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1 Backgrounds

Let M and W are projective manifolds over C. If there is an equivalence between the

bounded derived categories Db(M) and Db(W ) of coherent sheaves on M and W , then W is

said to be a Fourier-Mukai partner (shortly FM partner) of M . The following conjecture was

proposed by Kawamata:

Conjecture 1.1 ([11]). Let M be a projective manifold. The set FM(M) of isomorphism

classes of FM partners　 of M is a finite set.

We have to remark that the conjecture holds if dimM ≤ 2 or M is abelian variety by [10,

mainly in Chapter 5], [2], [11], [14] and [6]. Motivated the conjecture, we wish to discuss

relations between Db(M) and FM(M). Here the word “relations” does not have a specifying

meaning. For instance, the following question suggests an example of “relations”:

Question. Can we prove the conjecture in terms of the autoequivalence group Aut(Db(M))

of Db(M)?

For the question, we have the following very partial answer:

Proposition 1.2. Let M be a projective manifold. Suppose that Aut(Db(M)) is generated
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by:
Aut(Db(M)) = ⟨f∗, L, [1]|L ∈ Pic(M), f ∈ Aut(M)⟩,

where [1] is the shift functor on Db(M). Then M has the only trivial FM partner M itself.

Proof. Let Φ : Db(M) → Db(W ) be an equivalence between projective manifolds and let LW

be a very ample line bundle on W . By the assumption, the functor F := Φ−1 ◦ (⊗LW ) ◦ Φ is

generated by
T (M) := ⟨f∗, L, [1]|L ∈ Pic(M), f ∈ Aut(M)⟩,

D(M)
Φ−−−−→ D(W )

F

⏐⏐"
⏐⏐"LW⊗(−)

D(M)
Φ−−−−→ D(W ).

Since kLW has a global section for any positive integer k ∈ Z>0, we can make a morphism

E → E ⊗ kLW for any E ∈ D(W ). In particular since kLW is base point free, we can choose

the section so that the morphism E → E ⊗ kLW is not 0. Thus, for any k ∈ Z>0 and

E ∈ D(W ), we have HomD(Y )(E,E ⊗ kLW ) ̸= 0. Thus, for any closed point x ∈ M , we have

HomD(M)(Ox, F
k(Ox)) ∼= HomD(W )(Φ(Ox),Φ(Ox)⊗ kLW ) ̸= 0.

Since F ∈ T (M) we have
F (−) = LM ⊗ f∗(−)[n],

where f ∈ Aut(M), LM ∈ Pic(M) and n ∈ Z. We wish to prove that n = 0 and f = idM .

Suppose to the contrary that n ̸= 0. Since n ̸= 0, for sufficiently large ℓ ∈ Z>0, we have

HomD(M)(Ox, F ℓ(Ox)) = 0 where F ℓ is the ℓ times composition of F . This is contradiction.

Hence n should be 0.

We assume that f ̸= idM . Then there is a closed point x ∈ M such that f(x) ̸= x. Since

F (Ox) = Of(x), we have
HomD(M)(Ox, F (Ox)) = 0.

This is contradiction.

Since F (−) = LM ⊗ (−), we have for any positive integer k,

Φ(Ox)⊗ kLW = Φ(Ox ⊗ kLM ) = Φ(Ox).

Thus each Hilbert polynomial of Hi(Φ(Ox)) with respect to LW is constant. Since LW is

very ample, it follows that dimSupp(Hi(Φ(Ox))) = 0. Thus dimSupp(Φ(Ox)) = 0. By [10,
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Lemma 4.5], we have
Φ(Ox) = Oyx [nx],

for some yx ∈ Y and nx ∈ Z. Since any equivalence has a Fourier-Mukai kernel by [14, Theorem

2.18], we see that nx is locally constant. Hence, nx is constant. So we put nx = n. Since

skyscraper sheaves are stable under the equivalence Φ : Db(M) → Db(W ), W is isomorphic

to M (for instance, see [10, Corollary 5.23]).

Proposition 1.2 gives an evidence that there should be a relation between Aut(Db(M)) and

FM(M), but there is a problem: we do not have better ideas to discuss the relation since the

evidence is clearly weak. Under this situation, a study of Hosono-Oguiso-Lian-Yau (for short,

HLOY) gives us a cue for our problem.

Theorem 1.3 ([8]). Let X be a projective K3 surface with NS(X) = ZL. Put L2 = 2d.

The following equation holds:#FM(X) = [ALd : Frd]. Here ALd and Frd are respectively

Atkin-Lehner group and Fricke group of level d (defined in latter).

Roughly speaking, ALd and Frd are discrete subgroup of PSL2(R). In the next section we

introduce the relation between FM(X) and ALd.

2 HLOY’s observation

The main aim of this section is the introduction of HLOY’s observation. Before the intro-

duction, we recall the definition of the Atkin-Lehner group and the Fricke group.

2.1 Atkin-Lehner groups

As usual we put

Γ0(d) = {
(
α β
γ δ

)
∈ PSL2(Z)|γ ∈ dZ}.

For integers s, d ∈ Z we define the symbol s||d by

s||d def⇐⇒ s|d and gcd(s,
d

s
) = 1. (2.1)

Suppose s||d. We put

Ws = { 1√
s

(
α β
γ δ

)(
s 0
0 1

)
∈ PSL2(R)|

(
α β
γ δ

)
∈ Γ0(d/s) and δ ∈ sZ}.

3

20



Ws is also given as

Ws = {
(

α
√
s β√

s

γ d
s

√
s δ

√
s

)
∈ PSL2(R)|α,β, γ and δ ∈ Z}.

In particular we see W1 = Γ0(d).

For cosets Ws one can check the following:

Lemma 2.1 ([5]). Each Ws is a single coset under the multiplication of W1 and is in the nor-

malizer of Γ0(d) in PSL2(R). In addition the coset classes Ws and Ws′ satisfies the following

rule of products:
W 2

s = W1,WsWs′ = Ws′Ws = Ws∗s′ ,

where s ∗ s′ = ss′

gcd(s,s′)2

Definition 2.2. We define subsets of PSL2(R) by

ALd :=
⊔

s||d

Ws and Frd := W1 /Wd.

By Lemma 2.1, we see that ALd and Frd are subgroups of PSL2(R). We call ALd and Frd

respectively the Atkin-Lehner group and the Fricke group of level d.

Remark 2.3. ALd is the abelian normalizer group of Γ0(d) in PSL2(R). Since WsWd = W d
s
,

the coset decomposition of ALd/Frd is given by

ALd/Frd =
⊔

s||d

(Ws /W d
s
).

2.2 HLOY’s observation

Let X be a projective K3 surface. Recall that the total cohomology ring

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z)

has a pure Hodge structure with weight 2 (For instance, see [10, Chapter 10]). Moreover

H∗(X,Z) has the Mukai pairing (or Euler pairing) given by

⟨r⊕ c⊕ s, r′ ⊕ c′ ⊕ s′⟩ = cc′ − rs′ − sr′.

The numerical Grothendieck group of X is given by

N (X) = H0(X,Z)⊕NS(X)⊕H4(X,Z) ⊂ H∗(X,Z).
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By the Hodge index theorem, the index of the Mukai pairing on N (X) is (2, ρ(X)). For objects

E ∈ D(X) we put v(E) = ch(E)
√
tdX and call it the Mukai vector of E. One can check that

v(E) = r⊕ c⊕ s ∈ N (X) and see that r = rankE, c = c1(E) and s = χ(X,E) − rankE by

the Riemann-Roch theorem.

Let Φ : D(Y ) → D(X) be an equivalence between projective K3 surfaces. As is well-known,

Φ induces a Hodge isometry ΦH : H∗(Y,Z) → H∗(X,Z) in a standard way (For instance, see

[10]). Since ΦH is a Hodge isometry, we get an isometry ΦN : N (Y ) → N (X) by restricting

ΦH . Namely we have ΦN = ΦH |N (X) Thus we obtain the representation of Aut(Db(X)) on

O+(N (X) ⊗ R) where O+(N (X) ⊗ R) is a subgroup of O(N (X) ⊗ R) which preserves the

orientation of positive 2 planes. Moreover O+(N (X) ⊗ R)/ ± 1 is isomorphic to PSL2(R)

if rankNS(X) = 1. Thus under the assumption Picard rank 1, we obtain the following

representation:
ρ : Aut(Db(X)) → O+(N (X)⊗ R) → PSL2(R).

We can describe the image of ρ : Aut(Db(X)) → PSL2(R).

Theorem 2.4 ([3], [9]). Let X be a K3 surface with NS(X) = ZL. Put L2 = 2d. The image

of ρ is the Fricke group of level d.

HLOY expected the following:

Conjecture 2.5 ([8]). Notations and assumptions are being as above. For any α ∈ ALd,

there exists an equivalence Φ : Db(Y ) → Db(X) such that “ρ”(Φ) = α.

We have to remark that the definition of “ρ” is not clear since an equivalence is not necessary

an autoequivalence. To define “ρ”(Φ) precisely, we use the assumption that Picard rank is 1.

Note that the Picard rank of Y is the same as that of X if there is an equivalence Φ :

Db(Y ) → Db(X). Moreover, if NS(X) = ZLX , then both numerical Grothendieck groups

N (Y ) and N (X) are canonically isomorphic to the lattice (Z⊕3,Σ) where Σ is

Σ =

⎛

⎝
0 0 −1
0 2d 0
−1 0 0

⎞

⎠ .

Now we put these canonical isomorphism as follows:

cX : N (X) → (Z⊕ 3,Σ) and cY : N (Y ) → (Z⊕ 3,Σ).

By using these canonical isomorphisms, we obtain an extended representation of Φ : Db(Y ) →
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Db(X). Namely we have the following definition of ρ:

ρ(Φ) := cX ◦ ΦN ◦ c−1
Y . (2.2)

Main results of this article (and also of the talk) is the following:

Theorem 2.6 ([13, Theorem 3.3]). Let X be a projective K3 surface with NS(X) = ZL and

Φ : Db(Y ) → Db(X) an equivalence. Put L2 = 2d. Then Conjecture 2.5 holds. Moreover if

the image of Φ : Db(Y ) → Db(X) by ρ is in Frd, then Y is isomorphic to X.

2.3 Relation between FM(X) and ALd/Frd

Let us recall Theorem 1.3. Basically the theorem gives us the equation of numbers. After

Theorem 2.6, we have more concrete correspondence between FM(X) and ALd/Frd though

this correspondence is still far from our question introduced in §1.

By Theorem 2.4, Aut(Db(X)) can be divided into 2 classes ρ−1(W1) / ρ−1(Wd). Moreover

one can see that ρ−1(Wd) is represented by “spherical twist functors” on Db(X) (of general K3

surfaces). We do not give the definition of spherical twist functors but give a typical example

TOX . (If you need the precise definition, you can see it, for instance, in [10, Chapter 8]. )

For the structure sheaf OX on X, we can define an autoequivalence TOX . The functor TOX

sends skyscraper sheaves Ox of closed points x ∈ X to the shift Ix[1] of ideal sheaves Ix of

x ∈ X. So the functor TOX can be regarded as an equivalence between Db(X) and the “dual”

Db(X)∨ of Db(X).

In addition, if we take Y ∈ FM(X)\{X}, then there should be an equivalence Φ : Db(Y ) →

Db(X) whose image by ρ does not belong to Frd. Since Db(Y ) has also the “dual” Db(Y )∨,

the image ρ(Φ) belongs to Ws /W d
s for ∃s||d. As a result, we obtain the following bijection

between FM(X) and ALd/Frd:

FM(X) → ALd/Frd, Y 2→ ρ(Φ) where Φ : Db(Y ) → Db(X) an equvalence.

3 Sketch of the proof of Theorem 2.6

We first recall the work of [7] which is an explicit construction of Fourier-Mukai partners of

X with NS(X) = ZL. Put L2 = 2d as usual. We set the set Pd by

Pd = {r ∈ N|r||d}/ ∼

where r1 ∼ r2 if and only if r1 = r2 or r1 = d
r2
.
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Theorem 3.1 ([7, Theorem 2.1]). Let X be a projective K3 surface with NS(X) = ZL. Put

L2 = 2d. There is a one to one correspondence between Pd and the set FM(X) of isomorphic

classes of Fourier-Mukai partners of X:

Pd ∋ r 2→ ML(r⊕L⊕ d

r
) ∈ FM(X).

Here ML(r⊕L⊕ s) is the fine moduli space of µL-stable sheaves with Mukai vector r⊕L⊕ s.

Suppose that one wishes to prove Theorem 2.6. Since there is a surjection ρ : Aut(Db(X)) →

Frd by Theorem 2.4, it is enough to find an equivalence Φ : Db(Y ) → Db(X) such that

ρ(Φ) ∈ Ws for any s||d. Thus our claim is the following:

Claim 3.2. Notations are being as above. Let Y be the fine moduli space of µ-stable locally free

sheaves on X with Mukai vector r⊕L⊕ s and EY a universal family. Define an equivalence

Φ : Db(Y ) → Db(X) by

Φ : Db(Y ) → Db(X) Φ(−) := Rπ∗
X(EY ⊗ π∗

Y (−)).

Then ρ(Φ) ∈ Ws.

To show the claim, we give an explicit description of the matrix ρ(Φ). Before giving the

description in Proposition 3.3 below, for an arbitrary equivalence Φ : Db(Y ) → Db(X), we

put NS(X) = ZLX (resp. NS(Y ) = ZLY ) and

v(Φ(Oy)) = rX ⊕nXLX ⊕ sX(resp. v(Φ−1(Ox)) = rY ⊕nY LY ⊕ sY ).

Lemma 3.3 ([12, Lemmas 3.1 and 3.2]). Let Φ : D(Y ) → D(X) be an equivalence between

projective K3 surfaces of degX = 2d with Picard rank 1.

1. We have r = rX = rY . Moreover if rX = 0, then

ρ(Φ) =

(
1 m
0 1

)
where ∃m ∈ Z.

2. Suppose that r ̸= 0. Then ρ(Φ) is given by

ρ(Φ) =

(
1 nX

r

0 1

)
1√
d|r|

(
0 −1

d|r| 0

)(
1 −nY

r

0 1

)
.

Due to Lemma 3.3, we can prove Claim 3.2. Consequently we can also prove Theorem 2.6.

The details are in [13].
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4 The origin of Lemma 3.3

As you saw in the last section, a key ingredient for Theorem 2.6 is Lemma 3.3. In this

section we explain that Lemma 3.3 is closely related to the space of stability conditions on

Db(X) introduced by Bridgeland in [3].

4.1 Stability conditions on K3 surfaces

In this subsection, we give a brief review of stability conditions on a K3 surface X. We can

regard a stability condition on Db(X) as a generalization of Gieseker stability (or µ-stability)

for coherent sheaves on X. One of the obstructions for the generalization is the fact that

Db(X) is not an abelian category. Hence we can not define subobjects F of E ∈ Db(X). To

determine a subobject F of E ∈ Db(X), we have to fix a full sub abelian category A of Db(X)

so-called the heart of a bounded t-structure. Thus the rough definition is the following:

Definition 4.1 ([4]). Let A be the heart of a bounded t-structure on Db(X) and let Z :

N (X) → C be a group homomorphism. If the pair σ = (A, Z) has the “Harder-Narashimhan

property”, σ is said to be a stability condition on Db(X). The set of stability conditions on

Db(X) is denoted by Stab(X).

Remark 4.2. We do not explain stability conditions any more in this article. If you need

more precise definition, we strongly recommend to read the original articles [3] and [4].

One of the most important properties is the non-emptiness of Stab(X).

Theorem 4.3 ([4]). Let X a K3 surface. Then Stab(X) is not empty and each of nonempty

connected components is a complex manifold. Moreover there is a connected component

Stab†(X) which is a covering space of a set P+
0 (X) defined as follows:

P(X) = {vr +
√
−1vi ∈ N (X)⊗ C|⟨vr, vi⟩ spans a positive 2-plane}.

We take a connected component P+(X) of P(X) containing exp(OX(1)) of an ample line

bundle on X since P(X) has 2 connected components.

P+
0 (X) := P+(X) \

⋃

δ:(−2)-vector in N (X)

⟨δ⟩⊥.

Here ⟨δ⟩⊥ is the orthogonal complement of δ.
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Remark 4.4. Due to Bayer-Bridgeland [1], if the Picard rank of X is 1 then Stab†(X) is

simply connected, that is Stab†(X) is a universal cover of P+
0 (X).

4.2 Stab(X) and Lemma 3.3

In this subsection we explain where a key idea for the proof of Lemma 3.3 comes from.

Roughly speaking, it comes from the relation between the representation ρ(Φ) and Stab(X).

Note that C can be regarded as a 2-dimensional R-vector space in a canonical way. Thus

we have a right action of GL+
2 (R) on N (X) ⊗ C. Since P+

0 (X) is a subset of N (X) ⊗ C, we

have a right action of GL+
2 (R) on P+

0 (X)

Assume that the Picard rank of X is 1. Then the quotient P+
0 (X)/GL+

2 (R) is isomorphic

to an open and dense subset of the upper half plain H. Thus, for an equivalence Φ : Db(Y ) →

Db(X), we have the following commutative diagram:

Stab†(Y )
ΦS

∗−−−−→ Stab†(X)
⏐⏐"

⏐⏐"

P+
0 (Y )/GL+

2 (R)
ΦP

∗−−−−→ P+
0 (X)/GL+

2 (R).

Since the open embedding of P+
0 (X)/GL+

2 (R) to H is canonical, one can easily check the

following:

Claim 4.5. Notations are being as above. The lower horizontal morphism ΦP
∗ of the diagram

is ρ(Φ) which we defined in (2.2).

This is the relation between Stab(X) and the representation ρ(Φ). Due to Claim 4.5, the

proof of Lemma 3.3 becomes easier.
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