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Tumor progression is classically viewed as the Darwinian evolution of subclones

that sequentially acquire genetic mutations and autonomously overproliferate.

However, growing evidence suggests that tumor microenvironment and subclone

heterogeneity contribute to non-autonomous tumor progression. Recent

Drosophila studies revealed a common mechanism by which clones of genetically

altered cells trigger non-autonomous overgrowth. Such “oncogenic niche cells”

(ONCs) do not overgrow but instead stimulate neighbor overgrowth and metas-

tasis. Establishment of ONCs depends on competition and cooperation between

heterogeneous cell populations. This review characterizes diverse ONCs identified

in Drosophila and describes the genetic basis of non-autonomous tumor progres-

sion. Similar mechanisms may contribute to mammalian cancer progression and

recurrence.

C ancers progress through clonal evolution, the sequential
acquisition of oncogenic mutations through Darwinian

selection of advantaged subclones. For example, in colon can-
cers, adenomatous polyposis coli (APC) mutant clones acquire
malignancy after further mutation of K-Ras, p53, and other
genes.(1) While genetic sequencing corroborated cancer’s clo-
nal evolution, it also revealed remarkable clonal heterogene-
ity.(2,3) A recent study found rampant intratumor genetic
divergence, with ~60% of mutations not universally distributed
among subclones.(3) Furthermore, in human glioblastoma,
coexisting subclones amplified distinct oncogenic receptor tyr-
osine kinases (epidermal growth factor receptor [EGFR],
PDGFR, and c-Met).(4) Clonal heterogeneity could therefore
promote subclone cooperation alongside clonal competition.
Indeed, interclonal cooperation between subclones potentiated
tumorigenesis in mouse-modeled breast cancer.(5) Excitingly,
clonal population dynamics of cancer-derived, heterogeneous
subclones were reproducible across independent xenografts,(6)

suggesting that tumor heterogeneity is a tractable problem.
While interclonal communication is considered crucial to can-
cer’s etiology, detailed in vivo mechanisms are lacking.

Drosophila genetics enables manipulation of oncogenic cell
clones in vivo.(7) Remarkably, Drosophila tumorigenesis reca-
pitulates aspects of human cancer, including polarity loss,
basement-membrane degradation, and invasion.(8) Accordingly,
genetic screens in Drosophila have identified evolutionarily
conserved tumor-suppressor genes, including Hippo pathway
components.(9–11) Genetic mosaic analysis also revealed an
unusual tumor-promoting cell population that can be called
“oncogenic niche cells” (ONCs). Oncogenic niche cells drive
non-autonomous tumor progression through cellular competi-
tion and cooperation with surrounding cells (Fig. 1a). This
review describes mechanisms by which ONCs regulate Droso-
phila tumorigenesis and discusses putative ONCs in mam-
malian cancers.

Non-autonomous tumor progression by ONCs

Epithelial cells harboring oncogenic mutations can promote
their own growth through interactions with surrounding
stroma.(12) However, oncogenic mutations can also promote
non-autonomous proliferation as ONCs. ONCs can be induced
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by cell competition, a process in which normally viable “loser”
cells are eliminated by neighboring “winner” cells. Cell com-
petition is triggered by lower translation rates, disrupted apico-
basal polarity, or aberrant signal transduction, and thus func-
tions as a tumor suppressor and developmental regulator.(13–16)

Alongside cell competition, ONCs commonly feature coopera-
tion between the JNK and Hippo pathways. Below, we
describe five classes of ONCs characterized in Drosophila
imaginal epithelia.

Oncoprotein Src. Elevation of oncoprotein Src often corre-
lates with tumor malignancy, yet Src’s role in tumorigenesis
remains unclear.(17) Clones of cells overexpressing Src64B
(Src; c-Src homolog) in the Drosophila imaginal disc are elim-
inated by JNK-dependent cell competition.(18,19) However, Src
clones also function as ONCs to cause non-autonomous over-
growth of surrounding tissue (Fig. 1b).(19) Src-activated cells
accumulate intracellular F-actin and activate the Hippo path-
way effector Yorkie (Yki; YAP homolog). Simultaneously,
JNK signaling induces cell death in a cell-autonomous manner
but propagates Yki to neighboring cells, causing overgrowth of
surrounding tissue (Fig. 1c). Blocking Yki inside Src-activated

cells abolished neighboring Yki activation, implying propaga-
tion of Yki from ONCs. Thus, while JNK-mediated cell com-
petition restrains Src-activated ONC autonomous growth,
JNK–Yki cooperation contributes to non-autonomous tumori-
genesis.

Endocytic dysregulation. Endocytic trafficking controls inter-
nalization and sorting of extracellular molecules and trans-
membrane proteins. Consequently, endocytic dysregulation
disrupts signaling pathways and cell polarity, contributing to
human cancers.(20–22) Multiple genetic screens in Drosophila
identified endosomal sorting complex components vps25 and
erupted (ept; tsg101 homolog) as causing non-autonomous
overgrowth.(23–26) Endocytic ONCs accumulated endosomal
Notch, inducing the cytokine Unpaired (Upd; interleukin [IL]-
6 homolog) and triggering JAK– signal transducer and activa-
tor of transcription (STAT) signaling in surrounding cells
(Fig. 2a). A similar but distinct endocytic ONC was formed by
mutating Rab5, an early endosome component. Rab5-deficient
ONCs accumulated EGFR and Eiger (tumor necrosis factor
homolog), activating Ras and JNK pathways, respectively.(27)

JNK and Ras signaling cooperatively activated Yki, inducing

Fig. 1. Oncogenic niche cells (ONCs) activated by
oncoprotein Src. (a) General ONC scheme showing
genetically altered clones (green) become ONCs,
stimulating surrounding cell overgrowth. (b)
Src64B-overexpressing cells (GFP+) are scarce yet
wild-type tissue overgrows, causing tissue folding.
(c) Src64B-overexpressing cells inactivate Hippo
signaling through F-actin accumulation. Src
activation simultaneously triggers JNK, inducing
intraclonal death but propagating Yorkie (Yki) to
neighboring cells, causing overproliferation.

(a) (b)

Fig. 2. Endocytic dysregulated oncogenic niche cells (ONCs). (a) vps25 or ept mutant clones accumulate Notch, stimulating secretion of the cyto-
kine Unpaired (Upd) and non-autonomous overgrowth. (b) Rab5 mutant cells activate epidermal growth factor receptor (EGFR)–Ras and Eiger–
JNK signaling, cooperatively activating Yorkie (Yki) and inducing Upd. STAT, signal transducer and activator of transcription; TNF, tumor necrosis
factor.
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Upd expression and subsequent non-autonomous overgrowth
(Fig. 2b). Non-autonomous phenotypes are dependent on cell
competition: vps25 clones prevented from dying autonomously
overgrow,(24,25) and growth of Rab5 dominant-negative
(Rab5DN)-expressing cells was constrained by JNK-mediated
cell competition.(27,28) Interestingly, sufficiently large Rab5DN-
expressing cell clones autonomously overgrow,(28) suggesting
that establishment of endocytic ONCs is contingent on cell
competition and clone size.

Apoptotic stimulus. Apoptosis is a hallmark of many cancers
and often correlates with increased proliferation and worse
prognosis.(29) In Drosophila wing discs, massive cell death
triggers non-autonomous “compensatory proliferation”, yield-
ing normal adult wings.(30) Yki is activated in dying and
neighboring cells and is essential for wing disc regenera-
tion.(31,32) Notably, in this case, JNK activation is necessary
and sufficient for Yki induction in wing discs,(31) and JNK
activity non-autonomously propagates following local wound-
ing.(33) JNK also stimulates cell migration to the wound
site,(34) similar to JNK-driven developmental or tumorigenic
invasion (Fig. 3a).(35,36)

In a similar phenomenon, when cell death is induced but not
executed, typically through overexpression of caspase inhibitor
p35, persistent “undead” cells become ONCs and trigger non-
autonomous overgrowth through the growth factors Decapenta-
plegic (Dpp; bone morphogenetic protein ⁄ transforming growth
factor-b homolog) and Wingless (Wg; Wnt homolog).(37–39) In
wing discs, this is dependent on a p53-JNK positive feedback
loop activated by the initiator caspase Dronc (Fig. 3b).(40)

Undead cells generated through genomic instability also
function as ONCs, secreting Wg and triggering JNK-dependent
non-autonomous hyperplasia.(41) Here, JNK-activated MMP1
activity also induces basement membrane degradation and inva-
sion. Intriguingly, undead cells can also cause non-autonomous
apoptosis propagated by Eiger–JNK.(42) Dying ONCs may
unleash an autocatalytic wave of JNK, death, growth factor
secretion, and proliferation.

Polarity loss. Apico-basal polarity is essential for epithelial
cell function and homeostasis. Polarity loss underlies many
cancers and is often critical for cancer progression.(43) Imagi-
nal epithelia entirely mutant for conserved apico-basal polarity
genes scribble (scrib) or discs large (dlg) develop into tumors.
However, clones of these mutant cells surrounded by wild-type
cells are eliminated through Eiger–JNK signaling in “tumor-
suppressive cell competition”.(44) Competition-induced JNK

also suppresses Yki activity in scrib clones.(45) Although JNK
restrains overgrowth of scrib tissue, it is required for tumor
progression and metastasis of scrib+RasV12 clones.(35) Surpris-
ingly, distinct scrib and RasV12 mosaic clones induced in the
same imaginal disc still trigger metastasis of RasV12 cells,(33)

suggesting that scrib cells function as ONCs (Fig. 4a). JNK
activity propagates from scrib to RasV12 cells, inducing Upd
and JAK–STAT signaling that cooperates with Ras signaling
to induce metastasis. Remarkably, JAK–STAT signaling is also
required within scrib-neighboring cells to eliminate scrib
clones.(33,46) As JAK–STAT and JNK both suppress and pro-
mote scrib tumor formation, competition-triggered interclonal
cooperation likely underlies polarity-defective ONCs.

Ras, mitochondrial dysfunction, and senescence. Metastasis of
RasV12-expressing cells can be triggered by different ONCs,
such as scrib clones.(8,47) A genetic screen for RasV12-induced
non-autonomous growth identified mutations in genes required
for mitochondrial respiratory function, which are frequently
downregulated in various cancers.(48) Clones harboring RasV12

and mitochondrial dysfunction (RasV12 ⁄mito�/�) produce reac-
tive oxygen species (ROS), activating JNK. JNK and Ras
cooperatively activate Yki, which upregulates Upd and Wg to
induce surrounding tissue overgrowth.(49) Thus, RasV12 ⁄mito�/�

cells act as ONCs. Interestingly, RasV12 ⁄mito�/� cells cause
cell-cycle arrest through ROS production and undergo p53-de-
pendent cellular senescence (Fig. 4a).(50) Overexpression of
p53 inside RasV12 clones is sufficient to induce ONCs and
non-autonomous overgrowth. Therefore, senescent cells may
function as ONCs through inflammatory cytokine release,(51) a
conserved phenomenon called the senescence-associated secre-
tory phenotype (SASP).(52) Indeed, paralleling scrib interclonal
cooperation, RasV12 ⁄mito�/�-produced Upd triggers adjacent
RasV12 metastasis (Fig. 4b).(49) Interestingly, activated Ras sig-
naling stimulates Eiger exocytosis, causing JNK accumulation
and JAK–STAT activation at clonal boundaries between
RasV12 and wild-type cells.(53) JNK transcytosis could underlie
JNK propagation and cell competition’s role in oncogenic
cooperation.

Oncogenic niche cell themes: JNK-mediated cell
competition and cooperation

There are several shared ONC themes (Table 1). Notably, Src-
activated, endocytic, and polarity-defective ONCs undergo
JNK-mediated cell competition. Thus, tumor-suppressive cell

(a) (b)

Fig. 3. Apoptotic oncogenic niche cells (ONCs). (a) Damage-induced JNK activates Yorkie (Yki) in wild-type cells, triggering compensatory prolif-
eration. Wild-type cell JNK stimulates migration to the damaged area. (b) “Undead” ONCs formed by overexpression of pro-apoptotic genes
(Reaper, Hid) and caspase inhibition. Resultant JNK activity stimulates surrounding cell proliferation through ONC Decapentaplegic (Dpp) ⁄Wing-
less (Wg) secretion. Dcp1, death caspase 1; DIAP1, death-associated inhibitor of apoptosis 1; drICE, Drosophila ICE; Dronc, Drosophila NEDD2-like
caspase.
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competition is subverted to promote cancer. Cancers may
hijack cell competition machinery to “sweep” through popula-
tions in field cancerization,(13,54) and cell competition also
generates ONCs. Ironically, neighboring cells that activate
tumor-suppressive machinery become the cancerous entity they
sought to destroy (Fig. 5). Additionally, JNK is activated fol-
lowing apoptosis, causing non-autonomous death and prolifera-
tion. Thus, a feed-forward loop of JNK and death could
propagate to potentiate tumor progression and metastasis.
How does JNK drive ONC-mediated overgrowth? Another

ONC theme is JNK-dependent Yki activation (Table 1), which
can induce growth factors and anti-apoptotic genes like Diap1.

Notably, JNK directly impinges on Hippo through Ajuba-
mediated Warts regulation, activating Yki and driving over-
growth.(55,56) Therefore, non-autonomous JNK propagation in
certain ONCs could directly induce non-autonomous Yki.
However, within Src-activated ONCs, non-autonomous JNK
does not induce Yki. Instead, autonomous JNK cooperatively
propagates Yki activity to neighboring cells (Fig. 1c).(19)

Additionally, polarity loss can still induce non-autonomous
Yki activation in tissues lacking the JNK ligand Eiger,(45)

suggesting that JNK-independent pathways may activate non-
autonomous Yki in polarity ONCs. Thus, specific mechanisms
of non-autonomous Yki activation remain unclear. Surprisingly,

Fig. 4. Cooperation between RasV12 and
oncogenic niche cells (ONCs). (a) scrib cells activate
Eiger ⁄ JNK signaling, causing neighboring RasV12

cells (purple) to secrete Unpaired (Upd) and
metastasize. Alternatively, RasV12 ⁄mito�/� cells
(mitochondrial dysfunction, senescent ONC)
generate reactive oxygen species (ROS) and activate
p53, which cooperatively activate JNK. JNK and
RasV12 inactivate the Hippo pathway, activating
Yorkie (Yki) and triggering secretion of Upd and
Wingless (Wg). ONC-induced senescence-associated
secretory phenotype stimulates neighboring RasV12

cell invasion. (b) While RasV12 clones (GFP+) fail to
metastasize from the larval brain hemisphere (BH)
to the ventral nerve cord (VNC), senescent ONCs
(RasV12 ⁄mito�/�) stimulate RasV12 invasion
(arrowheads). STAT, signal transducer and activator
of transcription; TNF, tumor necrosis factor.

Table 1. Common oncogenic niche cell (ONC) themes

ONCs
Competition and cell

death
Cooperation

Growth

factors

Cellular senescence or

p53 accumulation (p53+)

Src-activated JNK?cell death JNK?Yki – –

Endocytic

dysregulation

JNK?cell death Notch?JAK–

STAT

JNK ⁄ Ras?Yki

Upd

Wg

Dpp

p53+

Apoptotic stimulus Cell death JNK?Dpp, Wg

JNK?Yki

JNK↔p53

JNK?JNK ⁄ death

Wg

Dpp

p53+

Polarity defect JNK?cell death JNK?JAK–STAT Upd –

RasV12 ⁄mito�/� – JNK ⁄ Ras?Yki

ROS ⁄ p53?JNK

Upd

Wg

p53+, cellular

senescence

Dpp, Decapentaplegic; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription; Upd, UNPAIRED; Wg, Wingless; Yki,
Yorkie.
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core Hippo pathway components are not commonly disrupted
in human cancer.(57) Instead, Hippo dysregulation may potenti-
ate tumorigenesis through interclonal cooperation. Indeed, Yki
⁄YAP is nuclear in ~60% of hepatocellular carcinomas and
65% of non-small-cell lung cancers.(57) Oncogenic niche cell-
driven, non-autonomous Yki activation could contribute to
mammalian cancer progression.
JNK may additionally act through Polycomb group proteins

(PcG), which enforce epigenetic repression. During wound-
healing, JNK inactivates PcG to allow fate reprogramming.(58)

Therefore, JNK activity could alleviate PcG repression of
growth factors like Wg or Upd. Notably, loss of PcG protein
Polyhomeotic causes non-autonomous, Upd-mediated over-
growth.(59,60) Because mammalian JNK can act as a pro-apop-
totic gene linked to tumor regulation,(61) JNK may function in
both mammalian and Drosophila ONCs.

Oncogenic niche cell hypothesis: Crumbs in ONC
establishment

A common ONC theme is cooperative Yki activation (Table 1),
suggesting that Hippo pathway activity may influence ONCs.
Indeed, differential Hippo pathway activity triggers cell compe-
tition: Yki-activated cells are super-competitors while yki
mutants are eliminated.(13,14,16,62) Alongside JNK-based compe-
tition, could Hippo-mediated competition establish ONCs? The
apical transmembrane protein Crumbs (Crb) is a good candidate
for ONC establishment. Crb recruits Expanded (Ex),(63–66) acti-
vating Hippo and inhibiting Yki. Intriguingly, Crb accumulates
in polarity and endocytic ONCs.(26,67) Furthermore, Crb-over-
expressing clones are eliminated while crb mutants induce
neighbor-cell death in a competitive phenomenon dependent on
Crb–Crb extracellular interactions.(68) Therefore, in certain

Fig. 5. Oncogenic niche cell (ONC) timeline. Potentially tumorigenic cells (green) are attacked by neighbors through JNK-based cell competi-
tion, causing autonomous cell death. However, dying cells stimulate cooperation between JNK and other pathways, triggering growth factor
release and ⁄ or non-autonomous Yorkie (Yki) activation. Senescence also induces ONCs, causing growth factor secretion and potentiating metas-
tasis of adjacent premalignant tissue (i.e. RasV12). Additionally, ONCs may stimulate neighboring cancer stem cell (CSC) proliferation or even
induce CSCs, driving non-autonomous tumor progression. Chemotherapy-induced death or senescence may contribute to cancer recurrence
through formation of ONCs.
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ONCs, high Crb may cause JNK-dependent repression of Yki
and “loser” status. Conversely, neighboring cells with lower
Crb would overgrow through JNK-activated Yki. CRB3 is
downregulated in human tumor-derived cell lines,(43) consistent
with lower Crb permitting overgrowth.
However, while Crb-overexpressing cells are eliminated,

overexpression of only Crb’s intracellular domain (Crb-intra)
causes autonomous overgrowth.(68) Intriguingly, Crb-intra
overgrowth is rescued by depletion of Eiger’s receptor
Grindelwald, which colocalizes with Crb at apical mem-
branes.(69) This supports the idea that Crb–JNK might contribute
to ONCs, but highlights the complexity of Crb overexpression
phenotypes. Indeed, although Crb recruits Ex and activates
Hippo, Crb can also promote Ex degradation through ubiquityla-
tion.(66) Moreover, Hippo pathway mutants accumulate Crb yet
become super-competitors,(62,70,71) perhaps through elevation of
anti-apoptotic DIAP1 or mechanisms paralleling Crb-intra
induced overgrowth. While Crb’s contribution to ONCs is highly
complex, it is likely that Crb and JNK can cooperatively dictate
Yki activity and competitive outcomes in ONCs.

Oncogenic niche cell themes: a role for cellular
senescence?

Though cell death is common to ONCs, it is not induced in
RasV12 ⁄mito�/� cells, which instead activate p53 and undergo
cellular senescence.(50) JNK-activated Yki stimulates Upd ⁄Wg
secretion in a SASP,(50,52) reminiscent of growth factor secre-
tion by “undead” ONCs. Intriguingly, p53 has been linked to
cell competition. In murine hematopoietic stem cells (HSCs),
irradiated p53�/� HSCs outcompete p53+/+, but not p53+/�

HSCs.(72) Separately, p53 knockdown in differentiated murine
tissue allowed disproportionate expansion of p53�/� cells. Sur-
prisingly, p53 knockdown in undifferentiated embryonic stem
cells lead to p53�/� cell elimination, suggesting that p53
knockdown triggers context-dependent cell competition.(73)

Supporting this, apoptosis of Myc-overexpressing, p53�/� Dro-
sophila cells was dependent on surrounding neighbors.(74) Fur-
thermore, p53 is intimately linked to JNK in Drosophila: p53
and JNK form a feed-forward loop in undead ONCs,(40) are
sufficient to induce each other’s expression,(40) and p53
directly binds JNK.(75) Indeed, blocking p53 in RasV12 ⁄mito�/�

abrogated JNK activity and ONC formation.(50)

Therefore, p53 or cellular senescence may trigger cell com-
petition and establish ONCs. p53 is elevated in tsg101 null
mice, likely from impaired ubiquitin-mediated degradation.(76)

Ubiquitinated proteins accumulate in vps25 and ept mutant
ONCs,(23,24,26) and mutations in an E1 ubiquitin-activating
enzyme cause non-autonomous overgrowth.(77) Moreover, p53
is required for undead ONCs’ non-autonomous prolifera-
tion.(78) While these phenotypes can partly be explained by
p53’s pro-apoptotic role, p53 may fuel non-autonomous tumor
progression through cell competition and SASP. As p53 is
frequently mutated in human cancers,(79) dysregulated cell
competition or SASP may contribute to mammalian cancer
progression (see below).

Oncogenic niche cells in mammalian cancer

Do ONCs contribute to mammalian cancer progression?
Although cellular senescence can suppress tumor formation, it
can fuel non-autonomous overgrowth through cytokine secre-
tion in a SASP.(52) Mammalian studies also suggest that SASP
can drive non-autonomous tumor progression.(52) Senescence-

associated secretory phenotype of murine hepatic stellate cells
potentiated hepatocellular carcinoma formation.(80) Moreover,
SASP in epithelial cells triggered malignancy through para-
crine secretion of IL-6 and IL-8,(81) paralleling senescent
ONCs’ induction of neighboring RasV12 metastasis (Fig. 4b).
Thus, non-autonomous tumor progression through cellular
senescence and SASP seems conserved in mammalian cancer
progression. Like cell competition, cellular senescence can
suppress or promote tumorigenesis. As chemotherapy often
potentiates cellular senescence,(52,82) senescent ONCs could
contribute to cancer recurrence (Fig. 5).
Alongside cellular senescence, cell death is commonly

observed in human cancers and often correlates with increased
tissue proliferation.(29) In a mouse model of hepatocellular car-
cinogenesis, dying hepatocytes activate JNK and ROS, induc-
ing proliferation of surrounding cells through cytokine
release.(83,84) Importantly, therapy-induced death can also
trigger ONC-mediated proliferation. Following radiotherapy,
dying cancer cells activate effector caspases 3 ⁄7, triggering
prostaglandin E2 (PGE2) secretion. Subsequently, PGE2 stimu-
lates neighbor-cell proliferation.(85) Notably, tumor recurrence
positively correlated with high activation of caspases 3 ⁄7 in
human patients.(85) In human prostate cancer, chemotherapy-in-
duced PGE2 can trigger non-autonomous cell proliferation and
tumor repopulation through cancer stem cells (see below).(86)

Thus, cell death and cellular senescence in ONCs can initiate
tumors and hinder treatment (Fig. 5).
Oncogenic niche cells may promote tumorigenesis through

non-autonomous effects on cancer stem cells (CSCs). The
CSC hypothesis proposes that specialized stem cells contribute
disproportionately to cancerous populations.(87) Consequently,
cancer heterogeneity can be partially attributed to differentia-
tion hierarchies stemming from distinct CSC subpopulations.(2)

Experimental evidence suggests that CSC progeny are surpris-
ingly plastic in their fate and can dedifferentiate to CSCs.(87)

Intriguingly, a pulse of Src activity was sufficient to convert a
non-malignant breast cell line into a self-renewing, CSC-con-
taining cancer through an IL-6 ⁄nuclear factor-jB positive
feedback loop.(88) Furthermore, IL-6 addition to regular cancer
cells induced dedifferentiation to CSCs.(89) As ONCs fre-
quently induce Upd ⁄ IL-6 (Table 1) through JNK–Yki coopera-
tion in Drosophila, ONC-secreted factors could promote
non-autonomous CSC induction. Concomitantly, ONCs could
promote CSC proliferation, such as in therapy-induced CSC
proliferation and repopulation.(87) Notably, in human hepato-
cellular carcinoma, JNK and IL-6 markers are commonly asso-
ciated with CSCs,(61) although no evidence directly links CSCs
to ONCs. Additionally, as CSCs are often resistant to apopto-
sis,(87) it is possible that CSCs themselves could function as
“undead” ONCs when challenged with apoptotic stimuli, such
as chemotherapy.

Conclusions

Drosophila studies have brought insight to tumor progression
through genetic dissection of ONCs. As senescent and dying
ONCs are likely conserved in mammals, further ONC analysis
will inform our understanding of mammalian cancer etiology.
Despite diverse genetic triggers, ONCs share many characteris-
tics, including cell death, competition, and cooperation. The
role of JNK in cell competition and its cooperation with Yki
merits further study in both Drosophila and mammalian cancer
models. The relationships between ONCs, Crb, p53, cellular
senescence, and cell competition are exciting areas for future
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investigation. Notably, ONCs themselves do not directly con-
tribute to cancer’s effective population and hence do not
undergo a Darwinian clonal selection. Instead, ONCs are cre-
ated by the protective programs endowed with maintaining
epithelial homeostasis: cell competition, cellular senescence,
and apoptosis. We envision that ONCs contribute to non-au-
tonomous tumor initiation and progression through cooperation
with adjacent premalignant tissue or through CSC induction or
stimulation (Fig. 5). The basic genetic mechanisms uncovered
in Drosophila ONCs likely underlie interclonal cooperation in
heterogeneous mammalian cancers. Moreover, mammalian evi-
dence suggests that ONCs fuel tumor recurrence following
chemotherapy-induced death or senescence. Therefore, cancer
topography, the potential for ONC induction or subclone coop-
eration, must be carefully considered before individualized
therapies become a reality.
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