Generalized Koszul duality and its application

0．Motivation

Let k be a field and V be a finite dimensional vector space over k ．Then we have the following famous dia－ gram．

where
$\left\{\begin{array}{l}B_{n}:(\text { the Beilinson algebra）} \\ \left.\Lambda\left(V^{*} *\right): \text {（the exterior algebra of } V^{*}\right) \\ \underline{\text { grmod }:(\text { the stable category })}\end{array}\right.$

The BGG correspondence was developed into the the－ －ory of Koszul duality．

Let Q be a quiver whose path algebra $k Q$ is finite di－ mensional and has infinite representation type．
Then we have the following diagram similar to the above diagram．

where
$\left\{\begin{array}{l}D(k Q):=\operatorname{Hom}_{k \text {－vect }}(k Q, k) \\ \rho:=\mathbb{R} \operatorname{Hom}_{k Q}(D(k Q), k Q)[1] \\ \Pi(Q):=\bigoplus_{n \geq 0} \rho^{\otimes n} \quad \text {（the preprojective algebra）} \\ T(Q):=k Q \oplus D(k Q) \quad \text {（the trivial extension algebra）}\end{array}\right.$
Comparing these diagrams，it is natural to consider that $T(Q)$ and $\Pi(Q)$ are＂Koszul dual＂to each other． But they are not Koszul algebra in the classical sense． To get a framework including this case，we work with graded dg－algebras．

1．Generalized Koszul duality

Let \mathcal{A} be a dg－algebra over k and

$$
\mathcal{R}=\mathcal{A} \oplus P_{1}\langle-1\rangle \oplus P_{2}\langle-2\rangle \oplus P_{3}\langle-3\rangle \oplus \cdots
$$

be a connected positively graded dg－algebra over \mathcal{A} ． （where $\langle n\rangle$ is the graded－degree shift operator by n ．）We assume that each term P_{i} is obtained from $\mathcal{A} \otimes_{k} \mathcal{A}^{o p}$ by taking finite number of cones，shifts and direct summand． We construct its＂Koszul dual＂ $\mathcal{R}^{!}$．

Definition 1.

$$
Q_{n}:=\left(\bigoplus_{\lambda \vDash=} \bigotimes_{\mathcal{A}}\left(P_{\lambda_{i}}\left[-\lambda_{i}+1\right]\right), \text { "one-sided-twist" }\right)
$$

where the＂one－sided－twist＂is obtained from the totaliza－ tion of the bar resolution of \mathcal{R} over \mathcal{A} ．

$$
\mathcal{R}^{!}:=\mathcal{A} \oplus Q_{1}^{\vee}[-1]\langle 1\rangle \oplus Q_{2}^{\vee}[-2]\langle 2\rangle \oplus Q_{3}^{\vee}[-3]\langle 3\rangle \oplus \cdots
$$

where we set $(-)^{\vee}:=\operatorname{Hom}_{\mathcal{A} \text {－bimod }}(-, \mathcal{A})$ ．
This $\mathcal{R}^{!}$is a connected negatively graded dg－algebra over \mathcal{A} ． \mathcal{R} and $\mathcal{R}^{!}$satisfy the following properties similar． to the classical case
Theorem 2.

$$
\begin{aligned}
\mathbb{R} \operatorname{Hom}_{\mathcal{R}-\mathrm{gr}}(\mathcal{A}, \mathcal{A}) & \simeq \mathcal{R}^{!} \\
\mathbb{R} \operatorname{Hom}_{\mathcal{R}^{\prime}-\mathrm{gr}}(\mathcal{A}, \mathcal{A}) & \simeq \mathcal{R}
\end{aligned}
$$

We can also construct the＂Koszul complex＂ \mathcal{K} which is graded $\mathcal{R} \otimes\left(\mathcal{R}^{!}\right)^{o p}$ module．For any graded \mathcal{R} module \mathcal{M} ，we have

$$
\operatorname{Hom}_{\mathrm{gr}-\mathcal{R}}(\mathcal{K}, \mathcal{M}) \simeq \mathbb{R} \operatorname{Hom}_{\mathrm{gr}-\mathcal{R}}(\mathcal{A}, \mathcal{M})
$$

From the functor

$$
F:=\operatorname{Hom}_{\mathrm{gr}-\mathcal{R}}(\mathcal{K},-): \mathcal{D}(\mathrm{gr}-\mathcal{R}) \longrightarrow \mathcal{D}\left(\mathrm{gr}-\mathcal{R}^{!}\right)
$$

we obtain the following equivalence

Theorem 3.

$$
\begin{equation*}
\mathrm{fg}_{/ \mathcal{A}}(\mathrm{gr}-\mathcal{R}) \simeq \operatorname{Perf}\left(\mathrm{gr}-\mathcal{R}^{!}\right) \tag{1}
\end{equation*}
$$

where $\mathrm{fg}_{/ \mathcal{A}}(\mathrm{gr}-\mathcal{R})$（resp． $\left.\operatorname{Perf}\left(\mathrm{gr}-\mathcal{R}^{!}\right)\right)$is the full sub triangulated category of \mathcal{D}（gr－ \mathcal{R} ）（resp． $\mathcal{D}\left(\mathrm{gr}-\mathcal{R}^{!}\right)$） generated by $\{\mathcal{A}\langle n\rangle \mid n \in \mathbb{Z}\}$（resp．$\left\{\mathcal{R}^{\mathfrak{!}}\langle n\rangle \mid n \in \mathbb{Z}\right\}$ ）．

2．Application

2－1 Let \mathcal{A} be a homologically smooth dg－algebra and P be an invertible \mathcal{A} bi－module and $R=T_{\mathcal{A}}(P)$ be the tensor algebra of P over \mathcal{A} ．

Theorem 4．we have the following equivalences by the functor F

$$
\begin{equation*}
\operatorname{Perf}(\operatorname{gr}-\mathcal{R}) \simeq \mathrm{fg}_{\mathcal{A}}\left(\operatorname{gr}-\mathcal{R}^{!}\right) \tag{2}
\end{equation*}
$$

From the equivalences 1 and 2 ，we get the following corollary which generalize the Happel＇s theorem．

Corollary 5.

$$
\begin{aligned}
\operatorname{Perf}(\mathrm{gr}-\mathcal{R}) / \mathrm{fg}_{/ \mathcal{A}}(\mathrm{gr}-\mathcal{R}) & \simeq \mathrm{fg}_{/ \mathcal{A}}\left(\mathrm{gr}-\mathcal{R}^{!}\right) / \operatorname{Perf}\left(\mathrm{gr}-\mathcal{R}^{!}\right) \\
& \simeq \operatorname{Perf}(\mathcal{A})
\end{aligned}
$$

2－2 Let A be a finite dimensional algebra of finite global dimension and P be a tilting A bi－module

Reversing Serre＇s vanishing theorem，we define a pair $\left(\mathcal{D}^{P, \geq 0}, \mathcal{D}^{P, \leq 0}\right)$ of full sub categories of $\mathcal{D}^{b}(\bmod -A)$ as follows．

Definition 6.

$$
\begin{array}{r}
M \in \mathcal{D}^{P, \geq 0} \Longleftrightarrow M \otimes^{L} P^{\otimes^{L} n} \in \mathcal{D}^{\geq 0}(\bmod -A) \\
\text { resp. } M \in \mathcal{D}^{P, \leq 0} \Longleftrightarrow M \otimes^{L} P^{\otimes^{L} n} \in \mathcal{D}^{\leq 0}(\bmod -A) \\
\text { for } n \gg 0
\end{array}
$$

Corollary 7．Assume that $P^{\otimes^{L} n}$ is pure for every $n \geq 0$ ， then the following conditions are equivalent
（i）$\left(\mathcal{D}^{P, \geq 0}, \mathcal{D}^{P, \leq 0}\right)$ is a t－structure in $\mathcal{D}^{b}(\bmod -A)$
（ii）the tensor algebra $T_{A}(P)$ is a graded coherent ring．

