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1. Moduli of stable sheaves on abelian surfaces

In this article, the author would like to explain a few result on the
space of global sections of line bundles on the moduli spaces of stable
sheaves on abelian surfaces. In particular, we shall explain the global
sections of line bundles form a locally free sheaf on the moduli of po-
larized abelian surfaces, under some conditions. This is a joint work
with Bolognese, Marian and Opear [2]. For this purpose, we shall ex-
plain basic results on the moduli of stable sheaves on abelian surfaces.
In particular, we shall explain the Bogomolov decomposition of the
moduli spaces and their second cohomology groups.

We start with a topological invariant of the moduli spaces.

1.1. Mukai lattice. Let X be an abelian surface. A Mukai lattice of
X consists of H2∗(X,Z) :=

⊕2
i=0 H

2i(X,Z) and an integral bilinear
form ⟨ , ⟩ on H2∗(X,Z):

⟨x0 + x1 + x2ϱX , y0 + y1 + y2ϱX⟩ := (x1, y1)− x0y2 − x2y0 ∈ Z,
where x1, y1 ∈ H2(X,Z), x0, x2, y0, y2 ∈ Z and ϱX ∈ H4(X,Z) is the
fundamental class of X. We also introduce the algebraic Mukai lattice
as the pair of H∗(X,Z)alg := Z⊕NS(X)⊕Z and ⟨ , ⟩ on H∗(X,Z)alg.
It is the Hodge (1, 1) part of a natural weight 2 Hodge structure on
H2∗(X,Z). For x = x0+x1+x2ϱX with x0, x2 ∈ Z and x1 ∈ H2(X,Z),
we also write x = (x0, x1, x2). For E ∈ D(X), v(E) := ch(E) denotes
the Mukai vector of E.

1.2. Moduli spaces.

Definition 1.1. Let H be an ample divisor on X. For v = (r, ξ, a) ∈
H∗(X,Z)alg with r > 0, MH(v) denotes the moduli space of semi-stable
sheaves E of v(E) = v with respect to H.
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v = (r, ξ, a) ∈ H∗(X,Z)alg is primitive if H∗(X,Z)alg/Zv is torsion
free, that is, gcd(r, ξ, a) = 1. From now on, we assume that v is
primitive. For a general H in the ample cone Amp(X) of X, MH(v)
consists of stable sheaves. Then by a work of Mukai [10], MH(v) is a
smooth projective variety of dimension ⟨v, v⟩ + 2 with a holomorphic
symplectic form. In particular, the canonical line bundle is trivial.

1.3. Bogomolov decomposition. For smooth projective manifolds
with trivial canonical line bundles, we have a Bogomolov decomposi-
tion. In order to explain the Bogomolov decomposition ofMH(v) ([11]),
we first explain the Albanese map of MH(v). Let X̂ := Pic0(X) be the
dual abelian variety of X and P the Poincaré line bundle on X̂ × X.
For an element E0 ∈ MH(v), let α : MH(v) → X be the morphism
such that

α(E) := det pX̂!(p
∗
X(E − E0)⊗ (P−OX̂×X)) ∈ Pic0(X̂) = X,

and det : MH(v) → X̂ the morphism sending E to detE⊗detE∨
0 ∈ X̂,

where pX : X̂ ×X → X and pX̂ : X̂ ×X → X̂ are projections. We set
av := α× det.

Proposition 1.1. Assume that H is a general polarization. Then

av : MH(v) → X × X̂

is the Albanese map of MH(v).

Definition 1.2. We set KH(v) := a−1
v ((0, 0)).

Theorem 1.2. Let v be a primitive Mukai vector with ⟨v2⟩ ≥ 6. Let
H be a general ample divisor with respect to v. Then

(1) av is a locally trivial fibration with a fiber KH(v).
(2) KH(v) is an irreducible symplectic manifold of dimension ⟨v2⟩−

2 whose deformation class is determined by ⟨v2⟩.

If v = (1, 0,−n), then MH(v) parametrizes torsion free sheaves of
rank 1. Thus we have a decomposition MH(v) = X̂ × Hilbn

X . Then av
is the map

X̂ × Hilbn
X → X̂ × SnX → X̂ ×X

(L, I{x1,...,xn}) *→ (L, {x1, ..., xn}) *→ (L,
∑

i xi).

In this case, KH(v) is the generalized Kummer variety constructed by
Beauville [1] if ⟨v2⟩ ≥ 6.

Remark 1.1. If ⟨v2⟩ = 4, then KH(v) is a Kummer surface of X. This
is the reason why KH(v) is called a generalized Kummer variety.
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We set n := ⟨v2⟩/2. Let ν : X × X̂ → X × X̂ be the n times map
and we shall consider the fiber product

(1.1)

MH(v)×X×X̂ X × X̂ −−−→ MH(v)⏐⏐%
⏐⏐%av

X × X̂
ν−−−→ X × X̂.

Then we have an isomorphism:

(1.2) KH(v)×X × X̂ → MH(v)×X×X̂ X × X̂,

which is a Bogomolov decomposition of MH(v).

2. The second cohomology groups and the Picard groups
of MH(v) and KH(v)

There is a natural homomorphism

(2.1) θv : v
⊥ → H2(MH(v),Z).

If there is a universal family E on MH(v)×X, then

(2.2) θv(x) = c1
(
pMH(v)∗ (ch(E)p

∗
X(x

∨))
)
,

where pMH(v) : MH(v) × X → MH(v) and pX : MH(v) × X → X are
projections. By the construction, θv preserves the Hodge structure.

Theorem 2.1 ([11]). Let v = (r, ξ, a) ∈ H∗(X,Z)alg be a primitive
Mukai vector such that r > 0. We assume that ⟨v2⟩ ≥ 6. Then for a
general ample line bundle H, the following holds.

(1) θv is injective.
(2)

H2(MH(v),Z) = θv(v
⊥)⊕ a∗vH

2(X × X̂,Z).(2.3)

In particular,

Pic(MH(v)/X × X̂) ∼= v⊥ ∩H∗(X,Z)alg.
(3) For F ∈ D(X) with v(F ) = x∨, we have a line bundle ΘF

on MH(v) such that c1(ΘF ) = −θv(x). If there is a universal
family, then

ΘF = det pMH(v)∗ (E⊗ p∗X(F ))∨ .

Definition 2.1. For simplicity, we also denote the homomorphism

v⊥ → H2(MH(v),Z) → H2(KH(v),Z)
by θv.
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For an irreducible symplectic manifold M , Beauville constructed an
integral bilinear form

qM : H2(M,Z)×H2(M,Z) → Z.

qM is called Beauville-Bogomolov-Fujiki form. For KH(v), it is de-
scribed by using Mukai lattice.

Theorem 2.2. We have an isometry of Hodge structure

(2.4) θv : (v
⊥, ⟨ , ⟩) → (H2(KH(v),Z), qKH(v)).

Since Pic(KH(v)) ∼= NS(KH(v)), ΘF |KH(v) depends only on v(F ).

Definition 2.2. We set Θw := ΘF |KH(v), where w = v(F ).

We are interested in the space of global sectionsH0(MH(v),O(θv(x)))
and H0(KH(v),O(θv(x))). One of the reason to study the space of
global sections is the relation with strange duality, which is an ob-
servation of relations of global sections line bundles of two different
moduli spaces. Before considering the space of global sections, we shall
consider the holomorphic Euler characteristic of line bundles.

Theorem 2.3 (Marian-Oprea [5]). Assume that Mukai vectors v, w
satisfies ⟨v∨, w⟩ = 0.

(1) Assume that w is primitive and H is general. Then

(2.5) χ(MH(w),O(−θw(v
∨))) =

1

2

⟨v2⟩2

⟨v2⟩+ ⟨w2⟩

(
⟨v2⟩/2 + ⟨w2⟩/2

⟨v2⟩/2

)
.

(2) Assume that v is primitive and H is general. Then

(2.6) χ(KH(v),O(−θv(w
∨))) =

1

2

⟨v2⟩2

⟨v2⟩+ ⟨w2⟩

(
⟨v2⟩/2 + ⟨w2⟩/2

⟨v2⟩/2

)
.

Remark 2.1. (1) Since v∨ ∈ w⊥ and w∨ ∈ v⊥, θw(v∨) and θv(w∨)
are well-defined.

(2) For an irreducible symplectic manifoldM , the holomorphic Eu-
ler characteristic of a line bundle L is a polynomial of qM(c1(L)2)
depending only on the deformation classes.

If the higher cohomology groups vanish, then Theorem 2.3 shows
the dimension of global sections. By the Kawamata-Viehweg vanishing
theorem, if −θv(w∨) is nef and big, then the higher cohomology groups
vanish. More generally, if there is a different minimal model such that
−θv(w∨) is nef and big, then the higher cohomology groups vanish. So
we are interested in the movable cones of the moduli spaces.
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Remark 2.2. MH(v) may be singular if gcd(r, d(H2), a) ̸= 1. By choos-
ing a small and a general β ∈ NS(X)Q, we have a symplectic resolu-
tion φ : Mβ

H(v) → MH(v), where Mβ
H(v) is the moduli of β-twisted

semi-stable sheaves in the sense of Matsuki and Wentworth [7]. For
F ∈ D(X) with v(F∨) ∈ Z ⊕ ZH ⊕ Z ∩ v⊥, ΘF is well-defined on
MH(v) and Mβ

H(v). Since φ is a symplectic resolution,

Rφ∗(OMβ
H(v)) = OMH(v).

Hence H i(Mβ
H(v),ΘF ) ∼= H i(MH(v),ΘF ). Similar claim also holds for

ΘF |KH(v). In particular, similar claim to Theorem 2.3 also hold for

singular cases. If ΘF |Kβ
H(v) ∈ Mov(Kβ

H(v)), then

dimH0(Kβ
H(v),ΘF |Kβ

H(v)) = χ(Kβ
H(v),ΘF |Kβ

H(v)).

2.1. Movability. Let P+(v⊥) be the positive cone of v⊥:

(2.7) P+(v⊥) := {x ∈ H∗(X,R)alg | ⟨x2⟩ > 0, ⟨x, h⟩ > 0},
where θv(h) is ample. Let Id(v), d = 1, 2 be the set of primitive isotropic
Mukai vectors u such that ⟨u, v⟩ = ±d and set I(v) := I1(v) ∪ I2(v).

Theorem 2.4 (Markman [6], Yoshioka [12]). Assume that H is gen-
eral. Let C be the connected component of P+(v⊥)\∪u∈I(v)u⊥ containing

(2.8) h = (0, rH, (ξ, H)) + ϵ(−r, 0, a),

where ϵ > 0 is sufficiently small. Then the interior of the movable cone
Mov(MH(v)) is θv(C).

Remark 2.3. By the consruction of the moduli space MH(v), the line
bundle θv(h) in (2.8) is ample.

For the proof of this result, the author used a modern and sophisti-
cated method, that is, the geometry of objects in the derived category
of coherent sheaves [3]. Roughly speaking, we have

(2.9) Mov(KH(v)) =
⋃

K′···→KH(v)

Nef(K ′)

Moreover K ′ is the Bogomolov factor of a moduli space of stable com-
plexes in the sense of Bridgeland. In particular, all K ′ are deformation
equivalent and Theorem 2.3 (2) holds for corresponding line bundles.

Remark 2.4. For the case of twisted stability in Remark 2.2, we have

Mov(Kβ
H(v)) =

{
θv(x)

∣∣∣∣∣
x ∈ P+(v⊥) and ⟨x, u⟩ ≥ 0

for u ∈ I(v) with ⟨u, h⟩ > 0

}
,
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where h := ϵ((−1, −a
d(H2)H, 0)+(0, (H,β)

(H2) H−β, 0))+(0, rH, d(H2)), 1 ≫
ϵ > 0 defines an ample class of Kβ

H(v).

2.2. A typical movable divisor. Let (X,H) be a polarized abelian
surface. Since ρ(X) = 1 for a general pair (X,H), we assume that a
primitive Mukai vecor v is of the form v = (r, dH, a). For the moduli
space MH(v), we know that θv((0, rH, d(H2)) is nef and big and gives
a contraction

MH(v) → NH(v)

from the Gieseker compactification MH(v) of the moduli of µ-stable
vector bundles to the Uhlenbeck compactification NH(v) of the moduli
of µ-stable vector bundles. Thus θv((0, rH, d(H2)) ∈ Mov(MH(v)).

3. Our results

3.1. Movable divisors and the spaces of global secions. Let
(X,H) be a polarized abelian surface as in the previous subsection.
Let v = (r, dH, a) and w = (r′, d′H, a′) be primitive Mukai vectors such
that r, r′ ≥ 0, d, d′ > 0 and a, a′ ≤ −1. Assume that ⟨v2⟩, ⟨w2⟩ ≥ 6.
We also assume that ⟨v, w∨⟩ = −dd′(H2)− ra′ − r′a = 0.

Proposition 3.1. Assume that r, r′ ≥ 0, d, d′ > 0 and a, a′ < 0. Then
θv(−w∨) ∈ Mov(KH(v)) unless d = 1 and there is a divisor η such that
(H, η) = 1 and (η2) = 0. Moreover if θv(−w∨) ̸∈ Mov(KH(v)), then
(1) a = −1, d′ + a′ > 0 or (2) r = 1, d′ − r′ < 0.

Let u := (p, η, q) be a primitive isotropic Mukai vector. Then (η2) =
2pq. By classifying u ∈ I(v) separating (0, rH, d(H2)) and (−1, −a

d(H2)H, 0),

we get Proposition 3.1 (see [2]). By the proof of this result, we also get
the following corollary.

Corollary 3.2. For a general stable sheaf E ∈ MH(r, dH, a), ΦP[1]

X→X̂
(E)

is a stable sheaf. In particular, ΦP[1]

X→X̂
induces a birational map

MH(r, dH, a) · · · → MĤ(−a, dĤ,−r)

for any X. Moreover ΦP[1]

X→X̂
induces an isomorphism

Mov(KH(r, dH, a)) ∼= Mov(KĤ(−a, dĤ,−r))

unless (1) v = (r,H,−1) or v = (1, H, a) and (2) there is a divisor η
such that (η, H) = 1, (η2) = 0.

Let E be a universal family on MH(v) × X. For F ∈ D(X) with
F ∈ MH(w), we set

(3.1) ΘF |KH(v) = detRpKH(v)∗(E⊗ p∗X(F ))∨ ∈ Pic(MH(v))
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is independent of the choice of F . So we set

Θw := ΘF |KH(v).

The following is a consequence of Proposition 3.1 and the Kawamata-
Viehweg vanishing theorem.

Theorem 3.3 ([2, Theorem 4]). We set v = (r, dH, a) and w =
(r′, d′H, a′). Assume that r, r′ ≥ 2, d, d′ > 0, a, a′ < 0, and (d, a) =
(1,−1) implies (X,H) is not a product of polarized elliptic curves
(C1, h1) and (C2, h2) with deg h1 = 1. Then

h0(KH(v),Θw) = χ(KH(v),Θw)

and
h0(MH(v),ΘF ) = χ(MH(v),ΘF ).

In particular, the global sections of Θw and ΘF form locally free sheaves
on the moduli of polarized abelian surfaces.

The claim for MH(v) follows from the decomposition (1.1).

3.2. Relation of two spaces of global sections. In this subsection,
we shall explain strange duality conjecture. Le Potier found a relation
of the spaces of global sections on some moduli spaces of semi-stable
sheaves on P2. O’Grady, Abe, Marian and Oprea found similar phe-
nomena on other surfaces with trivial first betti numbers. If the first
betti number is not zero, it seems to modify the formulation. In the
following, we shall explain a formulation of strange duality for abelian
surfaces.

We set

(3.2) D := {(E,F ) ∈ MH(w)×KH(v) | H0(E × F ) ̸= 0}.
By the Brill-Noether theory, D is a divisor if D is a proper subset of
MH(w)×KH(v). Since Pic0(KH(v)) = 0, we have a decomposition

OMH(w)×KH(v)(D) ∼= ΘF !Θw.

Hence if D is a divisor, we have a section

C → H0(OMH(w)×KH(v)(D)) ∼= H0(MH(w),ΘF )⊗H0(KH(v),Θw).

Thus we have a homomorphism

(3.3) D : H0(KH(v),Θw)
∨ → H0(MH(w),ΘF ).

Theorem 3.4 ([2, Theorem 3]). Let (X,H) be a generic polarized
abelian surfaces. Let v, w be the Mukai vectors in Theorem such that
d = d′ = 1 and a, a′ < 0. Then there is an isomorphism

(3.4) D : H0(KH(v),Θw)
∨ → H0(MH(w),ΘF ).
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Remark 3.1. For the moduli of semi-stable vector bundles on curves,
the space of global sections are the space of conformal blocks, and
studied extensively. In these cases, similar dualities are knows as the
level rank duality.

For the case of surfaces, we don’t know representation theoretic
meaning of the space of global sections at this moment. We can only
say that the holomorphic Euler characteristics of the moduli spaces
encode the information of Donaldson invariants, and hence they are
related to modular forms [4].

3.3. A family of minimal models. As a final remark of Proposition
3.1, we shall explain there is a family of minimal models such that Θw

is nef and big. We continue to assume that v = (r, dH, a) is primitive,
that is, gcd(r, d, a) = 1. For (sH, tH) ∈ NS(X)Q ×Amp(X)R, we have
a stability condition σ(sH,tH) of Bridgeland. It consists of an abelian
subcategory A(sH,tH) of D(X) consisting of certain 2-termcomplexes
and a stabilily fuction Z(sH,tH) which is an analogue of χ(E(nH))/ rkE.
Let M(sH,tH)(v) be the moduli of σ(sH,tH)-semi-stable objects.

Let π : (X ,H) → Y be a family of polarized abelian surfaces with
Hy = H and assume that there is a section ρ of π. Then Z⊕ZH⊕Zρ ⊂
R∗π∗Z. We consider a family of stability conditions σ(sH,tH) over Y . We
fix s with d − rs > 0. Then there are finitely many Mukai vectors u
defining walls in R>0H with respect to v (see the end of [8, sect. 3.1]).
Therefore there are t1, t2, ..., tk ∈ R>0 such that every interval (ti, ti+1)
is contained in a chamber for any stability condition σ(sHy ,tHy), y ∈ Y .
We take t ∈ R>0 \ {t1, ..., tk}. Then there is a primitive and isotropic
Mukai vector u = (p, lH, q) such that Z(sH,tH)(u) ∈ Q>0Z(sH,t′H)(v),
where t′ is sufficiently close to t. We set X ′ := MH(±u), where we
fix the sign of ±u so that rk(±u) > 0. Then X ′ is isomorphic to
the moduli of σ(sH,tH)-stable objects with the Mukai vector u. Let H′

be the polarization of X ′ which is naturally defined by (0, pH, l(H2)).
Let E ∈ D(X ×Y X ′) be the universal family of σ(sH,tH)-stable objects
with Mukai vector u. Let E be a family of σ(sH,tH)-stable objects with
the Mukai vector v. Then by the relative Fourier-Mukai transform
ΦE∨[1]

X→X ′ , we have a family of Gieseker semi-stable sheaves ΦE∨[1]
X→X ′(E),

where H′ is the polarization. Thus we have a relative version of [9,
Thm. 1.4]. In particular, we have a projective family of moduli spaces
M(sH,tH)(v) → Y . We have a surjective morphism ξ : RH × R>0H →
{λ = (x, yH, z) | ⟨λ, (0, rH, d(H2))⟩ > 0, ⟨λ2⟩ > 0}/R>0 such that
{ξ(0, tH) | t ∈ R>0} = R>0(0, rH, d(H2)) + R>0(−1, −a

d(H2)H, 0)/R>0.

For λ ∈ Q>0(0, rH, d(H2)) +Q>0(−1, −a
d(H2)H, 0), we take [ti, ti+1] such

that λ ∈ Q>0ξ(0, tH), t ∈ [ti, ti+1]. Then θv(λ) ∈ Nef(M(0,tH)(v)/Y ).
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To be more precise, for a point y ∈ Y , we take a small βy ∈ NS(Xy)Q
which gives a resolution M(βy ,tHy)(v) → M(0,tHy)(v). Then θv(λ) ∈
Nef(M(βy ,tHy)(v)). Since ⟨λ2⟩ > 0, the Kawamata-Viehweg vanish-
ing theorem implies that H i(M(0,tHy)(v), θv(λ)) = 0 for i > 0 and
H0(M(0,tHy)(v), θv(λ)) (y ∈ Y ) forms a locally free sheaf on Y .

Remark 3.2. If gcd(r, d(H2), a) ̸= 1, then there may be abelian surfaces
Xy and Mukai vectors u = (r′, η, a′) such that 0 < r′ < r, (1, (η,H)

r′ , a
′

r′ ) =

(1, d(H
2)

r , ar ). Then M(sHy ,tHy)(v) is singular.
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