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An irreducible holomorphic symplectic manifold is a compact, simply connected,
Kahler manifold X such that H'(.X. {*) is generated by a non-degenerate two-
form . Matsushita [10] proved that the fibres of a non-trivial fibration on X'
must be Lagrangian with respect to o, with generic fibre an abelian variety of
dime’nxion n = LdimX. Fwang [7] proved that the base must be isomorphic
n if X is projective. We call & - X' — E* a Lagrangian fibration.
ln [1«1 the author described how ane might use Lagrangian fibrations to las-
sify h phic symplectic folds up to jon. It follows from
work of Beauville [1), Debarre [2) O'Grady [13], and Rapagnetta [14] that all
known examples of holomorphic s mple( ic manifolds can be deformed to
Lagrangian fibrations. The aim of this work is to classify Lagrangian fibra-
tions whose fibres are Jacobians, We say that a family B of curves has
mild singularities if the total space  is smooth.

Theorem: Let € — P be a family of reduced and irreducible genus n cur
with mild singularities. Suppose that the compactified relative Jacobian X =
Pic'(C/F*) is a Lagrangian fibration, and the degree of the discriminant locus
A arametrizing singular curves is greater than 4n + 20. Then X isa
Beauville-Mukai integrable system [1], i.e., the family of curves (' isa complete
linear system of curves on a K3 surface 5, and X can be identified with an
irreducible component of the Mukai moduli space of stable sheaves on S. In
particular, X is a deformation of the Hilbert scheme Hilh™S of n points on 5.

In dimension four, a formula of the author [16] can be combined with Guan’s
bounds [3] on the Chem numbers to verify the lower bound on degd. We
therefore recover a theorem of Markushevich (9] (the n = 2 case).

The proof of our theorem closely follows a construction of Hurtubise (5],
which uses coisotropic reduction. The main difficulty is in extending Hur-
tubise’s local argument to a global setting. Taking quotients of coisotropic
submanifolds is a well-known idea in real symplectic geometry; the author
fieels it could be further exploited in holomorphic symplectic geometry, For
example, Hwang and Oguiso [6] have recently used characteristic foliations
to study the structure of singular fibres of Lagrangian fibrations.

2 Coisotropic reduction

Since X is the degree one Jacobian the relative Abel-Jacobi map € — X is well-
defined; the image ¥’ ¢ X is smooth by the mild singularities hypothe:
Assuming that the restriction - of the holomarphic symplectic form to )" has
rank two everywhere, Hurtubise (5] introduced the following construction.
‘The null directions of afy- define a rank n - 1 foliation F

0—=F—=TY —=TY[F—0

known as the characteristic foliation. The space of leaves Q = Y/F must be a
holomorphic symplectic surface, since 7y descends to a non-degenerate two-
form on Q. The curves in the family C project down to .

Hurtubise’s argument is local: a family of curves over a small ball in C" leads
to an open subset §) of an algebraic surface. To obtain a nice space of leaves in
a global setting we need compactness (algebraicity) of the leaves. The relevant
theorems are due to Miyaoka [12], Bogomolov, and McQuillan (see Kebekus,
Sola Conde, and Toma [8]). The key idea is that if Y* is covered by curves on
which F is ample, then by applying Mori’s bend-and-break argument one can
produce rational curves which must be contained in the leaves of F.
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3 Rational curves in )’

‘Then 7 is a smooth surface fibred by genus n curves over £ P4, with degA
singular fibres. In particular

ol2) =4 - dn = degA > 2

Matsushita [11] proved that R'7. Oy = QL. for a general Lagrangian fibration
X — . We can use this to show that R'z.0% is also isomorphic to
and then restrict to ( o calculate 'z, 07, Inserting this in the Leray spuh’d]

sequence yields
1 k=0,
WHZy=4 0 k=1,
1k

Noether’s formula now gives

K3 = 12)(0z) - a(Z) < 0.

1f Z were minimal, it would have Kodaira dimension - and hence , would
vanish. Therefore Z contains at least one (~1}-curve. Varying £ in = gives
many rational curves in Y.

Consider the following exact sequences over one of these rational curves.

L
TYlp: — T¥/Flp — 0
1

— Nzoylm 0

We can show that s, is isomorphic to O(1 Thus the rational
curve is contained in a leaf of F. Moreover, Fiy: is ample which implies that
all leaves of F' are algebraic and rationally connected (see [8]).

Recall that we needed o'y to have rank two everywhere so that )’ is
coisotropic. This is proved along the way: we first define a coherent sheaf
F as the kemnel of the morphism 7Y — Q. given by o'y Then we show that
Fis locally free over a generic rational curve, and the above exact sequences
imply that £~ has rank n - 1. This proves that o}y has rank two at a generic
point, and hence everywhere by semi-continuity.

s holomorphic symplectic manifold. We prove that
ed the discriminant locus in B* has sufficiently large

4 The space of leaves

Algebraicity of the leaves implies that they are compact. Holmann (4] proved
that a foliation on a Kahler manifold with all leaves compact must be stable,
which implies that the space of leaves Y/ F will be Hausdorft.

Let £, be a leaf of the foliation F. A local model for the space of leaves is given
by laking a small slice \" transverse to the foliation, which meets L at 0 = 1°
The holonomy map is a group homomorphism from =, (L) to the group of
automorphisms of 1 fixing 9, and the holonomy group H(L) is the image of
this map. The quotient 1/ (L) is a local model for the space of leaves Y/ F
(see Holmann [4]). In our case both =,(L) and H(L) must be trivial, because
rationally connected implies simply connected. Thus the local model is simply
1"and }/F is smooth

It follows that the space of leaves is a smooth compact surface 5. Given two
local models 1; and V3 anwund the same leaf L, we can find a vector field v
along the foliation F* whose flow takes 1 to V3. The Lie derivative

Lo(oly) = vldaly) - d(i(v)oly)

vanishes, and hence the flow takes oy, to o] . This defines a (non-degenerate)
two-form on & / F which is independent of the choice of local model.

\

The compact comples surface S therefore admits a holomorphic symplectic
structure, so it must be either a K3 or abelian surface.

5 Completion of the proof

A (~1)-curve B! 2 Z will map isomorphically to the line . Comparing the
normal bundle of this ¥! inside a leaf to the normal bundle of ¢ inside "
shows that each leaf maps birationally to a hyperplane in 2. One can show
that the curves C; € )7 in the family C - 7" are everywhere transverse to the
leaves of the characteristic foliation, o this birational map is an isomorphism.
In particular, a leaf will intersect a curve €, at most once, and hence each curve
} maps isomorphically Lo its image in the space of leaves S = Y/ F.

This shows that S contains an n-dimensional linear system of genus n curves,
<0 it must bea K3 surface. The family of curves ¢ — B is therefore a complete

linear system of curves on a K3 surface S, and X = Pic (¢/£") is a Beauville-
Mukai integrable system (1],
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