Flips and variation of moduli scheme of sheaves on a surface

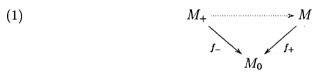
Kimiko Yamada

Dept. of Math., Kyoto Univ., Japan. kyamada@math.kyoto-u.ac.jp

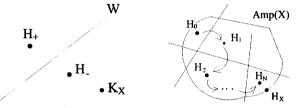
Let H be an ample line bundle on a non-singular projective surface X over \mathbb{C} . Denote by M(H) the coarse moduli scheme of rank-two H-stable sheaves on X with Chern classes (r, c_1, c_2) . We shall consider birational aspects of the problem how $\overline{M}(H)$ changes as H varies. See arXiv:0811.3522 for details.

There is a union of hyperplanes $W \subset \operatorname{Amp}(X)$ called (c_1, c_2) -walls in the ample cone $\operatorname{Amp}(X)$ such that M(H) changes only when H passes through walls. Let Hand H_+ be ample line bundles separated by just one wall W, and $H_0 = tH + (1 - t)H_+$ lie in W. (More exactly, we also consider parabolic stability.) For simplicity we assume that M_{\pm} are compact, that is valid if $c_1 = 0$ and c_2 is odd for example. Denote $M_{\pm} = M(H_{\pm})$ and $M_0 = M(H_0)$. There are natural morphisms $f : M \to M_0$ and $f_+ : M_+ \to M_0$. Let $f : X \to Y$ be a birational proper morphism such that K_X is Q-Cartier and $-K_X$ is f-ample, and that the codimension of the exceptional set $\operatorname{Ex}(f)$ of f is more than 1. We say a birational proper morphism $f_+ : X_+ \to Y$ is a flip of f if (1) K_{X_+} is Q-Cartier, (2) K_{X_+} is f_+ -ample and (3) the codimension of the exceptional set $\operatorname{Ex}(f_+)$ is more than 1.

Theorem 0.1. Assume c_2 is sufficiently large. Suppose K_X does not lies in the wall W separating H and H_+ , and that K_X and H lie in the same connected components of $NS(X)_{\mathbb{R}} \setminus W$. (See the left gure below.) Then the birational map



is a flip.



Suppose M(H) is compact, and let us observe this theorem in case where X is minimal and $\kappa(X) \geq 1$. There is an ample line bundle H_X such that no wall of type (c_1, c_2) divides K_X and H_X . When $H \in \{(1-t)H_0 + tK_X | t \in [0, 1)\}$ starts from a polarization H_0 and gets closer to K_X , one gets a finite sequence of flips

$$M(H = H_0) \cdots > M(H_1) \quad \cdots > M(H_N = H_X),$$

which terminates in $M(H_X)$. (See the right figure above.) It is known that the canonical divisor of $M(H_X)$ is nef. Thus one can regard this "natural" process described in a moduli-theoretic way as an analogy of minimal model program of M(H), although it is unknown whether $M(H_X)$ admits only terminal singularities.

1