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1. Introduction

I consider varieties over the complex number field C in this report. The main object
in this report is a Q-Fano 3-fold, that is, a normal projective 3-fold with only terminal
singularities whose anticanonical divisor is an ample Q-Cartier divisor. In this report, I
explain my results on deformations of a Q-Fano 3-fold. The detail is written in [San12],
[San14b] and [San14a].
Since a Q-Fano 3-fold is one of end products of the MMP, the classification of Q-Fano

3-folds is a natural question. The classification of smooth Fano 3-folds is done by several
people, including Fano, Iskovskikh and Mori-Mukai. Furthermore, Mukai classified inde-
composable Fano 3-folds with canonical Gorenstein singularities and Namikawa proved that
a Fano 3-fold with terminal Gorenstein singularities can be deformed to a smooth Fano
3-fold. Thus a Fano 3-fold with only terminal Gorenstein singularities can be regarded as a
treatable case.
In general, a terminal singularity is not Gorenstein and the classification of non-Gorenstein

Q-Fano 3-folds is complicated and far from completion. However, a 3-fold terminal singu-
larity can be described explicitly. In fact, it is a quotient of a compound Du Val singularity
by a cyclic group action and can be deformed to several cyclic quotient singularities. To-
ward the classification of Q-Fano 3-folds, Altınok-Brown-Reid ([ABR02]) conjectured the
following.
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2 TARO SANO

Conjecture 1.1. A Q-Fano 3-fold has a Q-smoothing, that is, it can be deformed to a

Q-Fano 3-fold with only cyclic quotient singularities.

If this conjecture holds, we can reduce the classification of Q-Fano 3-folds to those with
only quotient singularities. The assumption on quotient singularities makes the classification
easier as in [Tak06]. I proved the following which solves Conjecture 1.1 in most of the cases.

Theorem 1.2. A Q-Fano 3-fold can be deformed to a Q-Fano 3-fold with only cyclic quotient

singularities and A1,2/4-singularities.

Here, a A1,2/4-singularity is a singularity analytically isomorphic to a terminal singularity
0 2 (x2 + y2 + z3 + u2 = 0)/Z4 ⇢ C4/Z4(1, 3, 2, 1).

To find a deformation as in Theorem 1.2, we study infinitesimal deformations of a Q-
Fano 3-fold over Artinian rings. Thus it is important to study obstructions of infinitesimal
deformations of Q-Fano 3-folds. Locally, deformations of a 3-fold terminal singularity are
unobstructed since they are induced by equivariant deformations of a compound Du Val
singularity. For a Q-Fano 3-fold, we also have the global unobstructedness as follows.

Theorem 1.3. Deformations of a Q-Fano 3-fold are unobstructed.

By this theorem, the problem to find a Q-smoothing is reduced to first order level. By
computing a certain local cohomology map, we can achieve this (Lemma 4.2).

We call a member D 2 |�KX | an elephant. A Fano 3-fold with terminal Gorenstein
singularities has an elephant with only Du Val singularities and it plays an important role
in the classification. However a Q-Fano 3-fold does not necessarily have a Du Val elephant.
In fact, there is an example of a Q-Fano 3-fold X such that |�KX | = ;. There are also
examples of Q-Fano 3-folds with only non-Du Val elephants. Nevertheless, Altınok-Brown-
Reid also conjectured the following.

Conjecture 1.4. Let X be a Q-Fano 3-fold. Assume there exists D 2 |�KX | which is

possibly very singular.

Then there exists a deformation ' : (X ,D) ! �1
of (X,D) such that Xt has only quotient

singularities and Dt 2 |�KXt | has at most Du Val singularities only on the singularities of

Xt for t 6= 0. (Such a deformation ' is called a simultaneous Q-smoothing.)

If this conjecture holds, it would be useful for the classification since we can use the rich
theory of K3 surfaces. If there is an elephant with only isolated singularities, we can solve
Conjecture 1.1 as follows.

Theorem 1.5. ([San14b, Theorem 1.1]) Let X be a Q-Fano 3-fold. Assume that there exists

D 2 |�KX | with only isolated singularities.

Then (X,D) has a simultaneous Q-smoothing. In particular, X has a Q-smoothing.

There is also an example of a Q-Fano 3-fold with only non-normal elephants. On the other
hand, it is expected that, if h0(X,�KX) is su�ciently large, X has a Du Val elephant.

2. Preliminaries

2.1. Deformation functors. Let (Art)C be the category of local Artinian C-algebras whose
residue field A/mA ' C. Let X be an algebraic scheme and D its closed subscheme. Let
Def(X,D) : (Art)C ! (Sets) be a functor such that, for A 2 (Art)C, we associate Def(X,D)(A)
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DEFORMATIONS OF Q-FANO 3-FOLDS 3

the equivalence classes of deformations (X ,D) ! SpecA of the pair (X,D) (cf. [San12,
Definition 2.2]). When D = ;, we set DefX := Def(X,;). In this report, we mainly study
DefX and Def(X,D) for a Q-Fano 3-fold X and D 2 |�KX |.
A resolution of a variety with rational singularities induces the “blow-down morphism”

as follows.

Proposition 2.1. Let X be a normal variety with only rational singularities and µ : X̃ ! X
a resolution of singularities of X. Then we have a blow-down morphism

µ⇤ : DefX̃ ! DefX

which sends a deformation X̃ ! SpecA of X̃ to X := (X,µ⇤OX̃ ).

This plays an important role in the study of deformations of rational singularities. The im-
age of the forgetful morphism Def(X̃,E) ! DefX̃ is called an “equisingular deformations”(cf.
[Wah76, (2.4)]). In our case, we use this functor to check whether a deformation of a 3-fold
terminal singularity changes the singularity.

Example 2.2. Let 0 2 S := (f = 0) ⇢ C3 be a rational double point and µ : S̃ ! S its
minimal resolution. It is well-known that µ⇤ : Def S̃ ! DefS is a finite Galois covering and it
induces a zero map on the tangent spaces. Moreover, we see that Def(S̃,E)(A) only contain
a trivial deformation for all A 2 (Art)C.
Altmann determined the equisingular deformations of a 2-dimensional hypersurface sin-

gularities ([Alt87]).

2.2. Terminal singularities. As explained in the introduction, we have the following de-
scription of a 3-fold terminal singularity.
Let p 2 U be a Stein neighborhood of a 3-fold terminal singularity p of index r. It is

known that SingU ⇢ U has codimension 3, thus p is an isolated singularity. An isomorphism
OU(rKU) ' OU induces a finite morphism ⇡U : V ! U such that ⇡U is étale outside p and
KV = ⇡⇤

UKU is Cartier. This ⇡U is called an index one cover of U and plays an important
role in the classification of 3-fold terminal singularities. By this, we see that U is a quotient
of a terminal Gorenstein singularity.
It is known that a 3-fold terminal Gorenstein singularity is an isolated compound Du Val

(=cDV) singularity, that is, an isolated hypersurface singularity (f = 0) ⇢ C4 defined by a
polynomial f 2 C[x, y, z, u] such that

f = g(x, y, z) + uh(x, y, z, u),

where g 2 C[x, y, z] is a defining equation of a Du Val singularity and h 2 C[x, y, z, u] is
some polynomial. Hence a germ of a 3-fold terminal singularity (U, p) can be written as

(U, p) ' (f = 0)/Zr ⇢ C4/Zr(a, b, c, d),

where C4/Zr(a, b, c, d) is a quotient of C4 by the action of the cyclic group Zr of weights
(a, b, c, d) and f 2 OC4,0 is a Zr-semi-invariant function. Although a quotient of a cDV sin-
gularity is not necessarily terminal, we have the classification of 3-fold terminal singularities
(cf. [Rei87, (3.2) Theorem]).
As a consequence of the above classification, we obtain the following important properties

of 3-fold terminal singularities.

Fact 2.3. Let (U, p) ' (f = 0)/Zr be a germ of a 3-fold terminal singularity described as

above. Then we have the following;
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4 TARO SANO

(i) � · f = ±f for a generator � 2 Zr.

(ii) A general element D 2 |�KU | has only Du Val singularities.

(iii) There exists a deformation � : U ! �1
of U over an unit disk �1

such that Ut has

only quotient singularities. (Q-smoothing of U)

Remark 2.4. If � · f = f (resp. � · f = �f) in (i), the terminal singularity (U, p) is called
ordinary (resp. non-ordinary).

Example 2.5. Let U := (xy + h(z, ur) = 0)/Zr ⇢ C4/Zr(a,�a, 0, 1) for coprime positive
integers a < r. This is an example of an ordinary terminal singularity.

Let U := ((xy + h(z, ur) + t = 0)/Zr ⇢ C5/Zr(a,�a, 0, 1, 0) ! C be a deformation which
sends (x, y, z, u, t) to t 2 C. We see that U is a Q-smoothing of U and a general fiber has r
quotient singularities.

Example 2.6. Let U := (x2 + y2 + h(z, u2) = 0)/Z4 ⇢ C4/Z4(1, 3, 2, 1) for some h(z, u2) 2
m2

C4,0. It is known that a non-ordinary terminal singularity is of this form.
Let U := (x2 + y2 + h(z, u2) = t · z)/Z4 ⇢ C5/Z4(1, 3, 2, 1, 0) and ⇡ : U ! C be the

projection sending (x, y, z, u, t) to t. Then ⇡ is a Q-smoothing of U and a general fiber has
a 1/4(1, 1, 3)-singularity and several 1/2(1, 1, 1)-singularities.

3. Unobstructedness

3.1. Obstruction theory for l.c.i. schemes. We have the following description of ob-
struction theory in the l.c.i. case.

Proposition 3.1. ([Ser06, Proposition 2.4.8], [San12, Proposition 2.6])
Let X be a reduced l.c.i. algebraic scheme over a field k of characteristic zero. Let ⇠n :=

(X fn�! SpecAn) be a deformation of X over An := k[t]/(tn+1).
Then we can define an obstruction class o⇠n 2 Ext2(⌦1

X ,OX) for lifting ⇠n over An+1.

(Construction of the obstruction). We have an exact sequence

0 ! OX ! OXn ! OXn�1 ! 0.

Since X is l.c.i., we also have an exact sequence

0 ! f ⇤
n⌦

1
An/k ! ⌦1

Xn/k ! ⌦1
Xn/An

! 0.

Since f ⇤
n⌦

1
An/k

' OXn�1 , we can combine the above two sequences to obtain an exact sequence

0 ! OX ! OXn ! ⌦1
Xn/k ! ⌦1

Xn/An
! 0.

This sequence defines an element o⇠n 2 Ext2(⌦1
X ,OX). We can check that, if o⇠n = 0, then

there exists ⇠n+1 2 DefX(An+1) such that ⇠n+1 ⌦An+1 An ' ⇠n. ⇤
3.2. Sketch of the proof of Theorem 1.3. A smooth Fano manifold of arbitrary di-
mension has unobstructed deformations. This follows since we have the vanishing of the
obstruction space

H2(X,⇥X) ' H2(X,⌦dimX�1
X ⌦ !�1

X ) = 0

by the Kodaira-Akizuki-Nakano vanishing theorem, where ⇥X is the tangent sheaf.
Obstructions for a Fano 3-fold with terminal Gorenstein singularities lie in Ext2(⌦1

X ,OX).
In this case, we have an isomorphism

Ext2(⌦1
X ,OX) ' Ext2(⌦1

X ⌦ !X ,!X) ' H1(X,⌦1
X ⌦ !X)

⇤.
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Namikawa proved thatH1(X,⌦1
X⌦!X) = 0 by proving a variant of the Lefschetz hyperplane

section theorem [Nam97].
However we do not have the above isomorphism when !X is not invertible. In [San12,

Theorem 2.11], I resolved this di�culty by using an explicit description of obstruction classes.
Recently, I found a new method to treat this di�culty by considering the “canonical covering
stack” of a Q-Fano 3-fold. I present the sketch of the idea.
Let SingX =: {p1, . . . , pl}, pi 2 Ui a small a�ne neighborhood of pi and ⇡i : Vi ! Ui the

index one cover for i = 1, . . . , l. Let U0 := X \SingX and ⇡0 : U0 ! X the open immersion.
Let U :=

`l
i=0 Ui and ⇡ : U ! X the morphism such that ⇡|Ui = ⇡i for i = 0, . . . , l. Let

V := U ⇥X U and consider the étale groupoid space

V
p2
//

p1
// U.

Let X be the associated Deligne-Mumford stack. Let c : X ! X be the morphism to the
coarse moduli space. We can define a functor DefX : (Art)C ! (Sets) of deformations of the
stack X over Artinian rings as in the case of schemes. We see that there is an isomorphism
of functors

(1) c⇤ : DefX
⇠�! DefX

which sends a deformation of X to its coarse moduli space. We can construct obstructions
for deformations of X similarly as Proposition 3.1.

Proposition 3.2. Let X be a 3-fold with terminal singularities and X its canonical covering

stack.

Then we can define an obstruction o⇠ 2 Ext2(⌦1
X,OX) for each deformation ⇠ 2 DefX(A)

over an Artinian ring A.

Sketch of proof of Theorem 1.3. By the isomorphism (1), it is enough to show that DefX is
a smooth functor. We have isomorphisms

Ext2(⌦1
X,OX) ' Ext2(⌦1

X ⌦ !X,!X) ' H1(X,⌦1
X ⌦ !X)

⇤.

The first isomorphism follows since !X is invertible. (This is a main advantage of considering
the canonical covering stack.) The second isomorphism follows from the Serre duality on
Deligne-Mumford stacks. Moreover, we have an isomorphism

H1(X,⌦1
X ⌦ !X) ' H1(X, ◆⇤(⌦

1
X0 ⌦ !X0)),

where ◆ : X 0 ,! X is an open immersion of the smooth part X 0 of X. We can check this by
the construction. Thus it is enough to check H1(X, ◆⇤(⌦1

X0 ⌦!X0)) = 0. This can be checked
by a variant of Lefschtz hyperplane section theorem as in [San12, Theorem 2.11].

⇤

4. Q-smoothings

Let X be a projective variety with only isolated singularities. We have the following exact
sequence induced by the spectral sequence for Ext groups;

(2) 0 ! H1(X,⇥X) ! Ext1(⌦1
X ,OX)

⇧�! H0(X,Ext1(⌦1
X ,OX))

! H2(X,⇥X) ! Ext2(⌦1
X ,OX).
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6 TARO SANO

Note that Ext1(⌦1
X ,OX) ' DefX(A1) is the set of first order deformations of X and

H0(X,Ext1(⌦1
X ,OX)) is the set of first order deformations of singularities ofX. Furthermore

⇧ corresponds to restriction of global deformations to local deformations of singularities.
Hence, if we have H2(X,⇥X) = 0, we can always lift deformations of singularities to a
deformation of X on the first order level, at least.
Let us consider the case where X is a Q-Fano 3-fold. Namikawa constructed an example of

a Fano 3-fold X with terminal Gorenstein singularities such that H2(X,⇥X) 6= 0 ([Nam97,
Example 5]). Thus we need a more precise argument.
The key tool to find a Q-smoothing is a coboundary map of some local cohomology group

associated with a resolution of a singularity. Let us first define the map for a Gorenstein
3-fold singularity.
Let q 2 V be a Stein neighborhood of an isolated 3-fold Gorenstein singularity and

⌫ : Ṽ ! V a resolution of the singularity whose exceptional locus F is a SNC divisor such
that ⌫ induces an isomorphism over V 0 := V \ {q}. We can consider a coboundary map

�V : H1(V 0,⌦2
V 0) ! H2

F (Ṽ ,⌦2
Ṽ
(logF )(�F ))

Since V is Gorenstein and q 2 V has codimension 3, we have H1(V 0,⌦2
V 0) ' Ext1(⌦1

V ,OV ).
Namikawa-Steenbrink proved the following.

Theorem 4.1. ([NS95, Theorem 1.1]) Let (V, q) be an isolated Gorenstein Du Bois singu-

larity.

Then �V = 0 if and only if (V, q) is infinitesimally-rigid.

Moreover we have dimKer�V  dim Im�V .

In particular, �V 6= 0 for a terminal Gorenstein singularity (V, q). Namikawa-Steenbrink
used this to find a smoothing of a Q-factorial Calabi-Yau 3-fold with terminal singularities.

We can consider a similar coboundary map for a non-Gorenstein terminal singularity
(U, p) of index r as follows; Let ⇡U : V ! U be an index one cover of U and ⌫ : Ṽ ! V a Zr-
equivariant resolution with the same properties as above. We can consider the coboundary
map �V for this resolution as above. Let �U be a coboundary map

�U : H
1(U 0,⌦2

U 0(�KU 0)) ! H2
E(Ũ ,FŨ),

where FŨ is the Zr-invariant part of the sheaf ⇡̃⇤⌦2
Ṽ
(logF )(�F �⌫⇤KV ). Note that FŨ |U 0 '

⌦2
U 0(�KU 0).
The following is a key lemma to find a good first order deformations of a Q-Fano 3-fold.

Lemma 4.2. ([San14b, Theorem 1.3]) Let (U, p) be a 3-fold terminal singularity.

Then �U = 0 if and only if (U, p) is a quotient singularity or a A1,2/4-singularity.

Sketch of Proof. We regard T 1
U ⇢ T 1

V as the set of Zr-invariant elements.
For an ordinary terminal singularity (U, p), we have �U 6= 0 since �U is an OU,p-module

homomorphism and the generator 1̄ 2 T 1
V is still contained in T 1

U . Thus the statement
�V 6= 0 in Theorem 4.1 directly implies �U 6= 0.

For a non-ordinary terminal singularity (U, p), the generator 1̄ 2 T 1
V is not contained

in T 1
U . Nevertheless, if (U, p) is not an A1,2/4-singularity, we can compute �U 6= 0 by the

relation dimKer�V  dim Im�V . ⇤
Sketch of (Lemma 4.2 ) Theorem 1.2). Let SingX := {p1, . . . , pl} and pi 2 Ui a Stein
neighborhood of pi for i = 1, . . . , l. Let Y ! X be a cyclic cover determined by a smooth
memberDm 2 |�mKX | for a su�ciently large integerm. Let ⌫ : Ỹ ! Y be a Zm-equivariant
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resolution, F ⇢ Ỹ the ⌫-exceptional divisor , ⇡̃ : Ỹ ! X̃ := Ỹ /Zm the quotient morphism.
Let µ : X̃ ! X be the induced birational morphism and E ⇢ X̃ the µ-exceptional divisor.
Let Ũi := µ�1(Ui) and Ei := E \ Ũi. We use the following commutative diagram;

T 1
X

//

�prUi
✏✏

H2
E(X̃,FX̃) //

'
✏✏

H2(X̃,FX̃)

Ll
i=1 T

1
Ui

��Ui
//
Ll

i=1H
2
Ei
(Ũi,FŨi

),

where FX̃ is the Zm-invariant part of ⇡̃⇤⌦2
Ỹ
(logF )(�F + ⌫⇤⇡⇤(�KX)). Let ⌘i 2 T 1

Ui
be an

element such that �Ui(⌘i) 6= 0. Note that H2(X̃,FX̃) = 0 since this is a direct summand
of H2(Ỹ ,⌦2

Ỹ
(logF )(�F ) ⌦ (⌫⇤⇡⇤(�KX))) which vanishes by the Guillen-Navarro Aznar-

Puerta-Steenbrink vanishing theorem. Hence we can lift (�Ui(⌘i)) 2 H2
E(X̃,FX̃) to an

element ⌘ 2 T 1
X such that prUi

(⌘) � ⌘i 2 Ker�Ui . Since Ker�Ui ( T 1
Ui
, we see that ⌘

improves the singularity pi until we reach an A1,2/4-singularity. In fact, we can check that
⌘ is not an equisingular direction, that is, it does not come from the resolution of Ui. For
detail, see the proof of [San12, Theorem 3.5].

⇤

5. Deformations of a Q-Fano 3-fold and its anticanonical element

Let X be a Q-Fano 3-fold and D 2 |�KX | an elephant with only isolated singularities.
We can assume that X has only quotient singularities and A1,2/4-singularities by Theorem
1.2. Takagi proved the following fact on the non-Du Val singularities of general elephants
of a Q-Fano 3-fold.

Theorem 5.1. ([Tak02, Proposition 1.1]) Let X be a Q-Fano 3-fold. Assume that there

exists D0 2 |�KX | which is normal at the non-Gorenstein points of X.

Then there exists D 2 |�KX | which is normal on X and Du Val outside the non-

Gorenstein points of X.

Thus it is enough to consider neighborhoods U1, . . . , Ul of the singular points {p1, . . . , pl}
of X.
Although a Q-Fano 3-fold with only quotient singularities is easier to treat, it may not

have a Du Val elephant as in the following example.

Example 5.2. ([San14a, Example 4.4]) Let X := (x15 + xy7 + z5 + w3
1 + w3

2 = 0) ⇢
P(1, 2, 3, 5, 5) be a weighted hypersurface, where x, y, z, w1, w2 are coordinate functions with
degrees 1, 2, 3, 5, 5 respectively. We can check that X is a Q-Fano 3-fold with only terminal
quotient singularities. Moreover we have |�KX | = {D}, where D := (z5 + w3

1 + w3
2 = 0) ⇢

P(2, 3, 5, 5) is an elephant with a non-log canonical singularity at [1 : 0 : 0 : 0].
We can construct a simultaneous Q-smoothing of a pair (X,D) explicitly by considering a

general hypersurface. For example, X := (x15+xy7+z5+w3
1+w3

2 = �·y6z) ⇢ P(1, 2, 3, 5, 5)⇥
C� induces a simultaneous Q-smoothing of (X,D).

5.1. Necessary local results. The strategy of the proof can be regarded as a pair version
of that of Theorem 1.2. We also use the coboundary map of certain local cohomology group
and the blow-down morphism of deformations. In this case, we should carefully choose a
log resolution of singularities of the pair (X,D).
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Let X be a normal variety with only rational singularities and D its Cartier divisor. Let
µ : X̃ ! X be a proper birational morphism from a smooth variety X̃ such that the support
of µ�1(D) is a SNC divisor. Let D̃ be the strict transform of D and E the µ-exceptional
divisor. Then we can define a functor

µ⇤ : Def(X̃,D̃+E) ! Def(X,D)

which we also call the “blow-down morphism” of deformations (cf. [San14a])
Let us consider our main situation. Let X be a 3-fold with only terminal singularities

and D its Q-Cartier divisor with only isolated singularities. In this case, we can define a
blow-down morphism in another way. Let µ : X̃ ! X be a proper birational morphism from
another normal variety X̃ such that µ is an isomorphism over X 0 := X \SingD. Let D̃ ⇢ X̃
be the strict transform, E ⇢ X̃ the exceptional locus and D0 := D \ SingD. Then we can
define µ⇤ : Def(X̃,D̃+E) ! Def(X,D) as a composition

Def(X̃,D̃+E)
◆̃⇤�! Def(X0,D0)

'�! Def(X,D),

where ◆̃⇤ is a restriction by an open immersion ◆̃ : X 0 ,! X̃. Note that the isomorphism
Def(X0,D0)

'�! Def(X,D) follows since the codimension of SingD ⇢ X is 3.
The image of the blow-down morphism does not change the badness of the singularity in

the following sense.

Example 5.3. Let U := C3 and D := (f = 0) ⇢ U a divisor with only isolated singularities.
Let µ : Ũ ! U be a log resolution of a pair (U,D). Let T 1

(U,D) be the set of first order

deformations of (U,D). Then we can write T 1
(U,D) ' OU,0/Jf , where Jf is the Jacobian

ideal. Thus T 1
(U,D) has a OU,0-module structure. In this situation, we have the relation

Imµ⇤ ⇢ m2
U,0 · T 1

(U,D).

In particular, a smoothing can not be contained in the image of the blow-down morphism
µ⇤ on first order level.

Let U be a Stein neighborhood of a singularity of X and DU 2 |�KU | an element with a
non-Du Val singularity at 0 2 DU . We can assume that U = C3/Zr(1, a, r � a) for coprime
a < r or U = (x2 + y2 + z3 + u2 = 0)/Z4(1, 3, 2, 1). Let µ1 : U1 ! U be the weighted blow-
up with weights 1/r(1, a, r � a) (resp. 1/4(1, 3, 2, 1)) when U = C3/Zr(1, a, r � a) (resp.
U = (x2 + y2 + z3 + u2 = 0)/Z4(1, 3, 2, 1)). Let µ2 : Ũ ! U1 be a log resolution of a pair
(U1, µ

�1
1 (D)) as constructed in [San14a, Lemma3.6]. We construct a log resolution of (U,D)

as a composition

Ũ
µ2�! U1

µ1�! U.

We define the coboundary map as

⌧U : H
1(U 0,⌦2

U 0(logD0
U)) ! H2

EU
(Ũ ,⌦2

Ũ
(log D̃U + EU)),

where U 0 := U \ {p}, D0
U := D \ U 0 and EU := µ�1

U (p).
Define the blow-down morphism as;

(µU,1)⇤ : T
1
(U1,DU,1+EU,1)

! T 1
(U 0,D0

U )
'�! T 1

(U,DU ).

We can prove the relation

(3) Im(µU,1)⇤ ⇢ m2T 1
(U,D)
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DEFORMATIONS OF Q-FANO 3-FOLDS 9

which can be regarded as an equisingular property (See [San14a, Lemmas 3.7]).
Moreover we can prove the non-vanishing of the coboundary map by the following stronger

statement.

Lemma 5.4. ([San14a, Lemma 3.10]) Let p 2 U be a neighborhood of a 3-fold terminal

singularity and p 2 DU 2 |�KU | a non Du Val elephant.

Then we have

Ker ⌧U ⇢ Im(µU,1)⇤ ( H1(U 0,⌦2
U 0(logD0

U)) ' T 1
(U,DU ).

5.2. Sketch of the proof. Let p1, . . . , pl 2 SingD be the non Du Val points of D 2 |�KX |
and pi 2 Ui a Stein neighborhood for i = 1, . . . , l. Construct µ : X̃ ! X by patching each
µi : Ũi ! Ui for i = 1, . . . , l. Consider the diagram

H1(X 0,⌦2
X0(logD0)) //

�pUi

✏✏

H2
E(X̃,⌦2

X̃
(log D̃ + E))

✏✏

// H2(X̃,⌦2
X̃
(log D̃ + E))

�l
i=1H

1(U 0
i ,⌦

2
U 0
i
(logD0

i))
�⌧Ui

// �l
i=1H

2
Ei
(Ũi,⌦2

Ũi
(log D̃i + Ei)),

where X 0 := X \ SingD,D0 := D \ X 0 and so on. Note that, since SingD ⇢ X has
codimension 3, we have T 1

(X,D) ' T 1
(X0,D0), T

1
(Ui,Di)

' T 1
(U 0

i ,D
0
i)
and the homomorphism �pUi in

the diagram can be regarded as a restriction homomorphism T 1
(X,D) ! �T 1

(Ui,Di)
.

From this diagram, we obtain a global deformation ⌘ 2 T 1
(X,D) which induces a deformation

of D to a Du Val elephant as follows. Let ⌘i 2 T 1
(Ui,Di)

be an element inducing a simultaneous

Q-smoothing of (Ui, Di). Then ⌧Ui(⌘i) 6= 0 by Lemma 5.4. Since we have H2(X̃,⌦2
X̃
(log D̃+

E)) = 0 by the a�neness of the complement X̃ \ (D̃ [ E) ' X \ D, we obtain ⌘ 2
H1(X 0,⌦2

X0(logD0)) ' T 1
(X,D) such that pUi(⌘) � ⌘i 2 Ker ⌧Ui . Lemma 5.4 implies that

pUi(⌘) � ⌘i 2 Im(µUi,1)⇤. By the relation (3), we see that pUi(⌘) � ⌘i 2 m2T 1
(Ui,Di)

and this
implies that pUi(⌘) also induces a simultaneous Q-smoothing of (Ui, Di). Thus we obtain a
deformation (X ,D) ! �1 such that Dt has only Du Val singularities.
However the general fiber Xt may have A1,2/4-singularities if D has Du Val singularities

on the A1,2/4-singularities on X. We can argue similarly to deform (Xt,Dt) to a V-smooth
pair, that is, a pair locally isomorphic to (C3/Zr(1, a, r � a), (x = 0)/Zr) for some coprime
integers r, a (See [San12, Theorem 1.9]).

6. Applications and further problems

A Q-Fano 3-fold X is called primary if its class group is generated by the anticanonical
class �KX modulo torsions. It is a generalization of a smooth Fano 3-fold of index one
with Picard number one and considered to be the main class in the classification of Q-Fano
3-folds. Takagi ([Tak06, Theorem 1.5]) obtained the genus bound

h0(X,�KX)  10

of a non-Gorenstein primary Q-Fano 3-fold X by assuming that X has only quotient sin-
gularities and there exists a Du Val elephant on X. As an application of Theorem 1.5, we
obtain the following.

Theorem 6.1. Let X be a non-Gorenstein primary Q-Fano 3-fold. Assume that X has an

elephant with only isolated singularities.
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Then we have h0(X,�KX)  10.

On the other hand, it is expected that a primary Q-Fano 3-fold has a Du Val elephant
if the genus is su�ciently large. Takagi ([Tak02, Corollary 1.2]) proved the existence of
a Du Val elephant on a primary Q-Fano 3-fold whose Gorenstein index is 2 such that
h0(X,�KX) � 4.
It is also interesting to study which K3 surface with Du Val singularities can appear as

an elephant of a Q-Fano 3-fold. Beauville studied this problem in the smooth case([Bea04]).

Acknowledgment

I would like to thank the organizers of the conference for the opportunity for the talk and
their support.

References

[ABR02] Selma Altınok, Gavin Brown, and Miles Reid, Fano 3-folds, K3 surfaces and graded rings, Topol-
ogy and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Prov-
idence, RI, 2002, pp. 25–53. MR 1941620 (2004c:14077)

[Alt87] Klaus Altmann, Equisingular deformations of isolated 2-dimensional hypersurface singularities,
Invent. Math. 88 (1987), no. 3, 619–634. MR 884803 (88f:14005)

[Bea04] Arnaud Beauville, Fano threefolds and K3 surfaces, The Fano Conference, Univ. Torino, Turin,
2004, pp. 175–184. MR 2112574 (2006b:14071)

[Nam97] Yoshinori Namikawa, Smoothing Fano 3-folds, J. Algebraic Geom. 6 (1997), no. 2, 307–324.
MR 1489117 (99d:14040)

[NS95] Yoshinori Namikawa and J. H. M. Steenbrink, Global smoothing of Calabi-Yau threefolds, Invent.
Math. 122 (1995), no. 2, 403–419. MR 1358982 (96m:14056)

[Rei87] Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985
(Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI,
1987, pp. 345–414. MR 927963 (89b:14016)

[San12] T. Sano, On deformations of Q-fano threefolds, arXiv:1203.6323v5, to appear in J. Algebraic
Geom. (2012).

[San14a] , Deforming elephants of Q-Fano threefolds, arXiv:1404.0909. (2014).
[San14b] , On deformations of Q-Fano threefolds II, arXiv: 1403.0212, to appear in Crelle’s Journal.

(2014).
[Ser06] Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin,
2006. MR 2247603 (2008e:14011)

[Tak02] Hiromichi Takagi, On classification of Q-Fano 3-folds of Gorenstein index 2. I, II, Nagoya Math.
J. 167 (2002), 117–155, 157–216. MR 1924722 (2003j:14056)

[Tak06] , Classification of primary Q-Fano threefolds with anti-canonical Du Val K3 surfaces. I,
J. Algebraic Geom. 15 (2006), no. 1, 31–85. MR 2177195 (2006k:14071)

[Wah76] Jonathan M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math.
(2) 104 (1976), no. 2, 325–356. MR 0422270 (54 #10261)

Max Planck Institute for Mathematics, 7 Vivatsgasse, Bonn, 53111, Germany

52


