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Abstract. We study the Noether type of inequality for projective
three folds of general type.

1. Introduction

Let X be a minimal projective 3-fold of general type. It has been an
open problem whether the inequality if true:

K3
X � 4

3
pg(X)� 10

3
? (1.1) {ineq}

Here is a brief history of this problem:

(1) M. Kobayashi [10] constructed some examples satisfying K3 =
4
3pg �

10
3 in 1992;

(2) M. Chen [5] proved Inequality (1.1) for canonically polarized
3-folds in 2004;

(3) Catanese–Chen–Zhang [1] proved Inequality (1.1) for smooth
minimal 3-folds of general type in 2006;

(4) J. Chen and M. Chen [3] proved Inequality (1.1) for Gorenstein
minimal 3-folds of general type in 2015.

The aim of this talk is to announce our main statement that Inequal-
ity (1.1) is true.

2. The discrepancy of a special resolution for linear systems

First of all, we recall the following result of the first author:
{jk}

Theorem 2.1. ([2, Theorem 1.3]) Let X be an algebraic 3-fold with

at worst terminal singularities. For any terminal singularity P 2 X,

there exists a sequence of birational morphisms:

⌧P : Y = Xm ! Xm�1 ! . . . ! X1 ! X0 = X,

such that Y is smooth on ⌧�1
P (P ) and, for all i, the morphism ⇡i :

Xi+1 ! Xi is a divisorial contraction to a singular point Pi 2 Xi of

index ri � 1 with discrepancy 1/ri.

Definition 2.2. Given a terminal singularity P 2 X, the birational
morphism ⌧P : Y ! X 3 P constructed as above is called a feasible

resolution of P 2 X.
1
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Suppose that |M | is a moving linear system (i.e. without fixed part)
on the given projective terminal 3-fold X with Bs|M | 6= ;. Similar to
usual elimination of indeterminancies, we can have a feasible elimina-

tion of indeterminancies as follows:

(0) Given a terminal singularity P 2 X, we may define

d(P 2 X) := min{m|Xm ! . . . ! X1 ! X0 is a feasible resolution.},

and set

d(X) :=
X

P2Sing(X)

d(P 2 X).

Note that d(X) = 0 if and only if X is non-singular.
(i) If Bs|M | \ Sing(X) 6= ;, then there is a singular point P 2

Bs|M |. We take the first map of the feasible resolution X1 !
X 3 P and consider the linear system |M1|, where M1 is the
proper transform of M on X1. Note that d(X1) = d(X)� 1.

(ii) By induction on d(X), this process must terminates in finite
steps. We will end up with a partial resolutions Y = Xk !
. . . ! X1 ! X so that Bs|MY |\Sing(Y ) = ;, where MY is the
proper transform of M on Y .

(iii) If Bs|MY | 6= ;, then Bs|MY | consists of smooth points. We then
consider the usual elimination of indeterminancies over Bs|MY |,
say Z = Xn ! . . . ! Xk = Y , which is composed of a sequence
of blow-ups along smooth points or curves by Hironaka’s big
theorem.

(iv) Thus we end up with a possibly singular 3-fold Z = Xn, so that
|Mn| is base point free. We call

µ : Z = Xn ! . . . ! Xk = Y ! . . . ! X (2.1){Gres}

a feasible elimination of indeterminancies of |M |. Note that a
general member S 2 |MZ | is smooth by Bertini’s Theorem.

For any i > 0, let Ei be the exceptional divisor of Xi ! Xi�1. Let Ki

be the canonical divisor of Xi. For i > j we writeKXi/Xj = Ki�⇡⇤
i,jKj,

where ⇡i,j : Xi ! Xj is the induced map. We also denote KZ/X :=
KZ � µ⇤(KX) and KY/X similarly.
Given a Q-Cartier divisor D on X, let Di be the proper transform

of D in Xi. Similarly, we define DXi/Xj := ⇡⇤
i,jDj �Di write DZ/X :=

µ⇤(D)�DZ . DY/X is defined similarly.
{key}

Theorem 2.3. Let |M | be a moving linear system on a projective ter-

minal 3-fold X and D 2 |M | be a general member. Let µ : Z = Xn !
X be the feasible elimination of indeterminancies as in (2.1). Then

DY/X � KY/X and 2DZ/Y � KZ/Y .

Lemma 2.4. Keep the notation as above. Suppose that ↵i + �i =
a(DZ/X , Ei) + a(KZ/X , Ei)  2, then i 2 J .
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3. The case of canonical family of curves

LetX be a projective minimal 3-fold of general type. We may assume
that pg � 3 and always consider the non-trivial canonical map '1. Set

d := dim'1(X).
The following inequalities are already known:

I. if pg(X) � 3, then K3
X � 1 and if pg(X) � 4, then K3

X � 2 (cf.
[7, Theorem 1.5]).

II. If d = 2 and X is canonically fibred by curves C of genus
g(C) � 3, then K3

X � 2pg(X)� 4 by [6, Theorem 4.1(ii)].

From now on, we consider d = 2 and X is canonically fibred by
curves C of genus g(C) = 2.

{g2}
Theorem 3.1. Let X be a projective minimal smooth 3-fold of general

type. Suppose that d = 2 and X is canonically fibred by curves of genus

2. Then

K3
X � 1

3
(4pg(X)� 10).

The inequality is sharp.

4. The case of canonical family of surfaces

Assume d = 1. We have an induced fibration f : X 0 �! �. Take
a general fiber F of f . By assumption, we know that H0(X 0, f⇤!X0)
naturally generate an invertible sheaf L ⇢ f⇤!X0 . We may always
assume pg(X) � 5. Thus, by [4, Theorem 1], we have

either 0  b := g(�)  1 (4.1) {b2}
or b > 1 and pg(F ) = 1. (4.2) {b1}

Denote by � : F ! F0 the birational contraction onto the minimal
model. Recall that we have ⇡⇤(KX) ⇠ M + E 0 ⌘ ✓F + E 0 where

✓ := degL � pg(X)� 1,

|M | := Mov|KX0 | and E 0 is an e↵ective Q-divisor. When K2
F0

� 2, by
Chen–Zhang [8, Lemma 3.7, Lemma 4.7], we have

K3
X � (1� 1

pg(X)
)2 ·K2

F0
· (pg(X)� 1) >

4

3
pg(X)� 10

3
.

Since pg(X) > 0, we have pg(F ) > 0. Thus, whenK2
F0

= 1, the Noether
inequality for surfaces implies 1  pg(F )  2.

{1,1}
Theorem 4.1. Let X be a minimal projective 3-fold of general type.

Assume pg(X) � 5 and d = 1. If F is a (1, 1) surface, then K3
X �

27
20pg(X)� 9

5 .

Remark 4.2. Since we are only concerned with the inequality K3
X �

4
3pg(X)� 10

3 , Theorem 4.1 may be improved to some extent.
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{1,2}
Theorem 4.3. (=Claim) Let X be a minimal projective 3-fold of gen-

eral type. Assume pg(X) � 5 and d = 1. If F is a (1, 2) surface, then
K3

X � 4
3pg(X)� 10

3 .
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