2008年度 pp.140 140

Moduli of Bridgeland semistable objects on the projective plane

Tokyo Institute of Technology Rvo Ohkawa

Outlook

• X : a smooth projective surface $\mathcal{D}(X)$: the bounded derived category of Coh(X)Fix $\alpha \in K(X)$ and σ : a Bridgeland stability condition on $\mathcal{D}(X)$

Then we consider the moduli functor $\mathcal{M}_{\mathcal{D}(X)}(\alpha, \sigma)$ of σ -semistable objects with class α in K(X)

 $\bullet \sigma : \text{geometric} \implies \mathcal{M}_{\mathcal{D}(X)}(\alpha, \sigma) \cong \mathcal{M}_{X}(\alpha, \omega)$

 $\mathcal{M}_{Y}(\alpha, \omega)$; the moduli functor of ω -semistable coherent sheaves ω : an ample divisor class in NS(X)

 $\bullet \sigma : \text{algebraic} \implies \mathcal{M}_{\mathcal{D}(X)}(\alpha, \sigma) \cong \mathcal{M}_{\mathcal{B}}(\alpha_{\mathcal{B}}, \theta_{\mathcal{B}})$

 $\mathcal{M}_B(\alpha_B, \theta_B)$: the moduli functor of θ_B -semistable modules over a nite dimensional C-algebra B

where $\alpha_B \in K(\text{Mod }B)$, Mod B: an abelian category of nitely generated right B-modules

• As an application in the case of $X = \mathbb{P}^2$ we show

$$\mathcal{M}_X(\alpha,\omega)\cong\mathcal{M}_B(\alpha_B,\theta_B)$$

A Bridgeland stability condition σ

 σ consists of data (Z, A),

$$Z: K(X) \to \mathbb{C}, \quad \mathcal{A} \subset \mathcal{D}(X),$$

Z: a group homomorphism, A: a full abelian subcategory These data satisfy some axioms

(For example)

 $0 \neq E \in \mathcal{A} \implies Z(E) \in \mathbb{R}_{>0} \exp(\sqrt{-1}\pi\phi(E))$

with $0 < \phi(E) \le 1$

A nonzero object $E \in A$: semistable \iff 0 \neq A \subset E \implies $\phi(A) \leq \phi(E)$

Moduli Functors $\mathcal{M}_{\mathcal{D}(X)}(\alpha, \sigma)$

 $\mathcal{M}_{\mathcal{D}(\mathbb{P}^2)}(\alpha, \sigma)$: (scheme/ \mathbb{C}) \rightarrow (sets)

For a C-scheme S.

 $\mathcal{M}_{\mathcal{D}(\mathbb{P}^2)}(\alpha, \sigma)(S)$

= $\{E : a \text{ family of } \sigma\text{-semistable objects in } A$ with class $\alpha \in K(X)$ $\subset \mathcal{D}(X \times S)$

Main Theorem

In the case of $X = \mathbb{P}^2$, we $\operatorname{nd} \sigma = (Z, A) \in \operatorname{Stab}(\mathbb{P}^2)$, which is both geometric and algebraic.

Main Theorem 0.1(O)

For any $\alpha \in K(\mathbb{P}^2)$ with $0 < c_1(\alpha) \cdot H < r(\alpha)$, $\Phi_{\mathcal{E}} \colon E \mapsto \operatorname{R} \operatorname{Hom}_{\mathbb{P}^2}(\bigoplus E_i, E[1])$ gives the isomorphism

$$\mathcal{M}_{\mathbb{P}^2}(\alpha,H)\cong\mathcal{M}_{B_{\mathcal{E}}}(-lpha_{B_{\mathcal{E}}}, heta_Z^lpha),$$

where H is the hyperplane class on P2 and

$$(1) \,\, \mathcal{E} = \{\mathcal{O}_{\mathbb{P}^2}(1), \Omega^1_{\mathbb{P}^2}(3), \mathcal{O}_{\mathbb{P}^2}(2)\}$$

or (2)
$$\mathcal{E} = \{\mathcal{O}_{\mathbb{P}^2}(1), \mathcal{O}_{\mathbb{P}^2}(2), \mathcal{O}_{\mathbb{P}^2}(3)\}$$
 (Le Potier)

or (3)
$$\mathcal{E} = \{ \mathcal{O}_{\mathbb{P}^2}(2), \Omega^1_{\mathbb{P}^2}(4), \mathcal{O}_{\mathbb{P}^2}(3) \}.$$

Geometric Stability

Theorem 0.3(O)

 $\alpha \in K(X)$ "normalized", $\mu_{\omega}(\alpha)$: the slope of α

We take $\beta \uparrow \mu_{\omega}(\alpha)\omega$ in $NS(X)_{\mathbb{R}}$. Then

$$\mathcal{M}_{\mathcal{D}(X)}(\alpha, \sigma_{(\beta,\omega)}) \cong \mathcal{M}_X(\alpha, -\frac{1}{2}K_X, \omega).$$

De nition of $\sigma_{(\beta,\omega)}$ for $\beta, \omega \in NS(X)_{\mathbb{R}} = NS(X) \otimes \mathbb{R}$ with ω ample

 $\exists A_{(\beta,\omega)} \subset \mathcal{D}(X)$: tilting of Coh(X) by $\beta \cdot \omega$

 $\exists Z_{(\beta,\omega)} : K(X) \to \mathbb{C} : E \mapsto -\int \exp(-\beta + \sqrt{-1}\omega) \operatorname{ch}(E)$

 $\sigma_{(\beta,\omega)}=(Z_{(\beta,\omega)},\mathcal{A}_{(\beta,\omega)})$ de nes a Bridgeland stability condition on X

Algebraic Stability

If $\exists \mathcal{E} = \{E_0, \dots, E_n\}$: a full strong exceptional collection on X

Put $B_{\mathcal{E}} = \operatorname{End}_{X}(\oplus_{i} E_{i})$

Then Bondal showed that $\Phi_{\mathcal{E}} = \operatorname{R}\operatorname{Hom}_X(\oplus E_i, -)$ gives the equivalence $\Phi_{\mathcal{E}} : \mathcal{D}(X) \cong \mathcal{D}(\text{Mod } B_{\mathcal{E}}).$

Put $A_{\mathcal{E}} = \Phi_{\mathcal{E}}^{-1}(\operatorname{Mod} B_{\mathcal{E}}) \subset \mathcal{D}(X)$ de ned by pulling back $\operatorname{Mod} B_{\mathcal{E}} \subset \mathcal{D}(\operatorname{Mod} B)$ by $\Phi_{\mathcal{E}}$.

Proposition 0.2(O)

For $\sigma = (Z, A_{\varepsilon})$,

$$\mathcal{M}_{\mathcal{D}(X)}(lpha,\sigma)\cong\mathcal{M}_{B_{\mathcal{E}}}(lpha_{B_{\mathcal{E}}}, heta_Z^lpha)$$

where $\alpha_{B_{\mathcal{E}}} = \Phi_{\mathcal{E}}(\alpha) \in K(\text{Mod } B_{\mathcal{E}})$ and

 θ_z^{α} is the θ -stability of B_{ε} -modules depending on α and Z (and \mathcal{E}).

Conclusion and Further Studies

Conclusion

 \Leftarrow

Main Theorem (2) gives another proof of the result by Le Potier (1994).

(Similar results are obtained by Barth in the case of $r(\alpha) = 2$)

⇒ The Bridgeland stability condition is the useful new concept to study the usual problem.

Further Studies

• Analysis of the wall-crossing phenomena of $\mathcal{M}_{B_t}(-\alpha_{B_t}, \theta_{B_t})$

(the wall-crossing phenomena of $\mathcal{M}_{\mathbb{P}^2}(\alpha, H)$ never occur because $NS(\mathbb{P}^2)_{\mathbb{R}} = \mathbb{R}H$)

• Our method is applicable for any surface X with a full strong exceptional collection (Generalization).