ACTIONS OF LINEAR ALGEBRAIC GROUPS OF EXCEPTIONAL TYPE ON PROJECTIVE VARIETIES

Kiwamu WATANABE Waseda University / JSPS Reserch Fellow (DC1)

Main Theorem (W)

X: smooth proj. var. of dim. n/\mathbb{C} ,

G: simple linear alg. group of exceptional type,

 $G \sim X$: non-trivial, $n = r_G + 1$.

Then X is one of the following:

(1) \mathbb{P}^6 .

(2) O^6 .

(3) $E_6(\omega_1)$, (4) $G_2(\omega_1 + \omega_2)$,

(5) $Y \times C$,

where Y is $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$,

 $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$

and C is a smooth curve,

(6) $\mathbb{P}(O_Y \oplus O_Y(m))$,

where Y is as in (5) and m > 0.

Furthermore, the action of G is unique for each case if G is simply connected.

⋄ Known Results (Andreatta's Work)

 $G \sim X$, G: simple alg. gp. of Dynkin type.

 $n := \dim X \ge r_G$

 $\star r_G := \min \{ \dim G/P \mid P \subset G : \text{ parabol. subgp. } \}$

TABLE					
G	r_G	X s.t. $n = r_G$	G	r_G	X s.t. $n = r_G$
A_l	l	\mathbb{P}^{l}	E_6	16	$E_6(\omega_1)$
B_l	2 <i>l</i> – 1	Q^{2l-1}	E_7	27	$E_7(\omega_1)$
C_l	l-1	₽/-1	E_8	57	$E_8(\omega_1)$
D_l	2l - 2	Q^{2l-2}	F_4	15	$F_4(\omega_1)$
			G_2	5	$G_2(\omega_1)$ or $G_2(\omega_2)$

 ω : dom. int. weight of G V_{ω} : irr. rep. sp. of G with highest weight ω

 $G(\omega)$: min. orbit of G in $\mathbb{P}(V_{\omega})$

Question

 $n = r_G + 1 \Rightarrow$ What kinds of varieties appear?

Theorem [A, '01]-

If $n = r_G + 1$ and G is classical, then X is one of the following:

 $(1) \mathbb{P}^n$,

(2) Q^n ,

(3) $\mathbb{P}(T_{\mathbb{P}^2})$,

(4) $C_2(\omega_1 + \omega_2)$,

(5) $Y \times C$, where Y is \mathbb{P}^{n-1} or \mathbb{Q}^{n-1} and C is a smooth curve,

(6) $\mathbb{P}(O_Y \oplus O_Y(m))$, where Y is as in (5) and m > 0.

Furthermore, the action of G is unique for each case if G is simply connected.

⋄ Points of Our Argument

G-equiv. extremal contraction of X + G-orbit

determination of the structure of X.

Different point

G: classical \Rightarrow G-orbit: well-known var.

G: except. \Rightarrow G-orbit: not well-known var.

Example

X: non-*G*-homog. var. with $\rho(X) = 1 \Rightarrow \exists G/P \subset X$: ample div.

- * G: classical
- $\Rightarrow G/P \cong \mathbb{P}^{n-1} \text{ or } \mathbb{Q}^{n-1}$

Proposition | W. 317] -

- $\Rightarrow X \cong \mathbb{P}^n$ or \mathbb{Q}^n (well-known fact).
- ★ G: exceptional
- $\Rightarrow G/P \cong E_6(\omega_1), E_7(\omega_1), E_8(\omega_1), F_4(\omega_1), F_4(\omega_4), G_2(\omega_1)$ or $G_2(\omega_2)$.
- $\Rightarrow X \cong \mathbb{P}^6$, Q^6 or $E_6(\omega_1)$ by the following.

(X, L): sm. polarized var. s.t. $A \in |L|$: homog. var. with $\rho(A) = 1$. If dim $A \ge 2$, then (X, L) is one of the following:

(1) $(\mathbb{P}^{n+1}, O_{\mathbb{P}^{n+1}}(i)), i = 1, 2,$ (2) $(Q^{n+1}, O_{Q^{n+1}}(1)),$

(3) $(G(2, \mathbb{C}^{2m}), O_{\text{Plücker}}(1)), (4) (E_6(\omega_1), O_{E_6(\omega_1)}(1)).$