Visualizing variations in organizational safety culture across an inter-hospital multifaceted workforce

Hiroe Kobuse MPH,1 Toshitaka Morishima MD PhD,2,4 Masayuki Tanaka MPH PhD,2 Genki Murakami M.Eng PhD,5 Masahiro Hirose MD PhD6 and Yuichi Imanaka MD MPH PhD3

1Graduate Student, 2Research Fellow, 3Professor, Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University, Kyoto, Japan
4JSPS Research Fellow, Graduate School of Economics, Kyoto University, Kyoto, Japan
5Senior Lecturer, Department of Medical Informatics, University Hospital of Occupational and Environmental Health, Kitakyushu, Japan
6Professor, Center for Education on Hospital Medicine, Shimane University Hospital, Izumo, Japan

Keywords
attitude of health personnel, organizational culture, patient safety, quality improvement, safety management, weights and measures

Abstract

Rationale, aims and objectives To develop a reliable and valid questionnaire that can distinguish features of organizational culture for patient safety across subgroups such as hospitals, professions, management/non-management positions and units/wards.

Methods We developed a Hospital Organizational Culture Questionnaire based on a conceptual framework incorporating items from a review of existing literature. The questionnaire was administered to hospital staff including doctors, nurses, allied health personnel, and administrative staff at six public hospitals in Japan. Reliability and validity were assessed through exploratory factor analysis, multitrait scaling analysis, Cronbach’s alpha coefficient and multiple regression analysis using staff-perceived achievement of safety as the response variable. Discriminative power across subgroups was assessed with radar chart profiling.

Results Of the 3304 hospital staff surveyed, 2924 (88.5%) responded. After exploratory factor analysis and multitrait analysis, the finalized questionnaire was composed of 24 items in the following eight dimensions: improvement orientation, passion for mission, professional growth, resource allocation prioritization, inter-sectional collaboration, responsibility and authority, teamwork, and information sharing. Construct validity and internal consistency of dimensions were confirmed with multitrait analysis and Cronbach’s alpha coefficients, respectively. Multiple regression analysis showed that improvement orientation, passion for mission, resource allocation prioritization and information sharing were significantly associated with higher achievement in safety practices. Our questionnaire tool was able to distinguish features of safety culture among different subgroups.

Conclusions Our questionnaire demonstrated excellent validity and reliability, and revealed distinct cultural patterns among different subgroups. Quantitative assessment of organizational safety culture with this tool may further the understanding of associated characteristics of each subgroup and provide insight into organizational readiness for patient safety improvement.

Introduction

Hospital safety culture has drawn increasing attention as it can have a direct influence on ensuring patient safety [1,2]. Instead of blaming individual health care professionals for incidents and accidents, efforts should be made to improve the health care delivery structure to preemptively stop problems from occurring [3,4]. One such approach focuses on organizational safety culture enhancement to complement insufficient quality improvements from structural changes [5].

The often-quoted definition of hospital safety culture is ‘the product of individual and group values, attitudes, perceptions, competencies and patterns of behaviour that determine the commitment to, and the style and proficiency of an organisation’s safety management’ [6]. Given a certain level of safety culture maturity, an organization’s performance in quality and outcomes can be expected to be high [6,7]. Several empirical studies have demonstrated an association between organizational culture and quality or safety improvements [8–12], whereas others have shown no such relationship [13,14]. These contradictory results are thought to arise...
from the use of ill-suited assessment tools [5,15]. However, assessing the precise features of hospital safety culture remains difficult because hospitals are organizations consisting of multifaceted subgroups, with a variety of professions, management/non-management positions, and unit/wards. Therefore, there is a need for a relevant and sensitive assessment tool to evaluate hospital safety culture, and it must also be applicable to all hospital staff to ensure global improvement. Previous studies have demonstrated the validity and reliability of assessment tools, yet have failed to quantitatively show discriminative power [16–21].

There is a lack of consensus on the appropriate dimensions of hospital safety culture that should be evaluated by assessment tools [5,7,15–21]. While most of the previous tools have evaluated individual and group values, attitudes, perceptions, competencies and patterns of behaviour; few have addressed managerial issues such as policies, procedures and practices, which are also important factors of safety culture [5,20]. In addition to systems and structures, it is also important to assess beliefs, attitudes and behaviours [15,20]. Because different types of staff have different perceptions of organizational culture [22–24], it would be reasonable to employ a dimensional approach to provide details for improvement [5,15].

The aim of the present study was to develop a reliable and valid hospital safety culture assessment tool (designated the Hospital Organizational Culture Questionnaire, or HOCQ) that can help to distinguish between the different cultural patterns among hospitals, professions, positions and units/wards in an effort to identify areas that require patient safety improvements in hospitals with complicated organizational features.

Methods

Theoretical framework

A literature review was conducted on the safety culture, safety climate and organizational culture of health care and other settings in order to develop a theoretical framework of the components needed to assess hospital safety culture (Table S1). This theoretical framework was composed of the following eight dimensions: ‘collaboration’ [13,20,25–28], ‘information sharing’ [20,27,29–31], ‘professional growth’ [20,25–27,29], ‘morale’ [20,27,29,30,32–34], ‘common values’ [3,4,20,25,26,30,31,33,35], ‘resource allocation prioritization’ [20,25–27,29,33,34], ‘responsibility and authority’ [31,33,34], and ‘improvement orientation’ [20,25,29,32,35]. Several tools incorporate ‘job satisfaction’ as a dimension of safety culture, and most studies address it as a related factor, albeit distinct from safety culture [21,36]. However, in the context of the definition from the Advisory Committee on the Safety of Nuclear Installations, we considered ‘job satisfaction’ an unnecessary element of safety culture [6].

Questionnaire development

Questionnaire items concerning various concepts of the different dimensions were reviewed and modified to ensure ease of understanding and relevance to patient safety in hospital settings. The initial version of the assessment tool consisted of 66 items, and the associated concepts are shown in Table S1. We further refined the assessment tool through interviews with doctors, nurses, allied health personnel and administrative staff. Based on these interviews and group meetings, the items forming the core of the pilot questionnaire were consolidated; the original 66 items were aggregated into 25 items spanning the aforementioned eight dimensions (Table S2). In addition, we also included two items of staff-perceived achievement regarding hospital safety practices; these were used to evaluate the safety level as an outcome of hospital safety culture (Table S2).

Our assessment tool employed Likert-type rating scales ranging from 1 (strongly disagree) to 5 (strongly agree), and utilized dimension scores ranging from 0 to 100 for data analysis. Reverse-worded items were reverse scored prior to data analysis, and a higher score therefore indicates better safety culture status. To collect information regarding respondent characteristics, we also examined the following items: respondent profession, position, unit/ward and years of experience in the current hospital. Here, professions were categorized into four groups (doctor, nurse, allied health personnel and administrative staff), position was used to indicate the respondent’s managerial level in the organizational hierarchy and unit/ward demonstrated the group level of interest (e.g. work units, patient care areas and nursing units). A preliminary pilot survey was conducted to test the feasibility of the assessment tool, enrolling more than 30 staff (including doctors, nurses, allied health personnel and administrative staff) from hospitals that did not participate in the final survey.

Survey procedure

The survey was conducted at six public hospitals within the Kinki and Shikoku regions of Japan during February 2006. These six hospitals had been invited to take part in the survey, and all had voluntarily participated as a means to seek out opportunities to improve organizational culture. Each hospital primarily comprised acute care beds (bed numbers ranged from 200 to 600), with two hospitals also having long-term care beds and one hospital with psychiatric beds.

The numbers of full-time active hospital-employed staff were first obtained from each of the six participating hospitals. The self-administered questionnaire was then distributed to all these full-time staff, consisting of 3304 individuals from all job categories and levels of hierarchy in the participating hospitals. These included doctors, nurses, allied health personnel, administrative staff and other hospital staff (such as cooks, sanitary workers and counsellors). The hospital workers were informed that there was no obligation to participate in the study, but that submitting a completed questionnaire would imply consent to participation. Completed questionnaires were sealed and collected by survey coordinators. Confidentiality and anonymity were protected during the entire study procedure. All questionnaires were collected within a month of distribution. This study was approved by the Ethics Committee, Kyoto University Graduate School and Faculty of Medicine.

Data analysis

Exploratory factor analysis (EFA) was performed to assess construct validity and to determine items and dimensions for inclusion [37]. The maximum likelihood method with promax rotation was used for EFA. Items with factor loadings of less than 0.25 and
Table 1 Characteristics of the survey respondents

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Hospital A</th>
<th>Hospital B</th>
<th>Hospital C</th>
<th>Hospital D</th>
<th>Hospital E</th>
<th>Hospital F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of respondents</td>
<td>2,924</td>
<td>570</td>
<td>465</td>
<td>491</td>
<td>783</td>
<td>431</td>
<td>184</td>
</tr>
<tr>
<td>Response rate, % (for total sample and by hospital)</td>
<td>88.5</td>
<td>89.1</td>
<td>89.3</td>
<td>89.4</td>
<td>95.1</td>
<td>74.1</td>
<td>97.4</td>
</tr>
</tbody>
</table>

Respondents by profession, number (%)

- **Doctor**
 - 284 (9.7)
 - Hospital A: 50 (8.8)
 - Hospital B: 39 (8.4)
 - Hospital C: 60 (12.2)
 - Hospital D: 76 (9.7)
 - Hospital E: 35 (8.1)
 - Hospital F: 24 (13.0)

- **Nurse**
 - 1,863 (63.7)
 - Hospital A: 394 (69.1)
 - Hospital B: 296 (63.7)
 - Hospital C: 242 (49.3)
 - Hospital D: 512 (65.4)
 - Hospital E: 307 (71.2)
 - Hospital F: 112 (60.9)

- **Allied health personnel**
 - 374 (12.8)
 - Hospital A: 76 (13.3)
 - Hospital B: 59 (12.7)
 - Hospital C: 76 (15.5)
 - Hospital D: 89 (11.4)
 - Hospital E: 50 (11.6)
 - Hospital F: 24 (13.0)

- **Administrative staff**
 - 383 (13.1)
 - Hospital A: 44 (7.7)
 - Hospital B: 69 (14.8)
 - Hospital C: 109 (22.2)
 - Hospital D: 100 (12.8)
 - Hospital E: 39 (9.0)
 - Hospital F: 22 (12.0)

- **Other staff**
 - 20 (0.7)
 - Hospital A: 6 (1.1)
 - Hospital B: 2 (0.4)
 - Hospital C: 4 (0.8)
 - Hospital D: 6 (0.8)
 - Hospital E: 0 (0.0)
 - Hospital F: 2 (1.1)

Positions, number (%)

- **Management position (top or middle)**
 - 766 (26.2)
 - Hospital A: 273 (47.9)
 - Hospital B: 69 (14.8)
 - Hospital C: 134 (27.3)
 - Hospital D: 165 (21.0)
 - Hospital E: 75 (17.4)
 - Hospital F: 50 (27.1)

Experience at the current hospital, number (%)

- **1 year**
 - 362 (12.4)
 - Hospital A: 48 (8.4)
 - Hospital B: 61 (13.1)
 - Hospital C: 63 (12.8)
 - Hospital D: 100 (12.8)
 - Hospital E: 67 (15.5)
 - Hospital F: 23 (12.5)

Data in parentheses indicate column percentages of total respondents (e.g. by profession, managerial position and experience at the current hospital). Total percentages for respondents by professions for the total sample and by hospital may not add up to 100% due to rounding.

Items with cross-loads on two factors with a loading of more than 0.40 on the second factor were excluded from analysis.

To further assess construct validity, we conducted multitrait scaling analysis by calculating Pearson’s correlations among items and dimensions [38]. Internal consistency for each dimension was then assessed using Cronbach’s alpha coefficients [37].

Criterion validity was evaluated using multiple regression analysis of hospital safety culture dimensions and staff-perceived achievement of hospital safety practices. Our model used the score of staff-perceived achievement as the response variable. Explanatory variables included the eight dimension scores for safety culture, as well as dummy variables of each hospital, respondent profession, position and experience at the current hospital (<1 year or ≥1 year). Diagnostic tests for multicollinearity were performed using variance inflation factor (VIF). Explanatory power of the models was measured using adjusted R^2.

To conduct a graphical evaluation of discriminative power across subgroups (hospitals, professions, positions and units/wards), we created radar charts bearing the dimension scores. In addition, the average (AVE), standard deviation (SD), interquartile range (IQR), coefficient of variation (CV) and IQR/AVE of the dimension scores and percent positive responses were calculated for each subgroup. Percent positive response refers to the percentage of positive responses (i.e. agree, strongly agree) to positively worded items or negative responses (i.e. disagree, strongly disagree) to negatively worded items. AVE, SD, IQR, CV and IQR/AVE were calculated across subgroups (but not across individuals), which ensured that each subgroup received an equal weight. Larger values of CV and IQR/AVE indicate larger variations, which in turn suggest that the assessment tool has the ability to discriminate between subgroups.

Analyses were performed using IBM SPSS 20 for Windows (SPSS Inc., Chicago, IL, USA). Two-sided tests were used and a $P < 0.05$ was considered to be statistically significant.

Results

Survey population characteristics

Of the 3304 hospital staff surveyed, 2924 from six hospitals responded (overall response rate: 88.5%). Results of the descriptive statistics are shown in Table 1. Respondents included 284 doctors, 1863 nurses, 374 allied health personnel, 383 administrative staff and 20 other hospital staff. Hospital response rates ranged from 74.1% to 97.4%. The highest response rate among the various professions was from nurses (overall rate: 63.7%), and the lowest response rate was from doctors (overall rate: 9.7%). More than a quarter of the respondents (26.2%) selected ‘top management’ or ‘middle management’ as their management position.

Validity and reliability

The mean and SD for each survey item, which was examined prior to conducting EFA, showed no ceiling or floor effects on the score. Bartlett’s test of sphericity ($\chi^2 = 34178.57$, degrees of freedom = 300, $P < 0.01$) was significant, and the Kaiser-Meyer-Olkin measure of sampling adequacy yielded a value of 0.94. These results provided us with the statistical basis to proceed with EFA.

The EFA results, including the maximum likelihood method with promax rotation, are detailed in Table 2. As the hypothesized theoretical framework differed from that obtained by the EFA, we modified the hypothesized dimensions into empirical dimensions as follows: ‘collaboration’ was divided into ‘teamwork’ and ‘inter-sectional collaboration’; and the ‘morale’ and ‘common values’ dimensions were incorporated into a single dimension designated ‘passion for mission’. As a result, our safety culture scale contained eight dimensions: ‘improvement orientation’, ‘passion for mission’, ‘professional growth’, ‘resource allocation prioritization’, ‘inter-sectional collaboration’, ‘responsibility and authority’, ‘teamwork’ and ‘information sharing’. The item ‘Q14: non-punitive and system-focused approach’ under the hypothesized dimension of ‘common values’ showed loading in another factor, and was regrouped into the ‘improvement orientation’ dimension (Table 2). In contrast, the item ‘Q15: good understanding of organizational policy’ under the hypothesized dimension of ‘common values’ did not have factor loadings greater than 0.25, and was omitted from the later analyses.

Multitrait analysis was performed to confirm construct validity (Table S3). Correlation coefficients calculated for each item within a respective dimension were all above 0.58, showing good convergent validity. Thus, there was a total of 24 items included in the...
Cronbach’s alpha coefficients calculated for each finalized dimension ranged from 0.75 to 0.82 after the item ‘Q15’ was omitted, thereby demonstrating adequate internal consistency (Table 3).

A multiple regression analysis was performed to examine the relationship of the safety culture dimensions with staff-perceived performance. The eight dimension scores and variables related to respondent characteristics were employed as explanatory variables. The results of the regression analysis are presented in Table 4. Four of the safety culture dimensions (‘improvement orientation’, ‘passion for mission’, ‘resource allocation prioritization’ and ‘information sharing’) were positively associated with perceived performance. Diagnostic tests for multicollinearity using VIF detected no evidence of effects that may inflate standard errors for the model. The cumulative variance explained by the model was 64%.
Table 4 Associations of safety culture dimensions with staff-perceived achievements in safety practices

<table>
<thead>
<tr>
<th>Safety culture dimensions</th>
<th>B</th>
<th>SE</th>
<th>β</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement orientation</td>
<td>0.54</td>
<td>0.02</td>
<td>0.50***</td>
<td>2.18</td>
</tr>
<tr>
<td>Passion for mission</td>
<td>0.27</td>
<td>0.02</td>
<td>0.22***</td>
<td>2.55</td>
</tr>
<tr>
<td>Professional growth</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>1.86</td>
</tr>
<tr>
<td>Resource allocation prioritization</td>
<td>0.13</td>
<td>0.01</td>
<td>0.13***</td>
<td>1.53</td>
</tr>
<tr>
<td>Inter-sectional collaboration</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>1.94</td>
</tr>
<tr>
<td>Responsibility and authority</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>1.77</td>
</tr>
<tr>
<td>Teamwork</td>
<td>−0.03</td>
<td>0.02</td>
<td>−0.03</td>
<td>2.13</td>
</tr>
<tr>
<td>Information sharing</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04*</td>
<td>2.50</td>
</tr>
<tr>
<td>Hospitals (ref: Hospital F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital A</td>
<td>−2.08</td>
<td>1.08</td>
<td>−0.04</td>
<td>3.34</td>
</tr>
<tr>
<td>Hospital B</td>
<td>−4.72</td>
<td>1.15</td>
<td>−0.09***</td>
<td>3.22</td>
</tr>
<tr>
<td>Hospital C</td>
<td>−3.43</td>
<td>1.11</td>
<td>−0.06**</td>
<td>3.11</td>
</tr>
<tr>
<td>Hospital D</td>
<td>1.12</td>
<td>1.04</td>
<td>0.02</td>
<td>2.91</td>
</tr>
<tr>
<td>Hospital E</td>
<td>−2.49</td>
<td>1.13</td>
<td>−0.04*</td>
<td>3.02</td>
</tr>
<tr>
<td>Professions (ref: nurse)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor</td>
<td>1.13</td>
<td>0.91</td>
<td>0.02</td>
<td>1.41</td>
</tr>
<tr>
<td>Allied health personnel</td>
<td>0.35</td>
<td>0.66</td>
<td>0.01</td>
<td>1.10</td>
</tr>
<tr>
<td>Administrative staff</td>
<td>−0.31</td>
<td>0.89</td>
<td>0.00</td>
<td>1.12</td>
</tr>
<tr>
<td>Positions (ref: non-management) (top or middle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management position</td>
<td>−2.14</td>
<td>0.59</td>
<td>−0.05***</td>
<td>1.27</td>
</tr>
<tr>
<td>Experience at the current hospital (ref: <1 year)</td>
<td>2.49</td>
<td>0.72</td>
<td>0.04**</td>
<td>1.09</td>
</tr>
<tr>
<td>Explanatory power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Significant at α = 0.05 level, **Significant at α = 0.01 level, ***Significant at α = 0.001 level.

β, standardized coefficient; B, unstandardized coefficient; ref, referent category; SE, standard error; VIF, variance inflation factor.

Discriminative power

Radar charts, designed to provide a graphical understanding of the discriminative power of our assessment tool revealed differences across subgroups, stratified by hospital, profession, position and unit/ward (Fig. 1). We found variations in each dimension score across different subgroups. Among the different respondent professions, differences were dependent on dimensions of safety culture. Across positions, managers perceived patient safety culture more positively than non-management staff in all culture dimensions. In addition, we calculated CV and IQR/AVE across subgroups for the score and percent positive response of each dimension (Table S4). The ranges of CV values calculated for scores across hospitals, professions, positions and units/wards were 0.09–0.16, 0.05–0.13, 0.05–0.13 and 0.12–0.25, respectively. The ranges of IQR/AVE values for percent positive response across hospitals, professions, positions and units/wards were 0.15–0.58, 0.11–0.36, 0.10–0.50 and 0.19–0.66, respectively.

Discussion

In the present study, we designed and tested a new assessment tool for hospital safety culture, and demonstrated its ability to identify distinct features of safety culture among different hospitals, professions, management/non-management positions and units/wards using radar charts and calculating CV and IQR/AVE. Our results revealed that the HOCQ has a larger discriminative power when compared with that of previous studies [16–21]. With verification of the underlying assumption of validity and reliability for assessing hospital safety culture, this discriminative power across subgroups is a major strength of the HOCQ. This tool is expected to be useful for inter- and intra-institutional comparisons, and can clarify the need for interventions that aim for general or local improvement.

The values for IQR/AVE across hospitals in this study were larger than those published in previous reports [16–21]. In addition, the differences among respondent professions, positions and units/wards in our study were in general larger than those in previous studies that reported variations in perceptions of safety culture among the different subgroups [22–24]. The discriminative power of our assessment tool was able to effectively identify variations in hospital safety culture across subgroups, which can help guide organizations towards improvement in safety culture.

During the process of assessing face validity and content validity, the results of the dimensions in the preliminary analysis helped to refine our initial hypothetical framework for hospital safety culture. The multiple regression analysis using the modified framework enabled the identification of factors that require special attention, whereas previous studies have rarely specified particular dimensions among multidimensional characteristics of hospital safety culture [5,15]. Our findings emphasized the importance of ‘improvement orientation’, ‘passion for mission’, ‘resource allocation prioritization’ and ‘information sharing’ among the eight dimensions. These four dimensions are closely related with institutional-level management, rather than individual/unit-level management [13,20,25–27,29]. This suggests that safety culture management at the institutional level is more important for hospital safety than management at the individual/unit level.

The finding that managers’ perceptions of organizational culture differ from that of non-managers is consistent with research from the United States [22,23]. Because managers have more influence on the formation of organizational culture, they may be more aware of organizational culture than non-managers staff. On the other hand, a comparison of doctors and non-doctors showed that the former’s perceptions were not consistently more positive than the latter’s, which was also consistent with previous studies [22,24]. The inconsistencies among different professions in their perceptions of organizational culture may explain the contradictory results of relationships between culture and performance.

The HOCQ differs from existing safety culture surveys in three content-related aspects: first, it incorporates both institutional-level and individual/unit-level topics with fewer items than other safety climate surveys [16–21], thereby providing a more comprehensive understanding of an organization’s safety culture. Instruments with fewer items also have the advantage of a reduced risk of suffering from lower response rates. Second, existing measures have tended to focus on factors that create an environment that prioritizes safety and encourages open communication and teamwork. In contrast, the HOCQ also includes an emphasis on the bottom-up rationale and actions that are subsumed by the ‘professional growth’ and ‘responsibility and authority’ dimensions, as well as that of top-down management. Although some of the more
comprehensive questionnaires possess items similar to the HOCQ, they only capture a fragment of the behaviours documented [16–21]. Third, the HOCQ includes items related to whether data are consistently collected and analysed for continuous improvement; only a few other scales cover such activities [29,32].

Our study has several limitations. First, determination of the achievement of safety practice was conducted using subjective measures based on staff perceptions, because the direct outcomes of patient safety activities are difficult to measure as objective indicators. However, perceptions of safety culture are related to the actual behaviour of staff, which in turn may be related to rates of errors or accidents [39]. Future studies are needed to evaluate the outcome of actual performance affected by hospital safety culture and to verify the appropriateness of the HOCQ’s framework.

Second, it is difficult to infer causalities due to our cross-sectional design. A longitudinal survey should be conducted to examine if safety culture drives good performance or vice versa [9,10]. Third, our survey analysis did not utilize a large sample, and further studies encompassing a larger number of hospitals will strengthen the findings presented here.

There may be other important opportunities to improve the instrument further. For example, it may be possible to validate our assessment tool against other existing measures. Our analysis demonstrated that the HOCQ has a larger discriminative power than previous scales, but there is still a need for direct comparisons with other existing tools for validation purposes. Furthermore, because the development of this tool was conducted in the Japanese hospital setting, analyses should also be conducted to test the feasibility and applications of the assessment tool in other cultural contexts.

In conclusion, we developed a psychometric tool to discriminate distinct patterns of organizational safety culture among hospitals,
professions, management/non-management positions and units/wards. The dimensions of the HOQC correlated with staff-perceived achievement in safety practices. The results have implications for improving patient safety by enhancing safety culture, particularly in the dimensions of ‘improvement orientation’, ‘passion for mission’, ‘resource allocation prioritization’ and ‘information sharing’. Quantitative assessments obtained with this tool should help further the understanding of safety culture characteristics across different subgroups and help to provide insight into organizational readiness for patient safety improvement.

Acknowledgements
The authors thank all the hospitals that participated in this survey, and especially appreciate the work of the individuals who helped us in coordinating and implementing the survey at each hospital. We are also grateful to those who provided useful commentary for this study. This work was supported in part by a Health Sciences Research Grant from the Ministry of Health, Labour and Welfare of Japan; and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Conflict of interest
The authors declare no conflict of interest.

References

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.