Classification of Calabi－Yau threefolds of type K

Kenji Hashimoto

December 31， 2014

Abstract

Any Calabi－Yau threefold X with infinite fundamental group admits an étale Galois covering either by an abelian threefold or by the product of a K3 surface and an elliptic curve．We call X of type A in the former case and of type K in the latter case．We provide the full classification of Calabi－Yau threefolds of type K，based on Oguiso and Sakurai＇s work ［8］．Together with a refinement of their result on Calabi－Yau threefolds of type A，we finally complete the classification of Calabi－Yau threefolds with infinite fundamental group．This is a joint work with A．Kanazawa ［5］．

1 Introduction

In this note，a Calabi－Yau threefold is a smooth complex projective threefold X with trivial canonical bundle and $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ ．Let X be a Calabi－Yau threefold with infinite fundamental group．Then the Bogomolov decomposi－ tion theorem［2］implies that X admits an étale Galois covering either by an abelian threefold or by the product of a K3 surface and an elliptic curve．We call X of type A in the former case and of type K in the latter case．Among such coverings，there exists a unique smallest one up to isomorphism as a covering［3］．We call the smallest covering the minimal splitting covering of X ．Our main result is the following：

Theorem 1.1 （［5，Theorem 3．1］）．There exist exactly eight Calabi－Yau threefolds of type K up to deformation equivalence．The equivalence class is uniquely determined by the Galois group G of the minimal splitting covering． Moreover，the Galois group is isomorphic to one of the following combinations of cyclic and dihedral groups

$$
C_{2}, C_{2} \times C_{2}, C_{2} \times C_{2} \times C_{2}, D_{6}, D_{8}, D_{10}, D_{12} \text { or } C_{2} \times D_{8} .
$$

We also provide the full classification of Calabi－Yau threefolds of type A， again based on Oguiso and Sakurai＇s work［8］．It turns out that there exist
exactly six deformation classes of Calabi-Yau threefolds of type A. Together with our main result, we finally complete the full classification of Calabi-Yau threefolds with infinite fundamental group:

Theorem 1.2 ([5, Theorem 6.4]). There exist exactly fourteen deformation classes of Calabi-Yau threefolds with infinite fundamental group. More precisely, six of them are of type A, and eight of them are of type K.

2 Calabi-Yau actions

We begin with a brief review of Oguiso and Sakurai's work [8]. Let X be a Calabi-Yau threefold of type K and let $\pi: S \times E \rightarrow X$ be the minimal splitting covering with Galois group G. Thanks to a result of Beauville [3], we have a canonical isomorphism $\operatorname{Aut}(S \times E) \cong \operatorname{Aut}(S) \times \operatorname{Aut}(E)$. The action of G on $S \times E$ is characterized by the following:

Proposition 2.1 (Oguiso-Sakurai [8, Lemma 2.28]). Define $H:=\operatorname{Ker}(G \rightarrow$ $\left.\mathrm{GL}\left(H^{2,0}(S)\right)\right)$ and take any $\iota \in G \backslash H$. Then the following hold.

1. $\operatorname{ord}(\iota)=2$ and $G=H \rtimes\langle\iota\rangle$, where the semi-direct product structure is given by $\iota \iota \iota=h^{-1}$ for any $h \in H$.
2. $\left.g\right|_{S}$ is an Enriques involution, i.e. an involution without fixed points, for any $g \in G \backslash H$.
3. $\left.\iota\right|_{E}=-1_{E}$ and $\left.H\right|_{E}=\left\langle t_{a}\right\rangle \times\left\langle t_{b}\right\rangle \cong C_{n} \times C_{m}$ under an appropriate origin of E, where t_{a} and t_{b} are translations of order n and m respectively such that $n \mid m$. Moreover we have $(n, m) \in\{(1, k)(1 \leq k \leq$ $6),(2,2),(2,4),(3,3)\}$.

Conversely, if the conditions in the proposition above are satisfied, the quotient $(S \times E) / G$ becomes a Calabi-Yau threefold of type K.

Theorem 2.2 (Oguiso-Sakurai [8, Theorem 2.23]). Let X be a Calabi-Yau threefold of type K. Let $S \times E \rightarrow X$ be the minimal splitting covering and G its Galois group. Then the following hold.

1. G is isomorphic to one of the following:

$$
C_{2}, C_{2} \times C_{2}, C_{2} \times C_{2} \times C_{2}, D_{6}, D_{8}, D_{10}, D_{12}, C_{2} \times D_{8}, \text { or }\left(C_{3} \times C_{3}\right) \rtimes C_{2} .
$$

2. In each case the Picard number $\rho(X)$ of X is uniquely determined by G and is calculated as $\rho(X)=11,7,5,5,4,3,3,3,3$ respectively.
3. The cases $G \cong C_{2}, C_{2} \times C_{2}, C_{2} \times C_{2} \times C_{2}$ really occur.

It has not been settled yet whether or not there exist Calabi-Yau threefolds of type K with Galois group $G \cong D_{2 n}(3 \leq n \leq 6), C_{2} \times D_{8}$ or $\left(C_{3} \times C_{3}\right) \rtimes C_{2}$. We settle this classification problem of Calabi-Yau threefolds of type K. In particular, it turns out that the case $G \cong\left(C_{3} \times C_{3}\right) \rtimes C_{2}$ does not occur and that the other cases in the theorem above really occur.

Example 2.3 (Enriques Calabi-Yau threefold). Let S be a K3 surface with an Enriques involution ι and E an elliptic curve with the negation -1_{E}. The free quotient

$$
X:=(S \times E) /\left\langle\left(\iota,-1_{E}\right)\right\rangle
$$

is the simplest Calabi-Yau threefold of type K, known as the Enriques CalabiYau threefold.

By Proposition 2.1, the classification problem of Calabi-Yau threefolds of type K is reduced to that of Calabi-Yau actions defined by the following:

Definition 2.4. Let G be a finite group. We say that an action of G on a K3 surface S is a Calabi-Yau action if the following hold.

1. $G=H \rtimes\langle\iota\rangle$ for some $H \cong C_{n} \times C_{m}$ with $(n, m) \in\{(1, k)(1 \leq k \leq$ $6),(2,2),(2,4),(3,3)\}$, and ι with $\operatorname{ord}(\iota)=2$. The semi-direct product structure is given by $\iota h \iota=h^{-1}$ for any $h \in H$.
2. H acts on S symplectically, that is, the induced action of H on $H^{2,0}(S)$ is trivial, and any $g \in G \backslash H$ acts on S as an Enriques involution.

3 Construction and uniqueness for the case $G=D_{10}$

Now we discuss about construction and uniqueness of Calabi-Yau G-actions for the case $G=D_{10}$ as an example. In this case, we have $H=C_{5}$. Recall that a generic K3 surface with the simplest Calabi-Yau action, namely an Enriques involution, is realized as a Horikawa model. Similarly, a generic K3 surface equipped with a Calabi-Yau G-action is realized as an " H-equivariant" Horikawa model, as follows.

Let h be a generator of H. Recall that we have $G=H \rtimes\langle\iota\rangle$ with $\operatorname{ord}(\iota)=2$. Set $Z=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Let $F=F(x, y, z, w) \in H^{0}\left(\mathcal{O}_{Z}(4,4)\right)$ be a homogeneous polynomial of bidegree (4,4). Let ζ_{5} be a primitive fifth root of unity. Assume that F is G-invariant, where the action of G is defined by

$$
\begin{equation*}
h:(x, y, z, w) \mapsto\left(\zeta_{5} x, \zeta_{5}^{-1} y, \zeta_{5}^{2} z, \zeta_{5}^{-2} w\right), \quad \iota:(x, y, z, w) \mapsto(y, x, w, z) \tag{3.1}
\end{equation*}
$$

Then F is a linear combination of the following polynomials:

$$
\begin{equation*}
x^{4} z w^{3}+y^{4} z^{3} w, x^{3} y z^{4}+x y^{3} w^{4}, x^{2} y^{2} z^{2} w^{2} . \tag{3.2}
\end{equation*}
$$

If F is generic, the curve $B \subset Z$ defined by $F=0$ is smooth and the induced action of any $g \in G \backslash H$ on B has no fixed points. Let S denote the double covering of Z branching along B. Then S is a K3 surface. Note that

$$
\begin{equation*}
(x d y-y d x) \wedge(z d w-w d z) / \sqrt{F} \tag{3.3}
\end{equation*}
$$

gives a nowhere vanishing holomorphic 2 -form on S. We can find a lift of the action of G on Z to that on S which is a Calabi-Yau action. The quotient $(S \times E) / G$ as in Section 2 is a Calabi-Yau threefold of type K. Let \mathcal{L} denote the pullback of $\mathcal{O}_{Z}(1,1)$ by the natural map $S \rightarrow Z$. The K3 surface S with the polarization \mathcal{L} is a polarized K3 surface of degree 4 (cf. the Key Lemma below).

Next we prove the uniqueness of a Calabi-Yau action of $G=D_{10}$. More precisely, we prove that a generic K3 surface with a Calabi-Yau G-action is realized as above. This implies that a Calabi-Yau threefold $(S \times E) / G$ of type K (as in Section 2) for $G=D_{10}$ is unique up to deformation. The key to proving the uniqueness is the following Key Lemma, which is also true for the other G including $\left(C_{3} \times C_{3}\right) \rtimes C_{2}$.

Key Lemma. Let S be a K3 surface with a Calabi-Yau G-action. Then there exists a G-invariant element $v \in \mathrm{NS}(S)$ such that $v^{2}=4$.

The proof of the Key Lemma will be given in Section 4. Before proving the uniqueness, we consider projective models of K3 surfaces with a Calabi-Yau action.

Lemma 3.1 (Oguiso-Sakurai [8, Lemma 1.7]). Let S be a K3 surface with an action of a finite group G and let x be a G-invariant element in $\operatorname{NS}(S) \otimes \mathbb{R}$ with $x^{2}>0$. Then there exists $\gamma \in \mathrm{O}\left(H^{2}(S, \mathbb{Z})\right)$ such that $\gamma\left(H^{2,0}(S)\right)=H^{2,0}(S)$, $\gamma(x)$ is nef, and γ commutes with G.

Lemma 3.2. Let S be a K3 surface with a Calabi-Yau G-action. Assume that there exists a G-invariant element $v \in \operatorname{NS}(S)$ such that $v^{2}=4$. Then there exists a G-invariant line bundle \mathcal{L} on S satisfying the following conditions.

1. $\mathcal{L}^{2}=4$ and $h^{0}(\mathcal{L})=4$.
2. The linear system $|\mathcal{L}|$ defined by \mathcal{L} is base-point free and defines a map $\phi_{\mathcal{L}}: S \rightarrow \mathbb{P}^{3}$.
3. $\operatorname{dim} \phi_{\mathcal{L}}(S)=2$.
4. The degree $\operatorname{deg} \phi_{\mathcal{L}}$ of the map $\phi_{\mathcal{L}}: S \rightarrow \phi_{\mathcal{L}}(S)$ is 2 , and $\phi_{\mathcal{L}}(S)$ is isomorphic to either $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or a cone (i.e. a nodal quadric surface).
Proof. We may assume that v is nef by Lemma 3.1. Let \mathcal{L} be a line bundle on S representing v. By Saint-Donat [9 , Sections 4 and 8], we have $h^{0}(\mathcal{L})=4$ and either of the following occurs.
(a) \mathcal{L} is base-point free, $\operatorname{dim} \phi_{\mathcal{L}}(S)=2$, and $\operatorname{deg} \phi_{\mathcal{L}}=1$ or 2 . Any connected component of $\phi_{\mathcal{L}}^{-1}(p)$ for any p is either a point or an ADE-configuration.
(b) $\mathcal{L} \cong \mathcal{O}_{S}(3 E+\Gamma)$ and $|\mathcal{L}|=\left\{D_{1}+D_{2}+D_{3}+\Gamma \mid D_{i} \sim E\right\}$, where E and $\Gamma \cong \mathbb{P}^{1}$ are irreducible divisors such that $E^{2}=0, \Gamma^{2}=-2$ and $E . \Gamma=1$.

In Case (b), the base locus $\Gamma \cong \mathbb{P}^{1}$ of $|\mathcal{L}|$ is stable under the action of ι and thus ι has a fixed point in Γ, which is a contradiction. Hence Case (a) occurs. Since the fixed locus of any (projective) involution of \mathbb{P}^{3} is at least 1 -dimensional, there exists a fixed point p of the action of ι on $\phi_{\mathcal{L}}(S)$. If $\operatorname{deg} \phi_{\mathcal{L}}=1$, then ι has a fixed point in S, which is a contradiction. Hence $\operatorname{deg} \phi_{\mathcal{L}}=2$, and $\phi_{\mathcal{L}}(S)$ is an irreducible quadric surface in \mathbb{P}^{3}, which is either $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or a cone.

Now we prove the uniqueness of a Calabi-Yau G-action. For a generic K3 surface S with a Calabi-Yau G-action, the image $\phi_{\mathcal{L}}(S)$ of S by the map $\phi_{\mathcal{L}}$ defined in Lemma 3.2 is isomorphic to $Z=\mathbb{P}^{1} \times \mathbb{P}^{1}$ (see [5] for details). By direct computation, the map $\phi_{\mathcal{L}}: S \rightarrow Z$ is of the form given above. Note that if the action of G is defined by

$$
\begin{equation*}
h:(x, y, z, w) \mapsto\left(\zeta_{5} x, \zeta_{5}^{-1} y, \zeta_{5} z, \zeta_{5}^{-1} w\right), \quad \iota:(x, y, z, w) \mapsto(y, x, w, z) \tag{3.4}
\end{equation*}
$$

then the branching curve B has "bad" singular points and the double covering S is not a K3 surface (even after resolution).

4 Proof of the Key Lemma

In this section we prove the Key Lemma for $G=D_{10}$. We use the lattice theory due to Nikulin [7]. The second integral cohomology $H^{2}(S, \mathbb{Z})$ of S with the cup product \langle,$\rangle is considered as a lattice.$

Recall that the action of H on S is symplectic. Hence the minimal resolution \widetilde{S} of S / H is again a $K 3$ surface. The action of ι on S induces that on \widetilde{S}. We have the following:

- The quotient S / H has exactly four singular points, each of which is of type A_{4} (Nikulin [6]).
- ι acts on \widetilde{S} as an Enriques involution.

For a lattice L, we define $L(n)$ to be the lattice obtained by multiplying the bilinear form of L by n. Since ι acts on \widetilde{S} as an Enriques involution, the invariant part $H^{2}(S, \mathbb{Z})^{\iota}$ of $H^{2}(S, \mathbb{Z})$ by the action of ι is isomorphic to $U(2) \oplus E_{8}(-2)$ (see [1, Section VIII.19]), where U is the lattice defined by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. We have the following:

- For the sublattice $\underset{\widetilde{S}}{ }$ of $H^{2}(\widetilde{S}, \mathbb{Z})$ which is generated by the exceptional curves of the map $\widetilde{S} \rightarrow S / H$, we have $M \cong A_{4}(-1)^{\oplus 4}$.
- $M^{\iota} \cong A_{4}(-2)^{\oplus 2}$.
- $\left(M^{\iota}\right)^{\perp} \cong U(2)$ or $U(10)$.

Here $\left(M^{\iota}\right)^{\perp}$ denotes the orthogonal part of M^{ι} in $H^{2}(S, \mathbb{Z})^{\iota}$. By Lemma 4.1 below, it follows that $\left(M^{\iota}\right)^{\perp} \cong U(10)$. Consider the pullback map

$$
\pi^{*}: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow H^{2}(S, \mathbb{Z})
$$

induced by the natural rational map $\pi: S-\rightarrow \widetilde{S}$. For any $x, y \in M^{\perp}$ (in $H^{2}(\widetilde{S}, \mathbb{Q})$), we have $\left\langle\pi^{*} x, \pi^{*} y\right\rangle=|H|\langle x, y\rangle=5 \cdot\langle x, y\rangle$. By Garbagnati [4, Proposition 2.4], we have

$$
\begin{equation*}
H^{2}(S, \mathbb{Z})^{G}=\pi^{*}\left\{x / 5 \mid x \in\left(M^{\iota}\right)^{\perp},\left\langle x / 5,\left(M^{\iota}\right)^{\perp}\right\rangle \subset \mathbb{Z}\right\} \cong U(2) \tag{4.1}
\end{equation*}
$$

Since we have $H^{2}(S, \mathbb{Z})^{G} \subset H^{2}(S, \mathbb{Z})^{\iota} \subset \mathrm{NS}(S)$, the Key Lemma follows.
Lemma 4.1. There is no element $v \in\left(M^{\iota}\right)^{\perp}$ such that $v^{2}=4$.
Proof. We assume that an element $v \in\left(M^{\iota}\right)^{\perp}$ satisfies $v^{2}=4$ and derive a contradiction. By Lemma 3.1, we may assume that v is nef (see [5] for details). Recall that the action of ι on S / H has no fixed points. By the same argument as in the proof of Proposition 3.2, the class v induces a morphism $\widetilde{f}: \widetilde{S} \rightarrow \mathbb{P}^{3}$ such that $\widetilde{f}(\widetilde{S})$ is a quadric surface and the degree of \widetilde{f} is 2 . Since we have $v \perp M$ by the assumption, the morphism \widetilde{f} induces a morphism $f: S / H \rightarrow \mathbb{P}^{3}$. We may assume that $f(S / H) \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ by taking a generic S (see [5] for details). The action of ι on S / H is of the form $\sigma \tau$, where σ is induced by a symplectic involution of \widetilde{S} and τ is the covering transformation of f. Let $\bar{\tau} \in \operatorname{Aut}(S)$ be a lift of τ. Note that $\bar{\tau}$ normalizes H. Since f induces a generically one-to-one morphism $S /\langle H, \bar{\tau}\rangle \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$, it follows that $S /\langle H, \bar{\tau}\rangle$ is smooth and that the action of τ fixes each singular point of S / H. Hence the actions of a generator of H and $\bar{\tau}$ are represented by the matrices $\left[\begin{array}{cc}\zeta_{5} & 0 \\ 0 & \zeta_{5}^{-1}\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ respectively, in local coordinates around a fixed point of the action of H on S. Therefore we have $\bar{\tau} h \bar{\tau}=h^{-1}$ for any $h \in H(*)$.

We checked that τ fixes each point in $\operatorname{Sing}(S / H)$. Since σ is a symplectic involution, the action of σ has exactly 8 fixed points $q_{i} \notin \operatorname{Sing}(S / H), 1 \leq i \leq 8$ (Nikulin [6]). Let $Q_{i} \subset S$ denote the inverse image of q_{i}. Then $\left|Q_{i}\right|=|H|=5$. Take a point $p \in Q_{i}$. Since H acts on Q_{i} transitively, we can take a lift $\bar{\sigma} \in \operatorname{Aut}(S)$ of σ such that $\bar{\sigma} \cdot p=p$. The action of $\bar{\sigma}$ around p is locally identified with that of σ around q_{i}. Therefore $\operatorname{ord}(\bar{\sigma})=2$. Since $\bar{\sigma} \bar{\tau} \in H \iota$,
the condition (\star) implies that $\bar{\sigma}$ commutes with H. Hence the action of $\bar{\sigma}$ on each Q_{i} is trivial or free and the fixed locus $S^{\bar{\sigma}}$ of the action of $\bar{\sigma}$ on S is the union of some Q_{i}. On the other hand, similarly to σ, we have $\left|S^{\bar{\sigma}}\right|=8$. This is a contradiction.

References

[1] W. P. Barth, K. Hulek, C. A. M. Peters and A. van de Ven, Compact complex surfaces, Second edition, Springer-Verlag, Berlin, 2004.
[2] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 (1983), no. 4, 755-782.
[3] A. Beauville, Some remarks on Kähler manifolds with $c_{1}=0$, in Classification of Algebraic and Analytic Manifolds, K. Ueno, ed., Progress Math. 39 (1983), 1-26.
[4] A. Garbagnati, Symplectic automorphisms on Kummer surfaces, Geom. Dedicata 145 (2010), 219-232.
[5] K. Hashimoto and A. Kanazawa, Calabi-Yau threefolds of type K (I) Classification, arXiv:1409.7601
[6] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of Type K3, Trudy Moskov. Mat. Obshch. 38 (1979), 75-137.
[7] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111-177.
[8] K. Oguiso and J. Sakurai, Calabi-Yau threefolds of quotient type, Asian J. Math. 5 (2001), no.1, 43-77.
[9] B. Saint-Donat, Projective models of K3 surfaces, Math. Z, 189 (1985), 1083-1119.

