On finite group actions on an irreducible symplectic 4-fold Kotaro Kawatani Osaka universty

Introduction

In this section, we will talk about background of our study. At first, we define an irreducible symplectic manifold.

Definition 1.1. Let X be a compact Kähler manifold. When following two conditions are satisfied, we call X irreducible symplectic manifold.

- X is simply connected.
- 2. $H^0(X, \Omega^2) = \mathbb{C}(\sigma_X)$, where σ_X is an everywhere non-degenerate holomorphic 2-form.

In particular σ_X is said to be the symplectic form.

Remark 1.2. From existence of symplectic form, $\dim X$ is even, and a canonical bundle K_X is trivial. i.e.

$$\dim X = 2n, K_X \cong \mathcal{O}_X$$

We will introduce some famous examples. The easiest example is a K3 surface. Kodaira proved that a deformation equivalent class of K3 surface is unique. In higher dimensional case, there are only 4 types of deformation equivalent class which have been already known. Representative elements of each class are below.

Example ·

- n-pointed Hilbert scheme of K3 surface, $\operatorname{Hilb}^n(K3)$ ([Bea])
- (ii) Generalized Kummer variety defined by Abelian surface A. We denote it by $\operatorname{Kum}^n(A)$ ([Bea]). Definition of $\operatorname{Kum}^n(A)$ is below.

$$\pi: \operatorname{Hilb}^{n+1}(A) \xrightarrow{\mu} \operatorname{Sym}^{n+1}(A) \xrightarrow{\Sigma} A$$

Where μ is Hilbert-Chow morphism. We define $\operatorname{Kum}^{n}(A) := \pi^{-1}(0).$

(iii),(iv) O'Grady's six and ten dimensional example ([Ogr2],[Ogr])

We don't know whether above classes are all or not. By the way, Beaville and Donagi found another explicit example which is different from (i) \sim (iv). Let Y be a smooth cubic 4-fold, and let F(Y) be all lines contained in Y. Then F(Y) is an irreducible symplectic 4-fold ([B-D]). However, F(Y) is deformation equivalent to a 2-pointed Hilbert scheme of a certain K3 surface Hilb $^2(K3)$.

We investigated finite group actions on F(Y) to make a new deformation equivalent class. We could not find it, but we met very interesting phenomena. We will introduce a part of them.

2 Preparation

In this section, we prepare some tools of our study.

Definition 2.1. Let Y be a smooth cubic 4-fold. Let F(Y) be all lines contained in Y. i.e.

$$F(Y):=\{l\subset Y|l\cong \mathbb{P}^1, \deg l=1\}$$

Remark 2.2. F(Y) is a compact complex manifold whose dimension is 4.

Proposition 2.3 (Beauville-Donagi, [B-D]). F(Y) is an irreducible symplectic manifold. In particular, F(Y) is deformation equivalent to 2-pointed ${\it Hilbert\ scheme\ of\ a\ certain\ K3\ surface\ Hilb}^2K3.$

Let G be a finite group:

$$G \subset PGL(5), G^{\frown}Y.$$

Since we want to make an irreducible symplectic manifold, first question is below.

Qustion 1. When does $G \cap F(Y)$ preserve the symplectic form

Let Γ be a universal family of F(Y).

$$\Gamma := \{(l.y) \in F(Y) \times Y | l \ni y\}$$

There are two natural projections $p : \Gamma \rightarrow F(Y)$ and $q: \Gamma \to Y$. We define Abel-Jacobi map $\alpha: H^4(Y, \mathbb{C}) \to H^2(F(Y), \mathbb{C})$ as $\alpha(\omega) := p_*q^*(\omega)$. Abel-Jacobi map tells us whether G preserves the symplec-

$$\begin{array}{ccc} H^4(Y,\mathbb{C}) & \xrightarrow{\simeq} & H^2(F(Y)) \\ \downarrow & & \downarrow \\ H^{3,1}(Y) & \longrightarrow & H^{2,0}(F(Y)) \\ & & & \parallel \\ \mathbb{C}\langle Res \frac{\Omega}{I^2} \rangle & \longrightarrow & \mathbb{C}\langle \sigma_{F(Y)} \rangle \end{array}$$

Where Ω is five form on \mathbb{C}^6 defined as Ω : $\sum_{i=0}^{5} (-1)^{i} z_{i} dz_{0} \wedge \cdots d\tilde{z}_{i} \cdots \wedge dz_{5}$. Since Abel-Jacobi map α is G-equivariant, we get a following lemma.

Answer of Question 1. Lemma 2.4. Notations as above

G preserves $\sigma_{F(Y)} \iff G$ preserves $Res \frac{i\iota}{\ell^2}$

In general, F(Y)/G may have singular points. So, we have to take resolution of F(Y)/G. We require that a resolution of F(Y)/G has a symplectic form. So, second question is

Qustion 2. When does F(Y)/G have a crepant resolution F(Y)/G ?

It is easy to find group actions $G \cap F(Y)$ which preserve the symplectic form, but it's difficult to find

group actions such that $\widehat{F(Y)}/G$ exists. We have two examples of "good" actions. In this poster, our topic is one of them.

First example

First example was found by Namikawa.

Assumption

We consider special cubic 4-fold Y;

$$Y:=\{f(z_0,z_1,z_2)+g(z_3,z_4,z_5)=0\},$$

where f and g are homogeneous polynomial with degree 3

Assume that $G = \mathbb{Z}_3$ (order three cyclic group) and τ is a generator of G: $G = \langle \tau \rangle \cong \mathbb{Z}_3$. We consider following group action;

$$\tau \cap \mathbb{P}^5$$
 as $(z_0: z_1: z_2: (z_3: (z_4: \zeta z_5))$,

where $(z_0 : \cdots : z_5)$ is homogeneous coordinate of \mathbb{P}^5 , and $\zeta = \exp(\frac{2\pi\sqrt{-1}}{3})$. In particular, G acts on Y.

From Lemma 2.4, we know that the induced action on F(Y) preserves the symplectic form. Next we consider singular points of $F(Y)/\mathbb{Z}_3$.

Does $F(Y)/\mathbb{Z}_3$ have a crepant resolution? $\{z_3=z_4=z_5=0\}\cong \mathbb{P}^2$ $C := \{ f(z_0, z_1, z_2) = 0 \}$

 $\{z_0 = z_1 = z_2 = 0\} \cong \mathbb{P}^2$ C and D are elliptic curves defined as above. $C \cup D$ is fixed locus of $\mathbb{Z}_3 \cap Y$. Singular locus of $F(Y)/\mathbb{Z}_3$ is isomorphic to $C \times D$. Since \mathbb{Z}_3 preserves the symplectic form, $F(Y)/\mathbb{Z}_3$ has A_2 singularities along $C \times D$. So, $F(Y)/\mathbb{Z}_3$ does exist. What is $F(Y)/\mathbb{Z}_3$?

Proposition 3.1 ([Nam]). Notations as above. $F(Y)/\mathbb{Z}_3$ is birational to $Kum^2(C \times D)$

Remark 3.2. If two irreducible symplectic manifold Xand X' are birational, then X and X' are deformation equivalent. So, $F(Y)/\mathbb{Z}_3$ is not new example

Proof. We construct birational map $\psi: \widetilde{F(Y)/\mathbb{Z}_3} \longrightarrow \operatorname{Kum}^2(C \times D)$. Instant picture of ψ is below.

$$\psi : \{l, \tau(l), \tau^2(l)\} \mapsto \{(p_i, q_i)\}_{i=1}^3$$

Let $\{l, \tau(l), \tau^2(l)\}$ be in $\widetilde{F(Y)/\mathbb{Z}_3}$. Let W_l be a liner space spanned by $l, \tau(l)$ and $\tau^2(l)$.

$$W_l := \langle l, \tau(l), \tau^2(l) \rangle \cong \mathbb{P}^3$$
.

Suppose that $P=\{z_3=z_4=z_5=0\}, P'=\{z_0=z_1=z_2=0\}$. If we choose l in general, we may assume that $S:=W_l\cap Y$ is a smooth cubic surface. There are 27 lines in S(classical results). From the configuration of 27 lines, we know that there exist three lines m_1,m_2,m_3 such that each m_i meets $l,\tau(l),\tau^2(l)$ like above picture. Each $m_i(i=1,2,3)$ meets C (resp D) at one point. So we set notations as $p_i = m_i \cap C, q_i := m_i \cap D$. Since three points $\{p_1, p_2, p_3\}$ (resp. $\{q_1, q_2, q_3\}$) are coliner, $p_1 + p_2 + p_3 = 0 \in C$ (resp. $q_1 + q_2 + q_3 = 0 \in D$). So we have a pair of three points $\{(p_i, q_i)\}_{i=1}^3$.

Where is the indeterminacy of ψ ?

We determine the indeterminacy of ψ and ψ^{-1} . Indeterminacy of ψ is

$$\{[l]:=\{l,\tau(l),\tau^2(l)\}\in \widetilde{F(Y)/\mathbb{Z}_3}\;||l|\;\mathrm{spans}\;\mathbb{P}^2\}.$$

This locus is 18 copies of \mathbb{P}^2 . Indeterminacy of ψ^{-1} are two types. First one is

 $P_{(I)} := \{\{(p, q_1), (p, q_2), (p, q_3)\} \in \text{Kum}(C \times D) | 3p = 0\}$

Second one is

$$P_{(II)} := \{ \{ (p_1,q), (p_2,q), (p_3,q) \} \in \operatorname{Kum}(C \times D) | 3q = 0 \}$$

 $P_{(I)}$ and $P_{(II)}$ are isomorphic to 9 copies of \mathbb{P}^2 . Let X and X' be an irreducible symplectic 4-fold. It is known that any birational map from X to X' is decomposed into Mukai-flop. We have a following

Theorem 3.3. The indeterminacy of ψ can be resolved by Mukai-flop on 18 copies of P

Reference

- [Bea] Beauville, A. Variétés kähleriennes dont la première classe de Chern est nulle, J, of Diff. Geometry, 18(1983), 755–782.
- B-D Beauville, A. ,Donagi, R. La variété des droites d'une hypersurface cubique de di-mension 4, C.R. Acad. Sc. Paris, 301(1985), 703-706
- Naml Namikawa, Y. Deformation theory of singular symplectic n-folds, Mathematische Annalen 319(2001), 597-623.
- O'Grady, K. Desigularized moduli spaces of Ogr sheaves on a K3, J. Reine Angrew. Math. 512(1999), 49-117.
- O'Grady, K. A new six-dimensional irreducible symplectic variety, J. Algebraic [Ogr2] Geom. 12(2003), no. 3, 435-505.