ACTIONS OF LINEAR ALGEBRAIC GROUPS OF EXCEPTIONAL TYPE ON PROJECTIVE VARIETIES ### Kiwamu WATANABE Waseda University / JSPS Reserch Fellow (DC1) ## Main Theorem (W) X: smooth proj. var. of dim. n/\mathbb{C} , G: simple linear alg. group of exceptional type, $G \sim X$: non-trivial, $n = r_G + 1$. Then X is one of the following: (1) \mathbb{P}^6 . (2) O^6 . (3) $E_6(\omega_1)$, (4) $G_2(\omega_1 + \omega_2)$, (5) $Y \times C$, where Y is $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$ and C is a smooth curve, (6) $\mathbb{P}(O_Y \oplus O_Y(m))$, where Y is as in (5) and m > 0. Furthermore, the action of G is unique for each case if G is simply connected. ## ⋄ Known Results (Andreatta's Work) $G \sim X$, G: simple alg. gp. of Dynkin type. $n := \dim X \ge r_G$ $\star r_G := \min \{ \dim G/P \mid P \subset G : \text{ parabol. subgp. } \}$ | TABLE | | | | | | |-------|----------------|--------------------|-------|-------|------------------------------------| | G | r_G | X s.t. $n = r_G$ | G | r_G | X s.t. $n = r_G$ | | A_l | l | \mathbb{P}^{l} | E_6 | 16 | $E_6(\omega_1)$ | | B_l | 2 <i>l</i> – 1 | Q^{2l-1} | E_7 | 27 | $E_7(\omega_1)$ | | C_l | l-1 | ₽/-1 | E_8 | 57 | $E_8(\omega_1)$ | | D_l | 2l - 2 | Q^{2l-2} | F_4 | 15 | $F_4(\omega_1)$ | | | | | G_2 | 5 | $G_2(\omega_1)$ or $G_2(\omega_2)$ | ω : dom. int. weight of G V_{ω} : irr. rep. sp. of G with highest weight ω $G(\omega)$: min. orbit of G in $\mathbb{P}(V_{\omega})$ #### Question $n = r_G + 1 \Rightarrow$ What kinds of varieties appear? Theorem [A, '01]- If $n = r_G + 1$ and G is classical, then X is one of the following: $(1) \mathbb{P}^n$, (2) Q^n , (3) $\mathbb{P}(T_{\mathbb{P}^2})$, (4) $C_2(\omega_1 + \omega_2)$, (5) $Y \times C$, where Y is \mathbb{P}^{n-1} or \mathbb{Q}^{n-1} and C is a smooth curve, (6) $\mathbb{P}(O_Y \oplus O_Y(m))$, where Y is as in (5) and m > 0. Furthermore, the action of G is unique for each case if G is simply connected. # ⋄ Points of Our Argument G-equiv. extremal contraction of X + G-orbit determination of the structure of X. #### Different point G: classical \Rightarrow G-orbit: well-known var. G: except. \Rightarrow G-orbit: not well-known var. #### Example *X*: non-*G*-homog. var. with $\rho(X) = 1 \Rightarrow \exists G/P \subset X$: ample div. - * G: classical - $\Rightarrow G/P \cong \mathbb{P}^{n-1} \text{ or } \mathbb{Q}^{n-1}$ Proposition | W. 317] - - $\Rightarrow X \cong \mathbb{P}^n$ or \mathbb{Q}^n (well-known fact). - ★ G: exceptional - $\Rightarrow G/P \cong E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1)$ or $G_2(\omega_2)$. - $\Rightarrow X \cong \mathbb{P}^6$, Q^6 or $E_6(\omega_1)$ by the following. (X, L): sm. polarized var. s.t. $A \in |L|$: homog. var. with $\rho(A) = 1$. If dim $A \ge 2$, then (X, L) is one of the following: (1) $(\mathbb{P}^{n+1}, O_{\mathbb{P}^{n+1}}(i)), i = 1, 2,$ (2) $(Q^{n+1}, O_{Q^{n+1}}(1)),$ (3) $(G(2, \mathbb{C}^{2m}), O_{\text{Plücker}}(1)), (4) (E_6(\omega_1), O_{E_6(\omega_1)}(1)).$