0. Motivation

Let k be a field and V be a finite dimensional vector space over k. Then we have the following famous diagram.

where

.144-

$$\begin{cases} B_n : \text{ (the Beilinson algebra)} \\ \bigwedge(V^**) : \text{ (the exterior algebra of } V^*) \\ \text{grmod} : \text{ (the stable category)} \end{cases}$$

The BGG correspondence was developed into the theory of Koszul duality.

Let Q be a quiver whose path algebra kQ is finite dimensional and has infinite representation type.

Then we have the following diagram similar to the above diagram.

$$\mathcal{D}^{b}(\operatorname{qcoh}\Pi(Q)) \xleftarrow{M.}{\sim} \mathcal{D}^{b}(\operatorname{mod-} kQ)$$

$$\overbrace{Happel}{\operatorname{grmod}} T(Q)$$

where

$$\begin{cases} D(kQ) := \operatorname{Hom}_{k\operatorname{-vect}}(kQ, k) \\ \rho := \mathbb{R} \operatorname{Hom}_{kQ}(D(kQ), kQ)[1] \\ \Pi(Q) := \bigoplus_{n \ge 0} \rho^{\otimes n} \quad \text{(the preprojective algebra)} \\ T(Q) := kQ \oplus D(kQ) \quad \text{(the trivial extension algebra)} \end{cases}$$

Comparing these diagrams, it is natural to consider we obtain the following equivalence that T(Q) and $\Pi(Q)$ are "Koszul dual" to each other. But they are not Koszul algebra in the classical sense. To get a framework including this case, we work with graded dg-algebras.

Generalized Koszul duality and its application

(joint work with A. Takahashi) H. Minamoto (Kyoto-U.) minamoto@kusm.kvoto-u.ac.jp.

1. Generalized Koszul duality

Let \mathcal{A} be a dg-algebra over k and

 $\mathcal{R} = \mathcal{A} \oplus P_1 \langle -1 \rangle \oplus P_2 \langle -2 \rangle \oplus P_3 \langle -3 \rangle \oplus \cdots$

be a connected positively graded dg-algebra over \mathcal{A} . (where $\langle n \rangle$ is the graded-degree shift operator by n.) We assume that each term P_i is obtained from $\mathcal{A} \otimes_k \mathcal{A}^{op}$ by taking finite number of cones, shifts and direct summand. We construct its "Koszul dual" $\mathcal{R}^!$.

Definition 1.

$$Q_n := \left(\bigoplus_{\lambda \models n} \bigotimes_{\mathcal{A}} (P_{\lambda_i}[-\lambda_i + 1]), "one-sided-twist" \right)$$

where the "one-sided-twist" is obtained from the totalization of the bar resolution of \mathcal{R} over \mathcal{A} .

$$\mathcal{R}^! := \mathcal{A} \oplus Q_1^{\vee}[-1]\langle 1 \rangle \oplus Q_2^{\vee}[-2]\langle 2 \rangle \oplus Q_3^{\vee}[-3]\langle 3 \rangle \oplus \cdots$$

where we set $(-)^{\vee} := \operatorname{Hom}_{\mathcal{A}\text{-bimod}}(-, \mathcal{A}).$

This $\mathcal{R}^{!}$ is a connected negatively graded dg-algebra over \mathcal{A} . \mathcal{R} and $\mathcal{R}^!$ satisfy the following properties similar to the classical case

Theorem 2.

$$\mathbb{R}\operatorname{Hom}_{\mathcal{R}_{-}\operatorname{gr}}(\mathcal{A},\mathcal{A})\simeq\mathcal{R}^{!}$$
$$\mathbb{R}\operatorname{Hom}_{\mathcal{R}^{!}_{-}\operatorname{gr}}(\mathcal{A},\mathcal{A})\simeq\mathcal{R}.$$

We can also construct the "Koszul complex " \mathcal{K} which is graded $\mathcal{R} \otimes (\mathcal{R}^!)^{op}$ module. For any graded \mathcal{R} module \mathcal{M} , we have

$$\operatorname{Hom}_{\operatorname{\operatorname{gr}}\nolimits-\operatorname{\operatorname{\mathcal{R}}}}(\operatorname{\operatorname{\mathcal{K}}},\operatorname{\operatorname{\mathcal{M}}})\simeq\operatorname{\operatorname{\mathbb{R}}}\operatorname{Hom}_{\operatorname{\operatorname{gr}}\nolimits-\operatorname{\operatorname{\mathcal{R}}}}(\operatorname{\operatorname{\mathcal{A}}},\operatorname{\operatorname{\mathcal{M}}}).$$

From the functor

$$F := \operatorname{Hom}_{\operatorname{\operatorname{gr}}
olimits} \mathcal{R}(\mathcal{K}, -) \; : \; \mathcal{D}(\operatorname{\operatorname{gr}}
olimits} \mathcal{R}) \longrightarrow \mathcal{D}(\operatorname{\operatorname{gr}}
olimits} \mathcal{R}^{!})$$

Theorem 3.

$$\mathrm{fg}_{/\mathcal{A}}(\mathrm{gr} - \mathcal{R}) \simeq \mathrm{Perf}(\mathrm{gr} - \mathcal{R}^!)$$

where $fg_{IA}(gr - \mathcal{R})$ (resp. $Perf(gr - \mathcal{R}^{!})$) is the full sub triangulated category of $\mathcal{D}(\text{gr}-\mathcal{R})$ (resp. $\mathcal{D}(\text{gr}-\mathcal{R}^{!})$) generated by $\{\mathcal{A}(n) \mid n \in \mathbb{Z}\}$ (resp. $\{\mathcal{R}^{!}(n) \mid n \in \mathbb{Z}\}$).

2. Application

2-1 Let \mathcal{A} be a homologically smooth dg-algebra and P be an invertible A bi-module and $R = T_A(P)$ be the tensor algebra of P over \mathcal{A} .

Theorem 4. we have the following equivalences by the functor F

$$\operatorname{Perf}(\operatorname{gr} -\mathcal{R}) \simeq \operatorname{fg}_{/\mathcal{A}}(\operatorname{gr} -\mathcal{R}^{!})$$
(2)

From the equivalences 1 and 2, we get the following corollary which generalize the Happel's theorem.

Corollary 5.

$$\begin{split} \operatorname{Perf}(\operatorname{gr} \ -\mathcal{R})/\operatorname{fg}_{/\mathcal{A}}(\operatorname{gr} \ -\mathcal{R}) &\simeq \operatorname{fg}_{/\mathcal{A}}(\operatorname{gr} \ -\mathcal{R}^!)/\operatorname{Perf}(\operatorname{gr} \ -\mathcal{R}^!) \\ &\simeq \operatorname{Perf}(\mathcal{A}) \end{split}$$

2-2 Let A be a finite dimensional algebra of finite global dimension and P be a tilting A bi-module.

Reversing Serre's vanishing theorem, we define a pair $(\mathcal{D}^{P,\geq 0}, \mathcal{D}^{P,\leq 0})$ of full sub categories of $\mathcal{D}^{b}(\text{mod-}A)$ as follows.

Definition 6.

$$M^{\cdot} \in \mathcal{D}^{P, \geq 0} \iff M \otimes^{L} P^{\otimes^{L} n} \in \mathcal{D}^{\geq 0} (\text{mod-} A)$$

resp. $M^{\cdot} \in \mathcal{D}^{P, \leq 0} \iff M \otimes^{L} P^{\otimes^{L} n} \in \mathcal{D}^{\leq 0} (\text{mod-} A)$
for $n >> 0$

Corollary 7. Assume that $P^{\otimes^{L} n}$ is pure for every n > 0. then the following conditions are equivalent

(i)
$$(\mathcal{D}^{P,\geq 0}, \mathcal{D}^{P,\leq 0})$$
 is a t-structure in $\mathcal{D}^{b}(\text{mod-} A)$

(ii) the tensor algebra $T_A(P)$ is a graded coherent ring. (1)