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Abstract

Any Calabi–Yau threefoldX with infinite fundamental group admits
an étale Galois covering either by an abelian threefold or by the product
of a K3 surface and an elliptic curve. We call X of type A in the former
case and of type K in the latter case. We provide the full classification
of Calabi–Yau threefolds of type K, based on Oguiso and Sakurai’s work
[8]. Together with a refinement of their result on Calabi–Yau threefolds
of type A, we finally complete the classification of Calabi–Yau threefolds
with infinite fundamental group. This is a joint work with A. Kanazawa
[5].

1 Introduction

In this note, a Calabi–Yau threefold is a smooth complex projective threefold
X with trivial canonical bundle and H1(X,OX) = 0. Let X be a Calabi–Yau
threefold with infinite fundamental group. Then the Bogomolov decomposi-
tion theorem [2] implies that X admits an étale Galois covering either by an
abelian threefold or by the product of a K3 surface and an elliptic curve. We
call X of type A in the former case and of type K in the latter case. Among
such coverings, there exists a unique smallest one up to isomorphism as a
covering [3]. We call the smallest covering the minimal splitting covering of
X. Our main result is the following:

Theorem 1.1 ([5, Theorem 3.1]). There exist exactly eight Calabi–Yau
threefolds of type K up to deformation equivalence. The equivalence class is
uniquely determined by the Galois group G of the minimal splitting covering.
Moreover, the Galois group is isomorphic to one of the following combinations
of cyclic and dihedral groups

C2, C2 × C2, C2 × C2 × C2, D6, D8, D10, D12 or C2 ×D8.

We also provide the full classification of Calabi–Yau threefolds of type A,
again based on Oguiso and Sakurai’s work [8]. It turns out that there exist
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exactly six deformation classes of Calabi–Yau threefolds of type A. Together
with our main result, we finally complete the full classification of Calabi–Yau
threefolds with infinite fundamental group:

Theorem 1.2 ([5, Theorem 6.4]). There exist exactly fourteen deformation
classes of Calabi–Yau threefolds with infinite fundamental group. More pre-
cisely, six of them are of type A, and eight of them are of type K.

2 Calabi–Yau actions

We begin with a brief review of Oguiso and Sakurai’s work [8]. Let X be
a Calabi–Yau threefold of type K and let π : S × E → X be the minimal
splitting covering with Galois group G. Thanks to a result of Beauville [3],
we have a canonical isomorphism Aut(S×E) ∼= Aut(S)×Aut(E). The action
of G on S × E is characterized by the following:

Proposition 2.1 (Oguiso–Sakurai [8, Lemma 2.28]). Define H := Ker(G →
GL(H2,0(S))) and take any ι ∈ G \H. Then the following hold.

1. ord(ι) = 2 and G = H ! ⟨ι⟩, where the semi-direct product structure is
given by ιhι = h−1 for any h ∈ H.

2. g|S is an Enriques involution, i.e. an involution without fixed points, for
any g ∈ G \H.

3. ι|E = −1E and H|E = ⟨ta⟩ × ⟨tb⟩ ∼= Cn × Cm under an appropriate
origin of E, where ta and tb are translations of order n and m respec-
tively such that n|m. Moreover we have (n,m) ∈ {(1, k) (1 ≤ k ≤
6), (2, 2), (2, 4), (3, 3)}.

Conversely, if the conditions in the proposition above are satisfied, the
quotient (S × E)/G becomes a Calabi–Yau threefold of type K.

Theorem 2.2 (Oguiso–Sakurai [8, Theorem 2.23]). Let X be a Calabi–Yau
threefold of type K. Let S × E → X be the minimal splitting covering and
G its Galois group. Then the following hold.

1. G is isomorphic to one of the following:

C2, C2×C2, C2×C2×C2, D6, D8, D10, D12, C2×D8, or (C3×C3)!C2.

2. In each case the Picard number ρ(X) of X is uniquely determined by
G and is calculated as ρ(X) = 11, 7, 5, 5, 4, 3, 3, 3, 3 respectively.

3. The cases G ∼= C2, C2 × C2, C2 × C2 × C2 really occur.
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It has not been settled yet whether or not there exist Calabi–Yau threefolds
of type K with Galois group G ∼= D2n (3 ≤ n ≤ 6), C2×D8 or (C3×C3)!C2.
We settle this classification problem of Calabi–Yau threefolds of type K. In
particular, it turns out that the case G ∼= (C3 ×C3)!C2 does not occur and
that the other cases in the theorem above really occur.

Example 2.3 (Enriques Calabi–Yau threefold). Let S be a K3 surface with
an Enriques involution ι and E an elliptic curve with the negation −1E . The
free quotient

X := (S × E)/⟨(ι,−1E)⟩

is the simplest Calabi–Yau threefold of type K, known as the Enriques Calabi–
Yau threefold.

By Proposition 2.1, the classification problem of Calabi–Yau threefolds of
type K is reduced to that of Calabi–Yau actions defined by the following:

Definition 2.4. Let G be a finite group. We say that an action of G on a
K3 surface S is a Calabi–Yau action if the following hold.

1. G = H ! ⟨ι⟩ for some H ∼= Cn × Cm with (n,m) ∈ {(1, k) (1 ≤ k ≤
6), (2, 2), (2, 4), (3, 3)}, and ι with ord(ι) = 2. The semi-direct product
structure is given by ιhι = h−1 for any h ∈ H.

2. H acts on S symplectically, that is, the induced action of H on H2,0(S)
is trivial, and any g ∈ G \H acts on S as an Enriques involution.

3 Construction and uniqueness for the case G = D10

Now we discuss about construction and uniqueness of Calabi–Yau G-actions
for the case G = D10 as an example. In this case, we have H = C5. Recall
that a generic K3 surface with the simplest Calabi–Yau action, namely an En-
riques involution, is realized as a Horikawa model. Similarly, a generic K3 sur-
face equipped with a Calabi–Yau G-action is realized as an “H-equivariant”
Horikawa model, as follows.

Let h be a generator ofH. Recall that we haveG = H!⟨ι⟩ with ord(ι) = 2.
Set Z = P1 × P1. Let F = F (x, y, z, w) ∈ H0(OZ(4, 4)) be a homogeneous
polynomial of bidegree (4, 4). Let ζ5 be a primitive fifth root of unity. Assume
that F is G-invariant, where the action of G is defined by

h : (x, y, z, w) )→ (ζ5x, ζ
−1
5 y, ζ25z, ζ

−2
5 w), ι : (x, y, z, w) )→ (y, x, w, z). (3.1)

Then F is a linear combination of the following polynomials:

x4zw3 + y4z3w, x3yz4 + xy3w4, x2y2z2w2. (3.2)
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If F is generic, the curve B ⊂ Z defined by F = 0 is smooth and the induced
action of any g ∈ G \H on B has no fixed points. Let S denote the double
covering of Z branching along B. Then S is a K3 surface. Note that

(xdy − ydx) ∧ (zdw − wdz)/
√
F (3.3)

gives a nowhere vanishing holomorphic 2-form on S. We can find a lift of the
action of G on Z to that on S which is a Calabi–Yau action. The quotient
(S ×E)/G as in Section 2 is a Calabi–Yau threefold of type K. Let L denote
the pullback of OZ(1, 1) by the natural map S → Z. The K3 surface S with
the polarization L is a polarized K3 surface of degree 4 (cf. the Key Lemma
below).

Next we prove the uniqueness of a Calabi–Yau action of G = D10. More
precisely, we prove that a generic K3 surface with a Calabi–Yau G-action is
realized as above. This implies that a Calabi–Yau threefold (S × E)/G of
type K (as in Section 2) for G = D10 is unique up to deformation. The key
to proving the uniqueness is the following Key Lemma, which is also true for
the other G including (C3 × C3)! C2.

Key Lemma. Let S be a K3 surface with a Calabi–Yau G-action. Then
there exists a G-invariant element v ∈ NS(S) such that v2 = 4.

The proof of the Key Lemma will be given in Section 4. Before proving the
uniqueness, we consider projective models of K3 surfaces with a Calabi–Yau
action.

Lemma 3.1 (Oguiso–Sakurai [8, Lemma 1.7]). Let S be a K3 surface with an
action of a finite group G and let x be a G-invariant element in NS(S)⊗R with
x2 > 0. Then there exists γ ∈ O(H2(S,Z)) such that γ(H2,0(S)) = H2,0(S),
γ(x) is nef, and γ commutes with G.

Lemma 3.2. Let S be a K3 surface with a Calabi–YauG-action. Assume that
there exists a G-invariant element v ∈ NS(S) such that v2 = 4. Then there
exists a G-invariant line bundle L on S satisfying the following conditions.

1. L2 = 4 and h0(L) = 4.

2. The linear system |L| defined by L is base-point free and defines a map
φL : S → P3.

3. dimφL(S) = 2.

4. The degree deg φL of the map φL : S → φL(S) is 2, and φL(S) is iso-
morphic to either P1 × P1 or a cone (i.e. a nodal quadric surface).

Proof. We may assume that v is nef by Lemma 3.1. Let L be a line bundle
on S representing v. By Saint-Donat [9, Sections 4 and 8], we have h0(L) = 4
and either of the following occurs.
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(a) L is base-point free, dimφL(S) = 2, and deg φL = 1 or 2. Any connected
component of φ−1

L (p) for any p is either a point or an ADE-configuration.

(b) L ∼= OS(3E+Γ) and |L| = {D1+D2+D3+Γ
∣∣ Di ∼ E}, where E and

Γ ∼= P1 are irreducible divisors such that E2 = 0, Γ2 = −2 and E.Γ = 1.

In Case (b), the base locus Γ ∼= P1 of |L| is stable under the action of ι
and thus ι has a fixed point in Γ, which is a contradiction. Hence Case (a)
occurs. Since the fixed locus of any (projective) involution of P3 is at least
1-dimensional, there exists a fixed point p of the action of ι on φL(S). If
deg φL = 1, then ι has a fixed point in S, which is a contradiction. Hence
deg φL = 2, and φL(S) is an irreducible quadric surface in P3, which is either
P1 × P1 or a cone.

Now we prove the uniqueness of a Calabi–Yau G-action. For a generic K3
surface S with a Calabi–Yau G-action, the image φL(S) of S by the map φL
defined in Lemma 3.2 is isomorphic to Z = P1 × P1 (see [5] for details). By
direct computation, the map φL : S → Z is of the form given above. Note
that if the action of G is defined by

h : (x, y, z, w) )→ (ζ5x, ζ
−1
5 y, ζ5z, ζ

−1
5 w), ι : (x, y, z, w) )→ (y, x, w, z), (3.4)

then the branching curve B has “bad” singular points and the double covering
S is not a K3 surface (even after resolution).

4 Proof of the Key Lemma

In this section we prove the Key Lemma for G = D10. We use the lattice
theory due to Nikulin [7]. The second integral cohomology H2(S,Z) of S with
the cup product ⟨ , ⟩ is considered as a lattice.

Recall that the action of H on S is symplectic. Hence the minimal reso-
lution S̃ of S/H is again a K3 surface. The action of ι on S induces that on
S̃. We have the following:

• The quotient S/H has exactly four singular points, each of which is of
type A4 (Nikulin [6]).

• ι acts on S̃ as an Enriques involution.

For a lattice L, we define L(n) to be the lattice obtained by multiplying
the bilinear form of L by n. Since ι acts on S̃ as an Enriques involution,
the invariant part H2(S,Z)ι of H2(S,Z) by the action of ι is isomorphic to
U(2)⊕E8(−2) (see [1, Section VIII.19]), where U is the lattice defined by the
matrix ( 0 1

1 0 ). We have the following:
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• For the sublattice M of H2(S̃,Z) which is generated by the exceptional
curves of the map S̃ → S/H, we have M ∼= A4(−1)⊕4.

• M ι ∼= A4(−2)⊕2.

• (M ι)⊥ ∼= U(2) or U(10).

Here (M ι)⊥ denotes the orthogonal part of M ι in H2(S,Z)ι. By Lemma 4.1
below, it follows that (M ι)⊥ ∼= U(10). Consider the pullback map

π∗ : H2(S̃,Z) → H2(S,Z)

induced by the natural rational map π : S− → S̃. For any x, y ∈ M⊥ (in
H2(S̃,Q)), we have ⟨π∗x,π∗y⟩ = |H|⟨x, y⟩ = 5 · ⟨x, y⟩. By Garbagnati [4,
Proposition 2.4], we have

H2(S,Z)G = π∗{x/5
∣∣ x ∈ (M ι)⊥, ⟨x/5, (M ι)⊥⟩ ⊂ Z} ∼= U(2). (4.1)

Since we have H2(S,Z)G ⊂ H2(S,Z)ι ⊂ NS(S), the Key Lemma follows.

Lemma 4.1. There is no element v ∈ (M ι)⊥ such that v2 = 4.

Proof. We assume that an element v ∈ (M ι)⊥ satisfies v2 = 4 and derive
a contradiction. By Lemma 3.1, we may assume that v is nef (see [5] for
details). Recall that the action of ι on S/H has no fixed points. By the same
argument as in the proof of Proposition 3.2, the class v induces a morphism
f̃ : S̃ → P3 such that f̃(S̃) is a quadric surface and the degree of f̃ is 2.

Since we have v⊥M by the assumption, the morphism f̃ induces a morphism
f : S/H → P3. We may assume that f(S/H) ∼= P1 × P1 by taking a generic
S (see [5] for details). The action of ι on S/H is of the form στ , where σ is
induced by a symplectic involution of S̃ and τ is the covering transformation
of f . Let τ ∈ Aut(S) be a lift of τ . Note that τ normalizes H. Since f
induces a generically one-to-one morphism S/⟨H, τ⟩ → P1 × P1, it follows
that S/⟨H, τ⟩ is smooth and that the action of τ fixes each singular point of
S/H. Hence the actions of a generator of H and τ are represented by the

matrices

[
ζ5 0
0 ζ−1

5

]
and

[
0 1
1 0

]
respectively, in local coordinates around a

fixed point of the action of H on S. Therefore we have τhτ = h−1 for any
h ∈ H (⋆).

We checked that τ fixes each point in Sing(S/H). Since σ is a symplectic
involution, the action of σ has exactly 8 fixed points qi ̸∈ Sing(S/H), 1 ≤ i ≤ 8
(Nikulin [6]). Let Qi ⊂ S denote the inverse image of qi. Then |Qi| = |H| = 5.
Take a point p ∈ Qi. Since H acts on Qi transitively, we can take a lift
σ ∈ Aut(S) of σ such that σ · p = p. The action of σ around p is locally
identified with that of σ around qi. Therefore ord(σ) = 2. Since σ τ ∈ Hι,
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the condition (⋆) implies that σ commutes with H. Hence the action of σ on
each Qi is trivial or free and the fixed locus Sσ of the action of σ on S is the
union of some Qi. On the other hand, similarly to σ, we have |Sσ| = 8. This
is a contradiction.

References

[1] W. P. Barth, K. Hulek, C. A. M. Peters and A. van de Ven, Compact
complex surfaces, Second edition, Springer-Verlag, Berlin, 2004.

[2] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est
nulle, J. Diff. Geom. 18 (1983), no. 4, 755–782.

[3] A. Beauville, Some remarks on Kähler manifolds with c1 = 0, in Clas-
sification of Algebraic and Analytic Manifolds, K. Ueno, ed., Progress
Math. 39 (1983), 1–26.

[4] A. Garbagnati, Symplectic automorphisms on Kummer surfaces, Geom.
Dedicata 145 (2010), 219–232.

[5] K. Hashimoto and A. Kanazawa, Calabi–Yau threefolds of type K (I)
Classification, arXiv:1409.7601

[6] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of
Type K3, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137.

[7] V. V. Nikulin, Integer symmetric bilinear forms and some of their geo-
metric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1,
111–177.

[8] K. Oguiso and J. Sakurai, Calabi–Yau threefolds of quotient type, Asian
J. Math. 5 (2001), no.1, 43–77.

[9] B. Saint-Donat, Projective models of K3 surfaces, Math. Z, 189 (1985),
1083–1119.

7

38


