → Pic(Xη) → Pic(X) → Z/pZ → 0,

whose cokernel is generated by the class of the zero-section of the
fibration X → P1. In particular,

σ0(Xη) = σ0(X) + 1,

and thus, the family has non-trivial moduli.

75



SUPERSINGULAR K3 SURFACES 9

• There exist purely inseparable isogenies

X (1/p)
η !!" X ×k η !!" X (p)

η .

In particular, X is unirational if and only if Xη is unirational.

Finally, in order for the previous theorem to be applicable, we need the
existence of elliptic fibrations that have a section on a given supersingular K3
surface. This question turns out to be equivalent to the question whether
the Néron–Severi lattice contains a hyperbolic plane. Since this question
depends only on the isometry class of the Néron–Severi lattice of the surface,
it only depends on the Artin invariant σ0 of the supersingular K3 surface.

Proposition. A supersingular K3 surface with σ0 ≤ 9 possesses an elliptic
fibration that has a section.

The upshot of this section is that given a supersingular K3 surface with
Artin invariant σ0 ≤ 9, then there exists a one-dimensional deformation with
non-trivial moduli (in fact, the Artin invariant goes up by 1 in the generic
fiber), such that the property of being unirational is preserved. We refer to
[Li13] and [Li14] for details.

Supersingular K3 surfaces are unirational

The idea to prove the unirationality of supersingular K3 surfaces is to
use the results of the previous section to fill up the whole moduli space of
supersingular K3 surfaces with these moving torsor families, along which
the property of being unirationality is preserved. Once this is achieved,
the question of whether all supersingular K3 surfaces in characteristic p
are unirational becomes equivalent to asking whether one supersingular K3
surface in characteristic p is unirational. But the latter is true by Shioda’s
result [Sh77] on the unirationality of supersingular Kummer surfaces.

First, we study the moving torsor families of the previous section on the
level of supersingular K3 crystals. Since the Artin invariant in these families
goes up by 1, it is not surprising that this relates the moduli spaces MN and
MN+ of marked supersingular K3 crystals if N and N+ denote supersingular
K3 lattices, whose Artin invariants differ by 1.

Theorem. Let N and N+ be supersingular K3 lattices in odd characteristic
such that σ0(N+) = σ0(N) + 1. Then, a choice of hyperbolic plane U ⊂ N
gives rise to a morphism

MN+ → MN

which is a P1-bundle with a distinguished section.

Although this is a statement about moduli spaces of supersingular K3
crystals only, and the proof is entirely independent of the previous section,
the connection to the previous section is that a supersingular K3 surface
is determined by its supersingular K3 crystal by Ogus’ crystalline Torelli
theorem. A choice of hyperbolic plane U ⊂ N corresponds to equipping a
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10 CHRISTIAN LIEDTKE

supersingular K3 surface with an elliptic fibration that has a section, and
then, the fibers of MN+ → MN correspond to the moving torsor families
from the previous section, with the distinguished section being the special
fiber of the moving torsor families.

In [Og79], Ogus showed thatMN
∼= SpecFp2 if σ0(N) = 1. Geometrically,

this means the following: there exists only one supersingular K3 surface with
Artin invariant σ0 = 1 and it can be defined over Fp. However, its geometric
Néron–Severi group cannot be defined over Fp, but there exist models where
this group can be defined over Fp2 . This explains why the moduli space has
two geometric components, despite of only one surface.

Corollary. The moduli space MN is an iterated P1-bundle over Fp2.

We have seen above that the generic and the special fiber of a moving
torsor family are related by purely inseparable isogenies. Using the just
established P1-bundle structure, Ogus’ Torelli theorem [Og83], and a little
bit more work, it eventually follows that every supersingular K3 surface with
Artin invariant σ0 is related by a purely inseparable isogeny to one with
Artin invariant σ0 − 1. By induction, it follows that every supersingular K3
surface is related by a purely inseparable isogeny to one of Artin invariant
σ0 = 1. But then, there is only one such supersingular K3 surface with
σ0 = 1, which eventually allows us to relate all supersingular K3 surface to
each other by purely inseparable isogenies.

Theorem. Let X and Y be supersingular K3 surfaces in characteristic p ≥
5. Then, there exist purely inseparable isogenies X !!" Y and Y !!" X.

Since supersingular Kummer surfaces in characteristic p ≥ 3 are unira-
tional by Shioda’s theorem [Sh77], we obtain the desired unirationality.

Theorem. Supersingular K3 surfaces in characteristic p ≥ 5 are unira-
tional.

We refer to [Li13] for proofs and detailed statements, as well as to [Li14]
for an overview.

Finally, let us come back to and discuss isogenies of K3 surfaces: for
a singular K3 surface X over C (that is, a K3 surface with Picard rank
ρ(X) = 20 over C), a classical theorem of Shioda and Inose [SI77] states
that there exist rational and dominant maps, generically finite of degree 2

Km(E × E) !!" X !!" Km(E × E),

where E is an elliptic curve with complex multiplication, and where Km(E×
E) denotes the Kummer surface associated to the Abelian surface E × E.
(See also [Li13] for a Shioda–Inose classification result in odd characteristic.)
Later, Morrison [Mo84], Mukai [Mu87], and Nikulin [Ni87], [Ni91] general-
ized these results to other types of complex K3 surfaces. One problem is the
definition of isogeny for K3 surfaces, and we refer to [Mo87] for discussion.
Now, the existence of purely inseparable isogenies between supersingular K3
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SUPERSINGULAR K3 SURFACES 11

surfaces above can also be rephrased by saying that for every supersingular
K3 surface in characteristic p ≥ 5, there exist rational, dominant, generically
finite, and purely inseparable maps

Km(E × E) !!" X !!" Km(E × E)

where E is a supersingular elliptic curve. Thus, the result on purely in-
separable isogenies between supersingular K3 surfaces nicely fits into the
Shioda–Inose theorem.
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École Norm. Sup. 10, 87–131 (1977).

[AS73] M. Artin, H. P. F. Swinnerton-Dyer, The Shafarevich-Tate conjecture for pencils
of elliptic curves on K3 surfaces, Invent. Math. 20, 249–266 (1973).

[Ch13] F. Charles, The Tate conjecture for K3 surfaces over finite fields, Invent. Math.
194, 119–145 (2013).

[Ha12] M. Hazewinkel, Formal groups and applications, Corrected reprint of the 1978
original, AMS (2012).

[Ig60] J. Igusa, Betti and Picard numbers of abstract algebraic surfaces, Proc. Nat.
Acad. Sci. U.S.A. 46, 724–726 (1960).

[Li13] C. Liedtke, Supersingular K3 surfaces are unirational, arXiv:1304.5623 (2013),
to appear in Invent. Math.

[Li14] C. Liedtke, Lectures on Supersingular K3 Surfaces and the Crystalline Torelli
Theorem, arXiv:1403.2538 (2014).

[M13] K. Madapusi Pera, The Tate conjecture for K3 surfaces in odd characteristic,
arXiv:1301.6326 (2013).

[Mau14] D. Maulik, Supersingular K3 surfaces for large primes, Duke Math. J. 163, 2357–
2425 (2014).

[Mo84] D. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75, 105–
121 (1984).

[Mo87] D. Morrison, Isogenies between algebraic surfaces with geometric genus one,
Tokyo J. Math. 10, 179-187 (1987).

[Mu87] S. Mukai, On the moduli space of bundles on K3 surfaces. I, Vector bundles on
algebraic varieties (Bombay: 341–413), Tata Inst. Fund. Res. Stud. Math. 11,
(1987).

[Ni87] V. .V. Nikulin, On correspondenced between surfaces of type K3, Izv. Akad.
Nauk. SSSR Ser. Mat. 51 (1987).

[Ni91] V. V. Nikulin, On rational maps between K3 surfaces, Constantin Carathéodory:
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