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1. INTRODUCTION

1.1. General introduction

Electro-osmosis is widely observed in many systems such as colloids, porous materials,

and biomembranes. It characterizes the properties of interfaces between solids and elec-

trolyte solutions.[1–4] Interests in the applications of electro-osmosis have been growing

recently. For instance, it is used to pump fluids in microfluidic devices, as it is more easily

implemented than pressure-driven flow.[5] Application to an electrical power conversion is

also of great interest in chemical engineering.[6, 7] Fig. 1 shows a schematic illustration of

energy conversion. A saline solution and fresh water are separated by a membrane, and one

nanotube connects them. The narrow tube causes a giant osmotic current driven by the

gradient of the electrochemical potential of ions. Such a device suggests the possibility of

converting oceanic energy.[8]

When the electrokinetic properties of a surface are characterized by the zeta potential,

the Smoluchowski equation is often employed with measurements of the electro-osmotic

or electrophoretic mobilities. However, one has to consider the validity of this equation

seriously. It is derived from the Poisson-Boltzmann equation and Newton’s constitutive

equation for viscous fluids. The zeta potential is defined as the electrostatic potential at

the plane where a no-slip boundary condition is assumed. When these equations are not

valid, the Smoluchowski equation is also questionable. For a strong-coupling double layer,[9]

inhomogeneity of the viscosity and dielectric constant near the interface,[10, 11] and non-

Newtonian fluids,[12–15] for example, the Poisson-Boltzmann and/or simple hydrodynamic

equations sometimes do not work well.

To control the electrokinetic properties of charged capillaries, the structures of liquid

interfaces in contact with charged surfaces are modified by grafting or adding polymers.[16]

In capillary electrophoresis, for example, the electro-osmotic flow is reduced by polymers

grafted on the interfaces. Several studies of surfaces with end-grafted charged and un-

charged polymers have also been reported.[17–22] Under a weak applied electric field, the

grafted polymer remains in the equilibrium configuration, and the resultant electro-osmotic

velocity behaves linearly with respect to the electric field. To measure the mobility of such a

surface, the hydrodynamic screening and anomalous charge distributions due to the grafted
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FIG. 1. Schematic illustration of energy conversion. Reprinted by permission from Macmillan

Publishers Ltd: ref. [8], copyright (2013). doi:10.1038/nature11876

polymers are important.[17–22] When a sufficiently large electric field is applied, the poly-

mers are deformed by the flow and electric field; thus, the electro-osmotic velocity becomes

nonlinear.[19] Note that the end-grafted polymers cannot migrate toward the bulk because

one of the ends is fixed on the surfaces.

When we add polymers to solutions, a depletion or adsorption layer is often formed

near a solid wall as well as diffuse layers of ions in equilibrium states. The interaction

between the polymers and the wall determines whether the polymers are depleted from

or adhere to the surfaces. The thickness of the depletion or adsorption layer is of the

same order as the gyration length of the polymers. When the polymers adhere to the

wall, the viscosity near the wall becomes large, so the electro-osmotic mobility is strongly

suppressed.[23] Moreover, it is known that an adsorption layer of charged polymers can

change the sign of the mobility.[10, 24–27] The curvature of the surface also modulates the

surface charge density and even increases the mobility beyond the suppression caused by

the viscosity enhancement.[23]

Fig. 2 shows the electrophoretic mobility as a function of the polyelectrolyte concentra-

tion. Feng et al. measured the electrophoretic mobility of polystyrene latex with a diameter

of 1.356µm in a polyelectrolyte solution.[26] They added the positively charged polyelec-

5

http://dx.doi.org/10.1038/nature11876


FIG. 2. Electrophoretic mobility as a function of polyelectrolyte concentration under different

ionic strength: in the absence of KCl(open triangles), in the presence of 1 mM KCl(gray diamonds),

10 mM KCl (open squares) and 0.5 M KCl (black diamonds). Reprinted from ref. [26]. Copyright

(2014), with permission from Elsevier. doi:10.1016/j.colsurfa.2012.09.023

trolyte dimethylamino ethylmethacrylate with a molecular weight of 4.9× 106 to a colloidal

suspension. The polymer size in a 0.5 M KCl solution is 79.39 nm, and the charge density

is 100 percent. Fig. 2 shows that without polyelectrolyte, the colloid is negatively charged,

and the mobility is negative. The mobility increases with the polyelectrolyte concentration,

approaching the point where the mobility is zero. When we add further polyelectrolyte, the

sign of the mobility is changed, and the colloid migrates as if it were positively charged.

The point at which the mobility is zero depends on the ionic strength; the dosage of poly-

electrolyte increases with increasing ionic strength.

Electro-osmosis of a non-adsorbing polymer solution was analyzed using two length scales:

the equilibrium depletion length δ0 and the Debye length λ.[10, 28] In the depletion layer,

the viscosity is estimated approximately as that of the pure solvent, and it is smaller than

the solution viscosity in the bulk. When the Debye length is smaller than the depletion

length, the electro-osmotic mobility is larger than that estimated using the bulk value of the

viscosity. Typically, for 10 mM monovalent electrolyte solutions, one has λ ≈ 3 nm and δ0 ≈

100 nm. In this case,[29–31] an electro-osmotic flow with a high shear rate is localized at a

distance λ from the wall. Thus, the electro-osmotic flow profile and resultant electro-osmotic
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mobility are almost independent of the polymers. Such behaviors were experimentally ob-

served in solutions of carboxymethyl cellulose (CMC) with urea.[30] On the other hand,

in solutions of small polymers with low salinity, typically, for 0.1 mM electrolyte solutions,

λ ≈ 30 nm and δ0 ≈ 5 nm, and the electro-osmotic mobility is suppressed by the polymeric

stress.[28]

Fig. 3 shows the effective zeta potential as a function of the polymer concentration for

polyethylene glycol (PEG) dissolved in water. The panel on the left shows that when λ > δ0,

the effective zeta potential does not change. In other words, the electro-osmotic mobility

decreases with increasing polymer concentration, as the denominator of the mobility is the

solution viscosity. On the other hand, for high-molecular-weight polymers (λ < δ0), the

effective zeta potential increases with increasing polymer concentration. This means that

the viscosity in the double layer remains lower than the bulk value of the solution viscosity.

The panel on the right shows various ionic strengths for a high-molecular-weight polymer.

For a high ionic strength, the Debye layer becomes thinner, and the effective zeta potential

is larger than the value without 10 mM NaCl. This means that the viscosity of the double

layer decreases when the salinity is high.

When a sufficiently strong electric field is applied, the electro-osmosis of a polymer solu-

tion shows nonlinear behaviors.[30, 32] These nonlinearities are theoretically analyzed using

models of uniform non-Newtonian shear thinning fluids.[12–15] Assuming that the polymers

remain localized in interfacial layers and the viscosity depends on the local shear rate, as

in power-law fluids, their phenomenological parameters differ from those in the bulk, since

the concentration in the interfacial layers differs from the bulk concentration.[30] Thus, the

understanding of nonlinear electro-osmosis remains phenomenological. Furthermore, when

shear flow is applied to polymer solutions near a wall, it is experimentally and theoretically

confirmed that cross-stream migration toward the bulk is induced.[33–35] The concentra-

tion profiles of the polymer near the wall have been calculated, and the depletion length

was found to dynamically grow tenfold larger than the gyration radius.[34] However, these

hydrodynamic effects in electrokinetics have not been studied to date, to the best of our

knowledge.

Fig. 4 shows the mobility as a function of the applied electric field. The polymer is

CMC which is weakly negatively charged at pH 7. The Debye length of the background

electrolyte solution (BGE) is λ ≈ 3.5 nm, whereas that of the CMC solution is around
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FIG. 3. Variation of the effective zeta potential µ(c)η(c)/µwηw with PEG concentration for various

polymer molecular weights, where µ(c) is the electro-osmotic mobility at the polymer concentration

c, µw = µ(0) is the mobility of pure water, η(c) is the solution viscosity at the polymer concentration

c, and ηw = η(0) is the viscosity of pure water. The lines are drawn only to guide the eyes. (left)

Schematic drawing of the condition (λ > δ0) is shown. (right) For Mw = 104 with and without

10 mM NaCl, schematic drawing of the condition λ < δ0. Reprinted with permission from ref. [28].

Copyright 2007, AIP Publishing LLC. doi:10.1063/1.2735279

1 nm or less because of sodium ions from CMC molecules. In the figure, the results for the

BGE, CMC solution with urea, and BGE with urea show constant electro-osmotic mobility,

that is, linear behavior, whereas the results for the CMC solution show variations in the

mobility, that is, nonlinear behavior. The solid line is the mobility calculated using the

model of a uniform non-Newtonian liquid, which has a power-law constitutive equation with

the parameters determined by bulk rheological measurement. The discrepancies between

the solid line and the results for the CMC solution appear to come from the assumption of

a uniform distribution of the polymer near the surface.

In this context, the present thesis discusses the linear and nonlinear behavior of electro-

osmosis when we apply an external electric field to a polymer solution. For this purpose,

this thesis is organized as follows. In the rest of section 1, the necessary background on

electrokinetics is presented. Section 2 discusses the linear electro-osmotic flow of charged

and uncharged polymer solutions. Section 3 discusses the nonlinear electro-osmotic flow

8
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FIG. 4. Electro-osmotic mobility as a function of the applied electric field. Symbols are experi-

mental results obtained with 1 percent CMC solution in fused silica capillaries (pH 7; 25 ◦C). The

solid line is calculated using the theory of nonlinear electro-osmosis of non-Newtonian liquids with

the parameters obtained by bulk rheology. The broken and dotted lines are guides to the eyes.

The labels in the graph such as “Eq. (· · · ). . . ” refer to the equations in the original publication.

Reproduced from ref. [30] by permission of John Wiley & Sons Ltd. doi:10.1002/elps.200800578

of non-adsorbing polymer solutions with low ionic strength. Section 4 outlines the main

conclusions and discusses the future prospects.

1.2. Electrolyte solution

Salts such as sodium chloride and potassium iodide exist as ionic crystals at room tem-

perature in the absence of a solvent. The salts are dissociated into two types of electrolytes:

cations and anions, when we dissolve them in water. The energy difference between the two

states in water is estimated simply as[36]

∆E = Edisocciated − Eassociated = 0−
(
− e2

4πεε0

1

a+ + a−

)
> 0, (1.1)

where e is the elementary charge, ε is the dielectric constant of water, ε0 is the electric

permittivity of vacuum, and a+ (a−) is the radius of the cation (anion). According to the

9
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h

TABLE 1. Properties of electrolytes with `B = 0.709 nm at T = 293.15 K.

a+[nm][37] a−[nm][37] Xs(theory) Mw[g/mol][38] Ms[g/`][38] Xs(reference)

LiCl 0.074 0.181 0.0620 42.39 832 0.2613

NaCl 0.102 0.181 0.0817 58.44 359 0.0997

KCl 0.138 0.181 0.1083 74.55 344 0.0768

KBr 0.138 0.196 0.1197 119.002 652 0.0899

KI 0.138 0.220 0.1380 166.003 1445 0.1356

equation for the mixing entropy, the free energy is

∆F = ∆E + kBT lnXs, (1.2)

where kBT is the thermal energy, and Xs is the molar fraction of the electrolyte. The

dissolution is saturated at ∆F = 0, and it gives

Xs = exp

(
− `B

a+ + a−

)
, (1.3)

where `B is the Bjerrum length,

`B =
e2

4πεε0kBT
, (1.4)

and `B ≈ 0.7 nm at room temperature. Tab. 1 shows the molar fraction estimated using

the above theory and the value from ref. [38]. The two values are of the same order except

for lithium chloride. The saturation molar fraction Xs ∼ 0.1 corresponds to the molar

concentration ∼ 5 M. For the salt in a vacuum, Xs ≈ exp (−ε`B/(a+ + a−)), and it cannot

be dissociated. In this thesis, the concentation below 1 M is considered.

Mobile ions in an electrolyte solution can produce electrical currents. The conductivity

is proportional to the concentration of each ion in the dilute limit as[39]

Λ0 = e2

(
c+

ζ+
+
c−

ζ−

)
, (1.5)

where Λ0 is the conductivity, which is the current density divided by the electric field; ζ+

(ζ−) is the friction coefficient of cations (anions); and c+ (c−) is the concentration of cations

(anions).
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FIG. 5. Relation between the ionic radii and Stokes radii. Reprinted with permission from

ref. [39]. Copyright 1985 Shokabo.

Assuming that the Stokes law is still valid on the atomistic scale, we can estimate the

Stokes radius of the ions a+
s (a−s ) as

a±s =
ζ±

6πη
, (1.6)

where η is the viscosity of water.

Fig. 5 shows the relation between the ionic radii and Stokes radii. Small cations such

as Li+, and Be2+ have larger Stokes radii than their ionic radii, because the electrostatic

interaction between the ions and water molecules hydrates the ion. On the other hand,

K+, Cl– , Br– , and I– have smaller Stokes radii than ionic radii. The reason for this is still

problematic, and further discussions are reported in refs. [40–42].

1.3. Structure of electric double layer

A solid surface in contact with an electrolyte solution is often charged. The origin of the

surface charge varies; (a) induced charge in metals and dielectrics, (b) dissociable groups on

the surface (including metal oxides), (c) ion adsorption from the solution, (d) an imbalance of
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insoluble ionic crystals, and (e) crystal lattice defects.[3, 4] The most important and common

mechanism in electrokinetics is (b), dissociable groups on the surface, for example, a colloidal

surface or fused silica. Examples of the dissociable group include carboxyl (−COOH),

sulfonate (−SO2OH), and amine (−NH2). They dissociate ions as

−COOH −−⇀↽−− −COO− + H+, (1.7)

−SiO2OH −−⇀↽−− −SiO2O− + H+, (1.8)

−NH2 + H2O −−⇀↽−− −NH +
3 + OH−. (1.9)

An ion that has a sign opposite to that of the surface charge is called a counterion, and an ion

that has the same sign is called a coion. In this thesis, we consider mainly a 1:1 electrolyte

solution at a concentration of 10−5–1 M. Because of spontaneous water self-dissociation, the

concentration of hydroxide ions and hydrogen ions is 10−7 M at pH 7. Therefore, we can ne-

glect water dissociation because the salt concentration is much larger than the concentration

of the hydroxide and hydrogen ions.

In the solution phase, the ion distribution becomes nonuniform owing to the electrified

surface. The nanoscale layer structure is called the electric double layer. It is known that

there is an interfacial layer of 0.1–0.5 nm in which water molecules have anomalous structure.

This layer is called the Stern layer and is discussed further in section 1.5. The layer above

the Stern layer is called the diffuse layer, and its thickness is characterized using the Debye

length. The diffuse layer is well modeled using the Poisson-Boltzmann equation. However,

modeling the Stern layer is difficult, and many ideas are still being proposed.

Outsides of the Stern layer, the ion distribution obeys the Boltzmann distribution. The

concentrations of cations and anions are

c± = c0 exp

(
−±eψ
kBT

)
, (1.10)

where ψ is the local electrostatic potential, and c0 is the ion concentration at ψ = 0.

Combining eq. (1.10) with the Poisson equation as

∇ · (εε0∇ψ) = −ρ = −e(c+ − c−), (1.11)

where ρ is the charge density, we obtain the Poisson-Boltzmann equation as

∇ · (εε0∇ψ) = ec0 sinh

(
eψ

kBT

)
. (1.12)
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We develop the theory of the diffuse layer of charged planar surfaces. For simplicity, the

charged surface extends in the xy direction at z = 0, and we ignore the Stern layer. The

dielectric constant is assumed to be uniform; thus, the Poisson-Boltzmann equation is given

by
d2Ψ

dz2
= κ2 sinh Ψ, (1.13)

where Ψ = eψ/kBT is the reduced potential, and κ is given by

κ =

(
2e2c0

εε0kBT

)1/2

, (1.14)

where κ−1 is the Debye length. The boundary conditions of eq. (1.13) are

εε0
dΨ

dz

∣∣∣∣
z=0

= − eσ0

kBT
, (1.15)

or

Ψ|z=0 = Ψ0 =
eψ0

kBT
, (1.16)

where σ0 is the surface charge density, and ψ0 is the surface potential. In the limit z →∞,

the potential should be zero:

Ψ|z→∞ = 0. (1.17)

First, we linearize eq. (1.13) and obtain the approximated solution that is valid for a

small surface potential. The linearized Poisson-Boltzmann equation is

d2Ψ

dz2
= κ2Ψ, (1.18)

and its solution that satisfies the boundary conditions is

ψ = ψ0e−κz. (1.19)

This equation shows that the potential decays with the Debye length scale κ−1. Using this

solution, the surface charge density is given as

σ0 = εε0κψ0, (1.20)

which is a linear relationship.

Exact solutions of eq. (1.13) with the boundary conditions are easily obtained. Multiply-

ing both side of eq. (1.13) by dΨ/dz, we can integrate it as

1

2

(
dΨ

dz

)2

− κ2 cosh Ψ = const., (1.21)
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where the constant is −κ2 using the boundary condition at z → ∞. We assume ψ0 > 0;

then dΨ/dz < 0, and

dΨ

dz
= −

√
2κ2(cosh Ψ− 1) = −2κ sinh

Ψ

2
. (1.22)

Therefore, we can integrate it again as∫ Ψ

Ψ0

d(Ψ/2)

sinh(Ψ/2)
= −κ

∫ z

0

dz. (1.23)

The left-hand side of the equation can be calculated using the relation
∫

(sinhx)−1dx =

ln |tanh(x/2)| as

ln
tanh(Ψ/4)

tanh(Ψ0/4)
= −κz, (1.24)

and finally, we obtain

ψ =
4kBT

e
arctanh

[
e−κz tanh(Ψ0/4)

]
=

2kBT

e
ln

1 + e−κz tanh(Ψ0/4)

1− e−κz tanh(Ψ0/4)
, (1.25)

where this solution is also valid when ψ0 < 0. The derivative of eq. (1.25) is eq. (1.22). At

z = 0, the equation gives the relation between σ0 and ψ0 as

σ0 =
2εε0kBTκ

e
sinh

(
eψ0

2kBT

)
, (1.26)

which is the nonlinear version of eq. (1.20).

Fig. 6 is a plot of the potential profiles. The solid line is the nonlinear solution, eq. (1.25)

whereas the dotted line is the linear solution, eq. (1.19). We use the same surface charge

density, σ0 = −0.5 e/nm2, and the salt concentration c0 = 100 mM. Note that the magnitude

of the surface potential obtained by the nonlinear solution is smaller than that obtained using

the linear solution at the same surface charge density.

The static property of the double layer is characterized by the differential capacitance.

For the interface between mercury and an electrolyte solution, the differential capacitance

can be easily obtained by measuring the surface tension.[3, 4] The differential capacitance

C is defined as

C =
dσ0

dψ0

. (1.27)

The derivative of eq. (1.20) is

C = εε0κ, (1.28)

14



Eq. (1.25)

Eq. (1.19)

FIG. 6. Plot of the potential profiles for the nonlinear solution [solid line, eq. (1.25)] and linear

solution [dotted line, eq. (1.19)]. We use the same surface charge density, σ0 = −0.5 e/nm2, and

the salt concentration c0 = 100 mM.

which indicates the capacitance of a conductor of electric permittivity εε0 with thickness

κ−1.

The derivative of eq. (1.26) is

C = εε0κ cosh

(
eψ0

2kBT

)
= εε0

√
κ2 + λ−2

GC, (1.29)

where λGC is the Gouy-Chapman length,

λGC =
2εε0kBT

e |σ0|
. (1.30)

In the limit of high surface charge density, σ0 → −∞, the capacitance behaves as

C → εε0κ

2
exp

(
− eψ0

2kBT

)
=

εε0

λGC

, (1.31)

which is the capacitance of a conductor of permittivity εε0 with thickness λGC.

Fig. 7 shows the differential surface capacitance for different concentrations. The panel

on the left was obtained experimentally by measuring the surface tension of a mercury NaF
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FIG. 7. Plot of the differential capacitance (µF/cm2) as a function of the surface potential

(V). (left) The electrolyte is NaF at different concentrations at 25 ◦C. Reprinted with permission

from ref. [43]. Copyright (1947) American Chemical Society. doi:10.1021/cr60130a002 (right)

Theoretical curves calculated using eq. (1.29).

solution.[43] For dilute solutions and low surface potential, the experimentally measured

capacitances exhibit as parabolic behavior. However, in concentrated solution or at high

surface potential, the curves have other peaks and are complicated. The panel on the right

shows the theoretical curves predicted by eq. (1.29). Without the Stern layer, the capacitance

abruptly diverges to infinity with increasing surface potential. Thus, the Gouy-Chapman

model exhibits a large discrepancy from the experimental observations.

1.4. Electrokinetic transport

When a charged-surface capillary is filled with an electrolyte solution and subjected to

an electric field E and a pressure difference P (= −∇xp), a volume flux and electric current

are induced along the external fields. Here p is the pressure. When E and P are sufficiently

16
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weak, the volume flux and the electric current are given by

V = L11P + L12E, (1.32)

J = L21P + L22E. (1.33)

V and J are the mean volume flux and mean electric current, respectively, and Lij represents

the electrokinetic transport coefficients. This thesis focuses on L12(= µ), which is known as

the electro-osmotic mobility.

We derive a standard model that can describe the hydrodynamics of an electrolyte solu-

tion. The velocity field u obeys the Navier-Stokes equation as

ρm

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ, (1.34)

where ρm is the mass density, and σ is the stress tensor. The stress tensor has contributions

from

σ = σU + σE, (1.35)

where σU is the mechanical part of the stress tensor, and σE is the Maxwell stress tensor.

They are given by

σU = −p′I + η
[
∇⊗ u+ (∇⊗ u)t

]
, (1.36)

σE = εε0 (∇ψ ⊗∇ψ)− εε0

2
|∇ψ|2 I, (1.37)

where p′ is the renormalized pressure, I is the unit tensor, η is the viscosity of the solution,

and ⊗ is the tensor product operator. The renormalized pressure is given by

p′ = p+ kBT (c+ + c−), (1.38)

where the first term is the mechanical pressure, and the second is the osmotic pressure. In

addition, the velocity field satisfies the incompressible condition given by

∇ · u = 0. (1.39)

The concentration dynamics are given by

∂c+

∂t
= −∇ ·

(
c+u+

)
, (1.40)

∂c−

∂t
= −∇ ·

(
c−u−

)
, (1.41)
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where

u± = u− 1

ζ±
∇µ±. (1.42)

The electro-chemical potential of ions, µ±, is given by

µ+ = kBT ln(c+a+
3) + eψ, (1.43)

µ− = kBT ln(c−a−
3)− eψ. (1.44)

The local electrostatic potential satisfies the Poisson equation eq. (1.11).

We consider an aqueous electrolyte solution in a charged slit of width 2L. We calculate

the volume flux and electric current when we apply the electric field and pressure difference

in the x direction.

V =
1

2L

∫ 2L

0

ux(z)dz, (1.45)

J =
1

2L

∫ 2L

0

jx(z)dz, (1.46)

where

j = e
(
c+u+ − c−u−

)
. (1.47)

On the assumption that the ion distribution is uniform in the xy direction and the velocity

field has only an x component, the ion distribution and potential are determined by the

Poisson-Boltzmann equation eq. (1.13), and the velocity field is determined by the steady-

state solution of the Navier-Stokes equation, given by

P +
d

dz

(
η
dux
dz

)
+ ρE = 0. (1.48)

This can be solved with the boundary condition

ψ|z=0 = ψ|z=2L = ψ0, (1.49)

and we impose the no-slip boundary condition as

ux|z=0 = ux|z=2L = 0, (1.50)

as

ux =
z(2L− z)

2η
P +

εε0(ψ − ψ0)

η
E. (1.51)

The potential can be obtained using the Debye-Hückel approximation as

ψ(z) =
e−κ(z−L) + eκ(z−L)

eκL + e−κL
ψ0. (1.52)
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The integral of eq. (1.51) gives L11 and µ as

L11 =
L2

3η
, (1.53)

µ = −εε0ψ0

η

[
1− sinh(κL)

κL cosh(κL)

]
. (1.54)

The current density is given by

jx = e(c+ − c−)
z(2L− z)

2η
P +

[
e(c+ − c−)

εε0(ψ − ψ0)

η
+ e2

(
c+

ζ+
+
c−

ζ−

)]
E. (1.55)

The first term is the mechanical current and is related to L21 as

L21 =
1

2L

∫ 2L

0

ρ
z(2L− z)

2η
dz =

1

2L

∫ 2L

0

εε0(ψ − ψ0)

η
dz = µ, (1.56)

which is equal to the electro-osmotic mobility. The equivalence of the two transport coeffi-

cients is the result of the Lorentz reciprocal theorem in Stokes hydrodynamics.[44, 45] The

second term is the convective contribution of the current, given by

Lconv
22 =

1

2L

(εε0)2

η

∫ 2L

0

(
dψ

dz

)2

dz =
1

2L

(εε0)2

η

κψ2
0

sinh2(κL)
[sinh(2κL)− 2κL] . (1.57)

The third term is the conductive contribution of the current, and is divided into the bulk

and surface components as

Lcond,bulk
22 = e2c0

(
1

ζ+
+

1

ζ−

)
, (1.58)

which is equal to Λ0 in eq. (1.5), and

Lcond,surf
22 =

e2

2L

∫ 2L

0

(
c+ − c0

ζ+
+
c− − c0

ζ−

)
dz, (1.59)

where the concentration difference in the Debye-Hückel limit is given by

c± − c0 = ∓ eψ

kBT
c0. (1.60)

Therefore,

Lcond,surf
22 = e2c0

(
− eψ0

kBT

)
sinh(κL)

κL cosh(κL)

(
1

ζ+
− 1

ζ−

)
. (1.61)

Finally,

L22 = Lconv
22 + Lcond,bulk

22 + Lcond,surf
22 . (1.62)

When the cation and anion have the same Stokes radius, the conductivity due to the surfaces

is of the same order as O(ψ2
0) and is quite small under the Debye-Hückel approximation.
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An analysis without the Debye-Hückel approximation in a slit geometry is described in

refs. [46, 47], and an analysis in cylindrical geometry is described in ref. [48].

To discuss the electro-osmosis and surface conductivity further, we consider the upper half

of the space on an infinite plane using the nonlinear solution eq. (1.25). The electro-osmotic

mobility is then defined as

µ =
ux|z→∞
E

= −εε0ψ0

η
, (1.63)

which is linear with respect to the surface potential, although the potential profile is nonlin-

ear with respect to the surface potential. This nonlinearity is violated in the electrophoresis

of spherical particles with high surface potential.[49] The convective contribution of the

surface current is given by

Lconv
22 =

1

2L

(εε0)2

η

∫ 0

ψ0

dψ

dz
dψ =

2

η

(
2εε0kBTκ

e
sinh

Ψ0

4

)2

, (1.64)

where L is the characteristic system size, although we consider the upper half of the space.

The conductive contribution of the surface current is

Lcond,surf
22 =

e2

2L

∫ ∞
0

[
c0

ζ+
(e−Ψ − 1) +

c0

ζ−
(eΨ − 1)

]
dz

dΨ
dΨ =

e2c0

κL

(
e−Ψ0/2 − 1

ζ+
+

eΨ0/2 − 1

ζ−

)
.

(1.65)

Lconv
22 + Lcond,surf

22 =
e2c0

κL

[
e−Ψ0/2 − 1

ζ+
(1 +m+) +

eΨ0/2 − 1

ζ−
(1 +m−)

]
, (1.66)

where

m± =
ζ±

2πη`B

(1.67)

is the ratio of the convective contribution compared to the conductive contribution. We

assume ζ0 = ζ+ = ζ− for simplicity; thus,

Lconv
22 + Lcond,surf

22 =
4

κL
sinh2 Ψ0

4

[
e2c0

ζ0

+
(εε0kBTκ)2

ηe2

]
. (1.68)

Du =
Lconv

22 + Lcond,surf
22

Lcond,bulk
22

(1.69)

is the Dukhin number, which characterizes the surface conduction of a system with a high

surface charge and small Debye length.[1, 3]
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Stern Layer

{
Diffusive Layer

FIG. 8. Sketch of the Gouy-Stern double-layer model with specific adsorption of ions.

1.5. Theory of the Stern layer

1.5.1. Gouy-Stern double-layer model with specific adsorption of ions

We introduce a charge-free layer with thickness z∗ and the dielectric constant ε∗ as the

Stern layer and assume that specific adsorption of ions occurs on the boundary between the

Stern layer and the diffuse layer.[43] If we consider only the adsorption of cation, the surface

charge density at the boundary induced by specific adsorption, σ∗, is expressed using the

equilibrium constant K as

σ∗ = σM
Kc0e−Ψ∗

1 +Kc0e−Ψ∗
, (1.70)

where σM is the maximum surface charge density at the boundary, and Ψ∗ = eψ∗/kBT is

the reduced electrostatic potential at the boundary. Fig. 8 shows the sketch of this model.

The potential at the boundary is obtained solving the equation as

σ0 + σ∗ =
2εε0kBTκ

e
sinh

(
Ψ∗

2

)
, (1.71)

and eq. (1.70). The surface potential is

ψ0 = ψ∗ +
σ0

Cs

, (1.72)

where Cs is the capacitance of the Stern layer. When it is modeled as a layer with thickness

z∗ and dielectric constant ε∗, the capacitance of the Stern layer is

Cs =
ε∗ε0

z∗
. (1.73)
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FIG. 9. (left) Surface charge density is plotted as a function of surface potential (solid line) and

charge density of specific adsorption (broken line). Black square is the isoelectric point. Inset

shows a magnification of the region near the origin; black circle is the point of zero charge. The

concentration of salts is 100 mM, K = 20 M−1, Cs = 20µF/cm2, and σM = 1.0 e/nm2. (right)

Sketch of the potential profile with increasing surface charge density.

In the left-hand panel of Fig. 9, the surface charge density and adsorbed charge density

are plotted as a function of the surface potential. When

σ0 = −σM
Kc0

1 +Kc0

, (1.74)

the surface charge is totally neutralized, as σ0 + σ∗ = 0 and ψ∗ = 0. We call this point

the isoelectric point and indicate it by a black square in Fig. 9. Above the isoelectric point,

the amount of adsorbed ions becomes saturated. The inset in the panel on the left shows

a magnification of the main graph. When the surface potential is zero, a finite negative

surface charge remains on the surface. The black circle in the inset is the point of zero

charge, where σ0 = 0. At the point of zero charge, the surface potential is positive finite

because of the adsorption of cations. The panel on the right in Fig. 9 shows the potential

profiles with increasing surface charge density. Between the isoelectric point and the point

of zero charge, we have a peak in the potential profile. We call these states overcharging,

charge inversion, or super-equivalent. In the overcharging states, we can find the case that

the signs of ψ0 and ψ∗ differ.
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20 M−1, Cs = 20µF/cm2, and σM = 1.0 e/nm2 are chosen arbitrarily.

Differentiation of eqs. (1.70) and (1.71) yields

dσ0

dψ∗
=

e

kBT

[
σMKc0e−Ψ∗

(1 +Kc0e−Ψ∗)2 +
εε0kBTκ

e
cosh

Ψ∗

2

]
, (1.75)

and thus, the capacitance is

C =

(
dψ∗

dσ0

+ C−1
s

)−1

. (1.76)

When the specific adsorption is neglected (σ∗ = 0), the total capacitance is

C =

 1

εε0

√
κ2 + λ−2

GC

+ C−1
s

−1

. (1.77)

Fig. 10 shows the differential capacitances as a function of the surface potential for an

arbitrarily chosen K, Cs, and σM. The shape is antisymmetric with respect to ψ0 = 0, and

we have a maximum around ψ0 = −0.5 V due to the saturation of adsorption. The same

behavior is obtained for theoretical models that include the volume effect of ions.[50, 51]

The appearance of the lines is more consistent with the experimental results (Fig. 7, left)

than with the Gouy-Chapman theory (Fig. 7, right).

1.5.2. Shear plane and saturation of electrokinetic charge

So far we have discussed the static properties of the Stern layer. In this section, we

consider the dynamic properties of the Stern layer.
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FIG. 11. Plot of the electrokinetic surface charge density as a function of the surface charge

density obtained by titration. Reprinted from ref. [52]. Copyright (1994), with permission from

Elsevier. doi:10.1016/0927-7757(94)02727-7

In section 1.4, the zeta potential is defined as the potential at the slip plane. By measuring

the electro-osmotic mobility, we can obtain the zeta potential as

ζ = − ηµ
εε0

(1.78)

and the electrokinetic surface charge density as

σek =
2εε0kBTκ

e
sinh

(
eζ

2kBT

)
. (1.79)

If the slip plane is identical to the solid surface, we obtain ζ = ψ0 and σek = σ0.

In Fig. 11, the electrokinetic surface charge density is plotted as a function of the surface

charge density measured by titration.[52] We find that for a strongly charged surface, the

electrokinetic charge is saturated. We call this saturation of the electrokinetic charge. This

behavior implies the existence of a stagnant layer.

Next, we consider the thickness of the stagnant layer. In this thesis, we assume that

the boundary between the Stern layer and the diffuse layer is equivalent to the slip plane.

Therefore,

ζ = ψ∗. (1.80)

This assumption is validated by comparing the ψ∗ obtained from the critical coagulation

24

http://dx.doi.org/10.1016/0927-7757(94)02727-7


FIG. 12. (top) Profile of the dielectric constant normal and parallel to the surface measured

by molecular dynamics simulation. Box functions are determined by conserving
∫∞

0 ε−1
⊥ (z)dz.

Reprinted figure with permission from ref. [54]. Copyright (2011) by the American Physical Society.

doi:10.1103/PhysRevLett.107.166102 (bottom) Profile of the shear viscosity measured by molecular

dynamics simulation. Reprinted with permission from ref. [55]. Copyright 2013 American Chemical

Society. doi:10.1021/jp402482q

concentration and the ζ values obtained from electrophoresis experiments.[53] Under this

assumption, the contents of section 1.4 can be reproduced by taking ψ0 as ψ∗.

1.5.3. Continuum model using nonuniform permittivity and viscosity

The structure of the Stern layer was revealed recently using a molecular dynamics sim-

ulation. Fig. 12 shows the dielectric and viscosity profiles of the electric double layer for

hydrophilic and hydrophobic surfaces.[54, 55] The surfaces are composed of face-centered
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FIG. 13. Electrokinetic surface charge density as a function of the bare surface charge density at

various salt concentrations, for hydrophilic surfaces calculated using zs = 0.30 nm and η/ηi = 1/3

in combination with z∗ = 0.10 nm, and for hydrophobic surfaces calculated using zs = 0.15 nm and

η/ηi = 15 in combination with z∗ = 0.12 nm. Reprinted with permission from ref.[11]. Copyright

2012 American Chemical Society. doi:10.1021/la3020089

cubic diamond with either OH termination (hydrophilic) or H termination (hydrophobic)

and zero net charge, and the liquid is composed of simple extended point charge water with-

out ions. The dielectric profiles oscillate strongly, like the density profile, and the difference

between the hydrophilic and hydrophobic surfaces seems to be small. When we approximate

these profiles by box functions as

ε⊥(z) =

 1 for 0 < z < z∗,

ε for z > z∗,
(1.81)

while conserving
∫∞

0
ε−1
⊥ (z)dz, z∗ = 0.10 nm for a hydrophilic surface, and z∗ = 0.12 nm for

a hydrophobic surface.[54] On the other hand, the viscosity profile differs greatly between

the two types of surface. For a hydrophilic surface, the viscosity increases as the surface is

approached. For a hydrophobic surface, a depletion layer of water showing a positive slip

length is formed. The profiles are approximated by box functions as

η(z) =

 ηi for 0 < z < zs,

η for z > zs.
(1.82)
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From the simulation, zs = 0.4 nm and ηi = 4η for the hydrophilic surface, and zs = 0.15 nm

and ηi = η/15 for the hydrophobic surface.[55]

Using these non-uniform profiles, the researchers in ref. [55] modeled the double layer

using the modified Poisson-Boltzmann equation as

d

dz

[
ε(z)⊥ε0

dψ

dz

]
= 2ec0 sinh

(
eψ

kBT

)
(1.83)

and the force balance of the Navier-Stokes equation as

d

dz

[
η(z)

dux
dz

]
+ ρE = 0. (1.84)

Fig. 13 shows the electrokinetic charge density as a function of the bare surface charge

density calculated using the above theory. It can reproduce the saturation of the electroki-

netic charge shown in Fig. 11. For a hydrophobic surface, the saturated charge density

increases with increasing salinity, which corresponds to the curve for TiO2 in Fig. 11. For

a hydrophilic surface, the saturated charge density decreases with increasing salinity, which

corresponds to the curve for AgI in Fig. 11.

1.6. Basis of polymer physics

Macromolecules or polymers are giant molecules composed of a large number of monomeric

units. The concept was proposed and established by Staudinger in the early 20th century.[56]

Since then, polymers and their solutions have been used in a variety of industrial applica-

tions.

1.6.1. Gyration radius of a polymer

To estimate the sizes of macromolecules experimentally, the scattering method is used.

Macromolecules are modeled theoretically as chains of beads connected by springs. We

introduce the Gaussian chain model in this section. We consider N + 1 beads connected by

a Hookian spring with the spring constant

H =
3kBT

a2
, (1.85)
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where a is the bead radius. The position of the beads is defined as xn, and the displacement

vector is defined as rn = xn − xn−1; then the elastic energy function is

E0({rn}) =
N∑
n=1

H

2
r2
n =

H

2

∫ N

0

dn

(
∂xn
∂n

)2

, (1.86)

where the last expression is in the continuum limit, and the probability function is

P ({rn}) =

(
3

2πa2

)3N/2

exp

[
N∑
n=1

3(xn − xn−1)2

2a2

]
. (1.87)

An important property of the Gaussian chain is that the distribution of the end-to-end

vector is also Gaussian:

G0
N(xN ,x0) =

∫
d{rn}δ(

N∑
n=1

rn − xN + x0)P ({rn}) =

(
3

2πa2N

)3/2

exp

[
−3(x0 − xN)2

2Na2

]
,

(1.88)

where the relation

δ(r) =
1

(2π)3

∫
dkeik·r (1.89)

and the Gaussian integral is used in the calculation. The average magnitude of the end-to-

end vector is

〈(xN − x0)2〉 = a2N, (1.90)

where 〈· · · 〉 denotes the average of the probability function. The gyration radius obeys

Rg =

√√√√ 1

N

N∑
n=1

〈(xn − xG)2〉 =

√
a2N(N + 2)

6(N + 1)
≈ aN1/2, (1.91)

where xG is the position of the center of mass. Therefore, the gyration radius is proportional

to the square root of the polymerization index.

The Gaussian chain is an ideal chain, and a solvent in which a polymer swells according

to the relation eq. (1.91) is called a theta solvent. In many cases, the chain swells more

than the ideal chain because of repulsive forces between monomeric units. We can model

this repulsive force by the excluded volume interaction as

Ev = kBTv
∑
n6=n′

δa(xn − xn′), (1.92)

where v is the volume interaction parameter, and δa(x) is an overlap function such as a

delta function. According to the Flory theory for excluded volume effects, the free energy
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is given by

F (Rg) = −kBT lnG0
N + kBTvc

2R3
g ≈ kBT

(
Rg

aN1/2

)2

+ kBTv

(
N

Rg

)2

R3
g, (1.93)

where the first term is the entropic elastic energy and the second is the repulsive energy,

kBTvc
2, per volume. We minimize the above free energy with respect to Rg, and then we

obtain

Rg ≈ a(v/a3)1/5N3/5, (1.94)

where the exponent of the power-law behavior with respect to the polymerization index is

larger than 1/2. From a renormalization group calculation, the gyration radius is given

by[57]

Rg ≈ aN ν , (1.95)

where

ν = 0.588± 0.001, (1.96)

which is very similar to the Flory’s exponent. A solvent in which a polymer swells as

Rg ≈ aN3/5 is called a good solvent. On the other hand, a solvent in which polymers cannot

dissolve is called a poor solvent.

Fig. 14 shows the gyration radius of polyethylene oxide (PEO) in water as a function of

the molecular weight.[58] Fitting of the exponent with data yielded the power law relation

of the gyration radius and molecular weight as

Rg = 0.0215M0.583±0.031
w nm, (1.97)

where Mw is the molecular weight.

1.6.2. Continuum model of polymer solution

Three types of concentration of a polymer solution are considered theoretically. (i) In

a dilute solution, the macromolecules do not overlap each other. We can treat it as one

macromolecule in a good or theta solvent. (ii) In a semidilute solution, the macromolecules

overlap each other, but the concentration is still dilute. The threshold of overlap c∗ is

determined by

c∗ =
N

R3
g

≈ a−3N1−3ν , (1.98)
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FIG. 14. Log-log plot of the PEO radius of gyration and the hydrodynamic radius versus the

molecular weight. Reprinted with permission from ref. [58]. Copyright 1991 American Chemical

Society. doi:10.1021/ma00022a008

where c∗ is the overlap concentration, and ν is 3/5 (1/2) for a good (theta) solvent. Slightly

above this concentration, we have universal behavior independent of the polymerization

index N or molecular weight. (iii) For a concentrated solution, a polymer interacts with

other polymer segments as well as segments of itself. In this case, entanglement is another

problem in modeling.

One of the simple theories that describes the solution behavior over a wide range of

concentrations is the Flory-Huggins theory, which is an extension of the thermodynamics

of solutions. We consider a lattice in which each site is occupied by a solvent molecule

or polymeric unit. For simplicity, they have the same volume, and we define the volume

fraction of the polymer as Φ. Then the free energy per site is given by

fFH

kBT
=

Φ

N
ln Φ + (1− Φ) ln(1− Φ) + χΦ(1− Φ) (1.99)

where f is the free energy per site, and χ is a parameter describing the interaction between

the polymer and the solvent. From this free energy, we can obtain the phase diagram of

dissolution of the polymers. Fig. 15 is a typical phase diagram from the Flory-Huggins

theory. With increasing χ, the solution become unstable and separates into two phase. The

critical volume fraction is as small as N−1/2; thus, one of the phases is almost pure solvent.
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critical Point

spinodal
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FIG. 15. Schematic of phase diagram of polymer solution calculated using the Flory-Huggins

theory.

The panel on the left in Fig. 16 shows the phase diagram of polyisobutylene in diisobutyl

ketone with different molecular weights.[59] The solid lines are obtained from experiments,

and the broken lines are calculated by the Flory-Huggins theory. The critical temperature

that has an unstable state at lower temperature is the upper critical solution temperature.

The panel on the right in Fig. 16 shows the phase diagrams of PEG-water and polypropylene

glycol-water solutions.[60] Unlike the solutions shown in the left-hand panel, these solutions

exhibit the lower critical solution temperature.

A semidilute solution is equivalent to one in which one infinitely long macromolecule is

dissolved with the same polymer concentration. This is a significant property of semidilute

solutions. To describe the fluctuations of the concentration field or inhomogeneity near the

surface, we construct the variational theory of the concentration field. First, we consider an

ideal chain under the external potential field U(r). To discuss the statistical properties of

such a system, it is convenient to define the Green function as

GN(r, r′) =

∫ xN=r′

x0=r

d{xn} exp

[
−βE0({xn})− β

∫ N

0

dnU(xn)

]
. (1.100)

We consider the difference GN+∆N(r, r′)−GN(r, r′) and expand it to the order ∆N :[57, 61]

− ∂GN

∂N
= −a

2

6
∇2GN +

U(r)

kBT
GN . (1.101)
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FIG. 16. (left) Precipitation temperatures Tp for polyisobutylene in diisobutyl ketone plotted

against the concentration expressed as the volume fractions v2 of the polymer. Molecular weights

of polyisobutylene are different as 2.27 × 104 (PBA), 2.85 × 105 (PBB), and roughly 6.0 × 106

(PBC), respectively. The broken lines are the corresponding theoretical curves. Reprinted with

permission from ref. [59]. Copyright 1952 American Chemical Society. doi:10.1021/ja01139a010

(right) Phase diagram for aqueous solutions of PEGs and polypropylene glycols. Squares and

crosses, PEGs 5000 and 3000, respectively; circles, polypropylene glycol 400. Lower right-hand

curves, solid-liquid boundaries. Reproduced from ref. [60] with permission of The Royal Society of

Chemistry. doi:10.1039/TF9575300921

The solution of this equation is

GN(r, r′) = a3
∑
k

φ∗k(r
′)φk(r)e−εkN , (1.102)

where φk and εk are the eigenfunction and eigenvalue, respectively, of the equation:[
−a

2

6
∇2 +

U(r)

kBT

]
φk = εkφk. (1.103)

Then the concentration is proportional to the probability as

c(x) ∝
∫
dr′
∫
dr

N∑
n=1

Gn(r′,x)Gn(x, r). (1.104)
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When the ground state (k = 0) is dominant, we set φ(r) = φ0(r), and

c(r) = |φ(r)|2 . (1.105)

The mean field of the excluded volume interaction is given by

U(r) = kBTvc(r) = kBTv |φ(r)|2 , (1.106)

and the self-consistent field equation is given by

− a2

6
∇2φ+ v|φ|2φ = εφ. (1.107)

This is equivalent to the variation problem of the free energy:

F = kBT

∫
dr

[
−εφ2 +

1

2
vφ4 +

a2

6
|∇φ|2

]
. (1.108)

1.6.3. Polymer at an interface

In this section, we calculate non-uniform profiles of the polymer concentration near a

surface using self-consistent field theory.[61–63] First, we consider a repulsive surface in a

good solvent. The boundary condition at the surface is

1

φ(0)

dφ

dz

∣∣∣∣
z=0

=
1

2D
, (1.109)

where D is a positive parameter characterizing the interfacial length, and in the bulk,

c(z)→ φ2
b. (1.110)

Then we obtain ε = vφ2
b. The solution is

φ(z) = φb tanh

(
z + z0

ξb

)
, (1.111)

where ξb is the correlation length in the bulk as

ξb =
a√
3vφ2

b

, (1.112)

and

z0 =
ξb

2
arcsinh

(
4D

ξb

)
. (1.113)
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Eq. (1.111)

Eq. (1.115)

FIG. 17. Concentration profiles of polymers near surfaces. The solid and dotted lines are

calculated using eqs. (1.111) and (1.115), respectively. D = 1µm, and ξb = 1µm.

Next, we consider an attractive surface in a good solvent. In this case, the boundary

condition at the surface is
1

φ(0)

dφ

dz

∣∣∣∣
z=0

= − 1

2D
. (1.114)

The solution is

φ(z) = φb coth

(
z + z0

ξb

)
. (1.115)

Fig. 17 is the profile calculated using eqs. (1.111) and (1.115) for D = 1µm and ξb = 1µm.

The scaling theory is studied in refs. [64, 65], and experimental and theoretical results are

reviewed in ref. [66].

1.6.4. Charged polymers

Charged polymers or polyelectrolytes are macromolecules that contain dissociable groups

in their monomers.[62, 67–70] Polyelectrolytes tend to dissolve in polar liquids such as water
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because of their electric charge, although most neutral polymers can dissolve only in organic

solvents. The difference between neutral polymers and polyelectrolytes is the existence of an

electric repulsive force between charged monomers. In contrast to the short-ranged excluded

volume interaction, the electrostatic interaction is long-range as

E = kBT
`B

r
, (1.116)

where r is the separation distance of two charged monomers.

First, we consider a weakly charged flexible chain using the Flory theory. We define f as

the fraction of charged monomers, and the free energy as a function of Rg is

F (Rg) ≈ kBT

(
Rg

aN1/2

)2

+
(Nf)2`B

Rg

. (1.117)

Minimization with respect to Rg gives an equilibrium size of

Rg ∼ Nf 2/3(`Ba
2)1/3, (1.118)

which establishes the result that the chain size is proportional to the number of monomers.

However, in realistic situations counterions and salts exist in polyelectrolyte solutions. We

assume that the salt concentration c0 and the electric repulsive force are well described by

the screened Coulomb interaction as

E = kBT
lB
r

e−κr. (1.119)

The electrostatic repulsive force is short-range which implies that at a very large size, a

charged chain has the same structure as a neutral polymer in a good solvent. At the inter-

mediate length scale, the polyelectrolytes behave as a semi-flexible chain with a persistence

length `eff .[62, 69, 71–74]

Polyelectrolytes are more swollen in the solution than neutral polymers; thus, the overlap

concentration defined by eq. (1.98) behaves as

c∗ ∼ N−2f−2`−1
B a−2, (1.120)

which is very small. To discuss the phase separation and concentration fluctuation in a

polyelectrolyte solution, the electrostatic and ion contributions to the free energy are added

to the free energy of a neutral polymer solution, eq. (1.99) or eq. (1.108). These theories

can describe the intermediate peak of the scattering function and mesophase separation.[69]

The scaling theory of polyelectrolyte solutions is studied in ref. [75]. Polyelectrolytes at an

interface are studied in refs. [76–81].
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2. LINEAR ELECTRO-OSMOSIS OF CHARGED AND UNCHARGED POLY-

MER SOLUTIONS

In this section, we present the characteristic behavior of linear electro-osmosis of charged

and uncharged polymer solution using self-consistent field theory and fluid mechanics.

Main part of this section is published in ref. [10].

2.1. Mean-field equations for concentrations, electrostatic potential and flow

We consider an aqueous solution of sufficiently long polyelectrolyte chains in a slit (see

Fig. 18). A fraction f of the polyelectrolytes is positively charged, whereas the slit wall is

negatively charged. Counterions from the polyelectrolytes and salts are also dissolved in the

solution. For simplicity, we assume that the anions from the salt and the counterions from

the polymers are the same species and all the small ions are monovalent. The free energy

of the system is contributed by polymer conformations, ion distributions, and electrostatic

interactions as follows:

F = Fpoly + Fions + Fele. (2.1)

The polymer free energy is given by[61]

Fpoly = kBT

∫
dr

[
a2

6
|∇φ|2 +

v

2
φ4

]
, (2.2)

where φ is an order parameter related to the local polymer concentration c(r), given by

φ(r) =
√
c(r). kBT is the thermal energy, a is the monomer size, and v is the second virial

(excluded volume) coefficient of the monomers.

The ion free energy, contributed by the translational entropy of the ions, is given by

Fion = kBT

∫
dr
∑
i=±

[
ci ln(cia3

i )− ci
]
, (2.3)

where c+(r) and c−(r) are the concentrations of the cations and anions, respectively. The

electrostatic free energy is given by

Fele =

∫
dr
[
ρψ − εε0

2
|∇ψ|2

]
. (2.4)

where ψ(r) is the local electrostatic potential, ε is the dielectric constant of the aqueous

solution, and ρ(r) is the electric charge density defined as

ρ = e(fc+ c+ − c−), (2.5)
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where e is the elementary electric charge.

The control parameters in this study are the bulk concentrations of the cation c+
b and the

charged monomer fraction f . These parameters should satisfy the neutral charge condition,

fcb + c+
b − c

−
b = 0, in the bulk. Here cb and c−b are the bulk concentrations of the monomers

and anions, respectively, whose steady profiles are obtained by minimizing the following

grand potential

Ξ = F − µ
∫
φ2dr −

∑
i=±

µi
∫
cidr, (2.6)

where µ and µi (i = ±) denote the chemical potential of each component.

The solution is confined within a slit bounded by two parallel walls. We assume that the

above variables change only along the z axis, and are homogeneous along the x and y axes.

In this scenario, the mean-field equations are

a2

6

∂2φ

∂z2
= v(φ3 − cbφ) + fφβeψ, (2.7)

εε0
∂2ψ

∂z2
= −ef(φ2 − cb exp[βeψ]) + 2ec+

b sinh(βeψ),

(2.8)

where β = 1/kBT . Eq. (2.7) is the Edwards equation that accounts for the charge effect,

while eq. (2.8) is the Poisson-Boltzmann equation for the system containing the salts and

polyelectrolytes.

Applying a sufficiently weak electric field E in the x direction, the system evolves to

steady state in which ion fluxes are induced along E. Because E is weak and orthogonal

to −∇ψ(z), we assume that it influences neither the concentration fields nor the polymer

conformations (see Appendix 2.A). In steady state, the mechanical forces are balanced. This

force balance is expressed by the Navier-Stokes equation, whose simplified form is

∂

∂z

[
η(φ)

∂vx
∂z

]
+ ρE = 0, (2.9)

where vx(z) is the x component of the velocity field. In this case, because we impose no

pressure difference on the system, P = 0 in eqs. (1.32) and (1.33). η(φ) is the viscosity,

which is a function of the concentration order parameter φ. In this study, we set

η(φ) = η0 {1 + h(φ/
√
cb)α} , (2.10)

where h and α are nondimensional parameters. Here η0 is the solvent viscosity and ηb =

η0(1 + h) denotes the viscosity in the bulk. Because η(φ) usually increases from η0 as φ
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FIG. 18. Schematic of the investigated system. A positively charged polyelectrolyte solution

is confined within a negatively charged slit and an external electric field is applied along the

slit walls. The long-chain polymers are interspersed with polymer counterions and anions de-

rived from salt. Reprinted with permission from ref. [10]. Copyright 2013, AIP Publishing LLC.

doi:10.1063/1.4820236

increases, h and α are assumed positive. As described in Appendix 2.B, h and α depend

on the physical parameters N , f , and c+
b , in which N is the polymer length. In this study,

however, h is assumed as an independent parameter. According to Fuoss law [75], we set

α = 1. Later, we demonstrate that these simplifications do not alter the essential results.

As shown in Fig. 18, the surfaces are placed at z = 0 and 2L, where 2L is the slit

width and the electrostatic potentials are the same at both surfaces. Because all profiles are

symmetric with respect to z = L, we consider only the range [0, L]. At the bottom surface

(z = 0), we assume φ(0) = 0, implying that the intermolecular interactions between the

surfaces and polymers are strongly repulsive. We also set vx(0) = 0 and ψ(0) = ψS. The

former is the nonslip boundary condition for the flow. ψS is negative because the surfaces

are negatively charged and the electrostatic interaction between the polymer and surfaces

is attractive. Because the system is symmetric, all z derivatives vanish at z = L;

∂φ

∂z

∣∣∣∣
z=L

= 0,
∂ψ

∂z

∣∣∣∣
z=L

= 0,
∂vx
∂z

∣∣∣∣
z=L

= 0. (2.11)

In this study, we assume that the electric field is sufficiently weak so that the flow speed is

proportional to the field strength. Specifying a coefficient λ12(z), the flow profile is expressed

as vx(z) = λ12(z)E. In other words, the solution is Newtonian and the nonlinear dependence
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of the flow on E can be ignored, and considered in the next section. Having obtained the

static profiles (which are difficult to solve analytically), λ12 is calculated as

λ12(z) = εε0

∫ z

0

dz′

η(φ(z′))

∂ψ

∂z

∣∣∣∣
z′
. (2.12)

This quantity is related to the macroscopic electro-osmotic coefficient in eq. (1.32) by

L12 =
1

L

∫ L

0

λ12(z)dz. (2.13)

To study the effects of the near-surface polyelectrolyte structures on electro-osmosis in

this system, we numerically evaluate eqs. (2.7), (2.8) and (2.9). The parameter settings are

cb = 10−3 nm−3, v = 0.05 nm3, L = 102.4 nm, `B = 0.7 nm, T = 300 K, ψS = −kBT/e =

−25.8 mV, a = 0.5 nm, and η0 = 0.01 P. Here `B is the Bjerrum length, given by `B =

e2/(4πεε0kBT ). The polymer chains are assumed so long that cb > c∗, where c∗ is the

overlap concentration of the polymer solution (see Appendix 2.B).

The electro-osmotic coefficient is evaluated from the L0
12 of a solution without polyelec-

trolytes, given by L0
12 = −εε0ψS/η0 = 1.82 × 10−4cm2/V·s. The space discretization in the

numerical calculations is d = 0.1 nm.

2.2. Electrically neutral polymer solution with chemically repulsive surfaces

First, we assume that polymers are electrically neutral, i.e., f = 0. In this case, the

mean-field equations (2.7) and (2.8) are exactly solved as

φ =
√
cb tanh

(
z

ξb

)
, (2.14)

ψ =
2kBT

e
ln

1 + e−κz tanh(βeψS/4)

1− e−κz tanh(βeψS/4)
. (2.15)

where κ = (8π`Bc
+
b )1/2 is the Debye wave number and ξb = a/

√
3vcb = 40.8 nm is the

correlation length of the polymer concentration fluctuation. e is Napier’s constant. Note

that these analytical solutions are valid only when λ � L and ξb � L because they are

solved under the boundary conditions at z = 0 and L. If |βeψS| � 1, eq. (2.15) reduces to

ψ = ψSe−κz, (2.16)

using the Debye-Hückel approximation.
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If the slit width is much larger than all other length scales in the system, L12 is approxi-

mately equal to L12 ≈ λ12(L). Therefore, we write

L12 ≈
εε0

η0i

∫ L

0

dz

1 + η1φ

∂ψ

∂z
. (2.17)

Because ψ(z) is a monotonically increasing function of z in eqs. (2.15) and (2.16), the integral∫
· · · dz in eq. (2.17) can be replaced by

∫
· · · dψ, using ez/ξb = ζ−1/κξb . L12 is then calculated

as

L12

L0
12

=

∫ 1

0

(
ζ−1/κξb + ζ1/κξb

)
dζ

(h+ 1)ζ−1/κξb − (h− 1)ζ1/κξb
,

(2.18)

where ζ = ψ/ψS is a reduced electrostatic potential. After some calculations, eq. (2.18) can

be expanded as

L12

L0
12

=
2

h+ 1

κξb + 1

κξb + 2
+

1

h+ 1

∞∑
n=1

(
h− 1

h+ 1

)n
×
[

1

2n/(κξb) + 1
+

1

2(n+ 1)/(κξb) + 1

]
. (2.19)

When h = 1, eq. (2.19) reduces to

L12 = L0
12

(
κξb + 1

κξb + 2

)
. (2.20)

Clearly, eq. (2.20) is an increasing function of κξb.

The electro-osmotic coefficient calculated by eq. (2.19) is plotted as a function of salt

concentration in Fig. 19. Shown are the coefficients for several values of the bulk viscosity

parameter h. As the salt concentration increases, the electro-osmotic coefficient increases

and approaches L0
12, regardless of h. By contrast, in the low salt concentration regime, L12

decreases as (c+
b )1/2 to Lb

12 = L0
12/(1 + h), the electro-osmotic coefficient estimated at the

viscosity of the bulk solution.

We interpret these results as follows. In the neutral polymer solution, the electrostatic

interaction does not influence the polymer concentration profile. The polymers are depleted

from the surface by short-ranged surface forces, and the near-surface viscosity is smaller than

that in the bulk. Only the region near the surface, where ρ 6= 0, responds to the applied

electric field. The charged region is characterized by the Debye length λ from the surface. If

the Debye length is smaller than the correlation length ξb, the electro-osmosis is enhanced;

otherwise it is suppressed.
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FIG. 19. Electro-osmotic coefficients L12 in the solution without polyelectrolytes, plotted as

functions of salt concentration c+
b . In place of polyelectrolytes, electrically neutral polymers are

dissolved. The viscosity parameter h is varied. Reprinted with permission from ref. [10]. Copyright

2013, AIP Publishing LLC. doi:10.1063/1.4820236

Given the effective viscosity ηS, the electro-osmotic coefficient is calculated by the usual

Smoluchowski’s formula, L12 = −εε0ψS/ηS. As noted above, the formation of the depletion

layer near the surface effectively lowers the viscosity of the solution. From eq. (2.19), the

effective viscosity decreases with κξb as

ηS ≈ η0(1 + h)

{
1− κξb

h

h− 1
ln
h+ 1

2

}
,

(2.21)

when κξb � 1, using
∑∞

n=1 n
−1rn = ln[1/(1 − r)]. On the other hand, when κξb � 1, the

viscosity approaches the solvent viscosity, ηS ≈ η0. This phenomenon can be explained as

follows. In the high salt limit, the electrostatic interaction between ions and walls is screened

by a short length scale. If the wall is chemically repulsive to the polymers, the polymers

are depleted from the surface with a correlation length far exceeding the Debye screening

length.
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FIG. 20. (a) Electro-osmotic coefficients L12, plotted as functions of salt concentration c+
b . The

fraction of charged monomers in the polyelectrolyte f is varied for fixed h = 9. At f = 0, the curve

is that of the electrically neutral polymer solution, and it increases with c+
b as shown in Fig. 19. At

sufficient salt concentrations, all curves approach L0
12. (b) Magnification of the same plots around

a small range of L12. Reprinted with permission from ref. [10]. Copyright 2013, AIP Publishing

LLC. doi:10.1063/1.4820236

2.3. Polyelectrolyte solution with electrically attractive and chemically repulsive

surfaces

Next, we consider polyelectrolyte solutions, i.e., f 6= 0. Fig. 20(a) shows the electro-

osmotic coefficients as functions of salt concentration. Here we fix h = 9 and vary the

fraction of charged monomers f . We find that, as in neutral polymer solutions (see Fig. 19),

electro-osmosis is suppressed in the low salt regime. At high salt concentrations, the electro-

osmotic coefficient approaches L0
12. Fig. 20(a) also indicates that, with increasing electric

charge on the polyelectrolytes, electro-osmosis becomes more suppressed and salinity exerts

a more drastic effect. In Fig. 20(b), these plots are magnified around L12 = 0. Interestingly,

the electro-osmotic coefficient can become negative at sufficiently dilute salt and when the

polyelectrolytes are highly charged. Such inversion of electro-osmotic flow is never observed

in neutral polymer solutions.

The electo-osmotic coefficients are plotted as functions of f in Fig. 21(a). Here the

salt concentration is fixed at a low concentration c+
b = 10−6[mol/`], and the bulk viscos-

ity parameter h is changed. We observe that the electro-osmotic flow is weakened if the
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FIG. 21. (a) Electro-osmotic coefficients L12, plotted as functions of the fraction of charged

monomers in the polyelectrolytes f . h is varied at fixed salt concentration c+
b = 10−6mol/`.

(b) Electro-osmotic coefficient L12 plotted as a function of h. We set c+
b = 10−6mol/` and

f = 1. Reprinted with permission from ref. [10]. Copyright 2013, AIP Publishing LLC.

doi:10.1063/1.4820236

polyelectrolytes are highly charged. The mechanism of this phenomenon will be discussed

later. Fig. 21(a) also shows that electro-osmosis inversion occurs only at sufficiently high

h. Fig. 21(b) plots the electro-osmotic coefficient versus h for c+
b = 10−6[mol/`] and f = 1.

As discussed above, the electro-osmotic flow in neutral polymer solutions saturates at Lb
12

in the low salinity limit, according to eq. (2.21). However, this equation cannot explain the

curve in Fig. 21(b).

2.3.1. Relationship between electro-osmosis and static properties

Fig. 22(a) plots the curves of L12 = 0 and L12 = Lb
12 in a c+

b -f plane. As the bulk

viscosity parameter h decreases, the region of inverted electro-osmosis (L12 < 0) shrinks and

eventually disappears as h becomes small. On the other hand, the L12 = Lb
12 curves are less

sensitive to changes in h. This implies that L12 around Lb
12 depends more on the static than

kinetic properties.

To characterize the static properties, we define a quantity Γ as

Γ =

∫ L

0

dz(c− cb). (2.22)
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Γ measures the amount of excess adsorption of the polyelectrolytes. Fig. 22(b) plots the con-

tour lines of Γ in the c+
b -f plane. The Γ = 0 contour characterizes the adsorption-depletion

transition.[80] In the system investigated here, the positively charged polymers are dissolved

in the slit between the negatively charged walls. Electrostatic interaction adheres the poly-

mers to the oppositely charged wall surface. On the other hand, intermolecular interaction

prevents the polymers from directly contacting the surface (see Fig. 23(a)). When the elec-

trostatic interaction is well screened by high salt content, chemical interaction depletes the

polymers from the surface vicinity.

Interestingly, when c+
b is fixed, excess adsorption does not continuously increase toward

f = 1 but instead peaks at an intermediate f . As shown in Fig. 22(b), the polyelectrolytes

with c+
b = 10−6mol/` are most strongly adsorbed when f ≈ 5 × 10−3. This nonmonotonic

behavior is counterintuitive because one expects that highly charged polyelectrolytes will be

adsorbed with greatest strength. The adsorption-depletion transition has been intensively

studied by Shafir et al.[80] Comparing Fig. 22(a) and (b), we find that the curves L12 = Lb
12

roughly coincide with that of Γ = 0. When the polymers are adsorbed to the surface (Γ > 0),

the electro-osmotic coefficient is smaller than that determined by the surface potential and

bulk viscosity Lb
12, and vice versa.

Fig. 23 shows profiles of the polymer concentration and electrostatic potential at (a)

high and (b) low salt concentrations. The fraction of charged monomers is f = 0.03. The

solution conditions are as indicated in Fig. 22(a). Under low-salinity conditions, where

L12 < Lb
12, a peak appears in the concentration profile. Hereafter, the height and the

position of the peak are denoted as φM and zφ, respectively. As shown in Fig. 22(b), the

amount of adsorption is positive (i.e., in excess) Hence, we refer to the region of φ >

φb(=
√
cb) as an adsorption layer, although the polymers themselves do not contact the

surface. The electrostatic potential also peaks at z = zψ. We call this peak an overcharging

potential and its height is denoted as ψM. We should note that the φ and ψ peaks appear

at different positions, with zψ > zφ. We also define z0, which satisfies ψ(z0) = 0. As

discussed below, the adsorption layer and the overcharging potential play essential roles in

the decrease and inversion of the electro-osmotic coefficient. Conversely, under high-salinity

conditions, the profiles monotonically increase to the bulk values without developing peaks.

The dependences of φM and ψM on c+
b and f are shown in Figs. 24(a) and (b), respectively.

The contours of φM and ψM are qualitatively similar to that of L12 in Fig. 22(a) but are
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FIG. 22. (a) State diagram of the electro-osmotic flow in the c+
b -f plane. Because the poly-

electrolyte concentration varies in the slit, the local viscosity depends on the distance from the

wall. Lb
12 is the electro-osmotic coefficient, estimated from the shear viscosity of the bulk solution.

(b) Contours of the amount of excess adsorption, Γ, for Γ = 0, 0.005 and 0.01. Shown are the

contour lines of L12 = 0 (solid) and L12 = Lb
12 (broken) for h = 9. The Γ = 0 contour behaves

similarly to the line L12 = Lb
12 in (a). Reprinted with permission from ref. [10]. Copyright 2013,

AIP Publishing LLC. doi:10.1063/1.4820236

dissimilar from that of the excess adsorption. This implies that the maximum amount of

adsorption is not important in the electro-osmotic phenomena.

The uncolored region, in which the profile does not peak, almost coincides with that of

L12 > Lb
12. The gradient of the electro-osmotic flow is localized to the range of the Debye

screening length from the surface (see Fig. 25(a)). Therefore, the formation of the depletion

layer effectively reduces the solvent viscosity. Because the electro-osmotic flow is inversely

proportional to the viscosity, depletion enhances the electro-osmosis. At the adsorption-

depletion transition, the increase in L12 caused by the depletion cancels the decrease caused

by adsorption. Then, the Γ = 0 curve is roughly consistent with that of L12 = Lb
12. Because

neutral polymers in solution do not adhere to the surface, electro-osmosis is more strongly

suppressed in polyelectrolyte solutions than in neutral polymer solutions.

The uncolored region in Fig. 24(b), where ψM develops no peak, is slightly wider than

in Fig. 24(a), where φM develops no peak. This difference is delicate because the Debye

screening length becomes comparable to the system size when c+
b and f are very small.
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FIG. 23. Profiles of the polymer order parameter φ and the electrostatic potential ψ near the

surface. The bulk concentrations of the salt are (a) c+
b = 0.0476[mol/`] and (b) c+

b = 2.91 ×

10−5[mol/`]. In both cases, the fraction of charged monomer in the polyelectrolyte is f = 0.03.

The profiles in (a) and (b) correspond to conditions (A) and (B) in Fig. 22(a). For a clearer

representation, we plot φ(z)/15φb and 15ψ(z)/|ψS| rather than φ(z) and ψ(z). Reprinted with

permission from ref. [10]. Copyright 2013, AIP Publishing LLC. doi:10.1063/1.4820236
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FIG. 24. Effect of c+
b and f on the peak heights of (a) concentration profile φM and (b) electrostatic

potential ψM. Shown are the contour lines of L12 = 0 (broken) and L12 = Lb
12 (solid) for h = 9.

The dotted line is L12 = 0 estimated by eq. (2.28). Uncolored regions indicate where no peaks

appear in φ and ψ (i.e., where φM and ψM are undefined). Reprinted with permission from ref. [10].

Copyright 2013, AIP Publishing LLC. doi:10.1063/1.4820236
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FIG. 25. (a) Profiles of the electro-osmotic flow λ12 in three states; (A) depletion state: c+
b =

0.0476mol/` and f = 0.03. (B) adsorption state: c+
b = 2.91 × 10−5mol/` and f = 0.03. (C) flow

inversion state: c+
b = 2.91× 10−5mol/`, and f = 0.46. These conditions are marked in Fig. 22(a).

In condition (C), the overcharging potential is ψM/|ψS| ≈ 0.1. (b) Parametric representations of

ψ(z) and 1/η(φ(z)) for the three states. Points (ψ/|ψS|, η0/η) = (−1, 1) and (ψ/|ψS|, η0/η) =

(0, 1/(1 + h)) correspond to the surface (z = 0) and bulk (z = L), respectively. The bulk viscosity

parameter is fixed at h = 9. Reprinted with permission from ref. [10]. Copyright 2013, AIP

Publishing LLC. doi:10.1063/1.4820236

2.3.2. Relationship between electro-osmosis and dynamical properties

As shown in Fig. 24, φM and ψM are large in the regime of large f and small c+
b , where

the electro-osmotic coefficient becomes negative. We emphasize that these large values of

φM and ψM are essentially important for the sign reversal of L12.

Fig. 25(a) shows the profiles of the flow field near the surface under three conditions. Here

we note that vx(z) = λ12(z)E. Conditions (A) and (B) correspond to the adsorption and

depletion states, respectively. The global electro-osmotic coefficient L12 becomes negative

under Condition (C). These conditions are marked in Fig. 22(a). In all cases, the gradient

of the flow field is localized to the vicinity of the surface; that is, the flow macroscopically

behaves as a plug flow. While curve (A) varies almost monotonically with z, curve (B) is

nonmonotonic, and curve (C) is more complex. Under condition (C), the flow direction is

positive near the surface, but changes at some distance from the wall, saturating at a negative
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value. The saturation value gives the macroscopic electro-osmotic coefficient from eq. (2.13).

By contrast, curve (B) remains positive across the range. If the viscosity is homogeneous and

independent of the polymer concentration, the flow field is easily calculated from eq. (2.12)

as

λ12(z) =
εε0

η
{ψ(z)− ψS} . (2.23)

The overcharging potential is necessary the nonmonotonic variations in (B) and (C). How-

ever, because ψS < ψ(z) everywhere, the overcharging potential alone cannot explain the

negative L12 given that η is constant.

If the electrostatic potential monotonically changes with z as in condition (A), ψ = ψ(z)

is uniquely expressed by its inverse function z = z(ψ). Then, eq. (2.12) is given by

λ12(L) = εε0

∫ 0

ψS

η(ψ′)−1dψ′, (2.24)

where η(ψ) = η(φ(z(ψ))) is also a unique function of ψ. The curves of η(ψ) are plotted in

Fig. 25(b). Since η(ψ) is positive, λ12(L) is also positive, indicating that the flow toward E

is maintained.

When the overcharging potential arises, as in conditions (B) and (C), z is a multivalued

function of ψ, which invalidates eq. (2.24). In this case, eq. (2.12) becomes

λ12(L)

εε0

=

∫ zψ

0

dz′

η(z′)

∂ψ

∂z

∣∣∣∣
z′

+

∫ L

zψ

dz′

η(z′)

∂ψ

∂z

∣∣∣∣
z′

=

∫ ψM

ψS|z<zψ

dψ′

η(ψ′)
−
∫ ψM

0|z>zψ

dψ′

η(ψ′)
. (2.25)

Here we should note that the paths of the two integrals in eq. (2.25) differ from each other.

According to linear analysis, the electrostatic potential profile may have multiple peaks.[77]

The intensities of the peaks decay with increasing distance from the wall. We assume that

the highest peak (nearest the wall) plays a dominant role in the electrokinetic flow and

ignore the contributions of the remaining peaks.

Fig. 26 is a schematic of eq. (2.25). When the electrostatic potential overcharges, the

curve of 1/η(ψ) is divisible into three segments. These segments delineate three realms, with

areas denoted by S1, S2, and S3. Within the slit, the realms correspond to the ranges S1:

0 < z < z0, S2: z0 < z < zψ, and S3: zψ < z < L (see Fig. 23(b)). The first and second

terms in eq. (2.25) are given by S1 + S2 and S2 + S3, respectively. In terms of these areas,
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the electro-osmotic coefficient is given by L12 = (S1 +S2)− (S2 +S3) = S1−S3. If S1 < S3,

the macroscopic flow is inverted.

Using eq. (2.25), we devise a simple method for estimating the electro-osmotic coefficient

in adsorption states. The viscosity is assumed constant within each realm. More precisely,

we assume that polymer concentration is fixed at φ = φM within the range 0 < z < zψ and

at φ = φb in zψ < z < L. These approximations are schematically represented in Fig. 26(b).

S1 and S3 are then approximated as

S1 ≈ −
εε0ψS

ηS

, (2.26)

S3 ≈ εε0

(
1

ηb

− 1

ηS

)
ψM, (2.27)

where ηS = η0(1 + hφM/φb) and ηb = η0(1 + h). Finally, we obtain

L12 ≈
ηb

ηS

Lb
12 +

(
1− ηb

ηS

)
LM

12, (2.28)

where LM
12 = −εε0ψM/ηb is the electro-osmotic coefficient estimated by the overcharging

potential. The L12 = 0 curve estimated by eq. (2.28) is drawn in Fig. 24. This curve is

qualitatively consistent with the numerical solutions. In this estimation, the overcharging

potential does not directly cause the inversion of electro-osmotic flow; formation of the highly

viscous layer is also important.

2.4. Summary and remarks

Applying a continuum model, we study electro-osmosis in polymer solutions. From nu-

merical calculations and theoretical estimations, we elucidated the behaviors of the electro-

osmosis in polymer solutions. The dependence of viscosity on the polymer concentration

plays an important role in our model. Our main results are summarized below.

(i) Even if the polymer solution sandwiched between chemically repulsive walls is elec-

trically neutral, electro-osmosis depends on the salt concentration. Decreasing the

salinity suppresses the electro-osmosis.

(ii) In polyelectrolyte solutions, the formed adsorption layer effectively enlarges the vis-

cosity in the vicinity of the surfaces. Consequently, electro-osmosis is suppressed much

more strongly in polyelectrolyte than in neutral polymer solutions. If a sufficiently high
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FIG. 26. (a) Schematic for calculating L12 in adsorption states from eq. (2.25). ψ and 1/η are

parameterized with respect to z. (b) Approximate representation of ψ-η−1 in (a). This approxi-

mation gives a simple form of L12, eq. (2.28). Reprinted with permission from ref. [10]. Copyright

2013, AIP Publishing LLC. doi:10.1063/1.4820236

proportion of the monomers are charged and if the salt concentration is sufficiently

low, the electro-osmotic flow can be inverted.

(iii) We propose a simple equation for estimating the electro-osmotic coefficient in adsorp-

tion states (eq. (2.28)). This equation captures the essential features of the inversion

of the electro-osmotic coefficient, shown in Fig. 24. According to this expression, in-

version is caused by two factors; enhancement of the viscosity by the near-surface

adsorption layer and overshoot of the electrostatic potential.

We conclude this section with the following remarks.

(1) Charge inversion and mobility reversal induced by multivalent electrolytes has been

frequently reported.[82] Grosberg et al. concluded that such phenomena depend

on fluctuation correlations among the multivalent ions, which are excluded in usual

Poisson-Boltzmann approaches. Our mean-field approach predicts that similar inver-

sion phenomena occur in polyelectrolyte solutions. According to a molecular dynamics

simulation, the phenomena occurs even in monovalent ions solutions confined within

nanochannels.[83] The flow profiles obtained in the earlier study are quite similar to
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ours; near the surface, the flow is directed toward the electric field, but in the bulk, it

is against the field.

(2) This article considers only limited situations; The surfaces are assumed to chemically

and electrostatically repel the polymers. If the surfaces are chemically attractive, the

adsorption is much enhanced by chemical forces.[79, 81] The electro-osmotic properties

of these surfaces are equally interesting and important.

(3) From the Onsager reciprocal relations, the electro-osmotic coefficient L12 should equal

L21 in eq. (1.33). The latter represents the electric current due to the mechanical

pressure difference. Interestingly, the Onsager coefficient L21 is inverted when f is

large and c+
b is sufficiently small.

(4) In the above numerical and theoretical analyses, the viscosity parameter h is assumed

constant, although in practice it depends on the fraction of charged monomers f and

the salt concentration c+
b . When f is large and c+

b is small, the solution viscosity

increases (see Appendix 2.B). Our studies indicate that large f and small cb favor flow

inversion. The same trends were observed for large h. If we set h as a function of f

and cb, more dramatic changes would appear in the curves of L12 against f and c+
b .

Although the L12 and the phase diagrams would quantitatively alter, the qualitative

trends, i.e., suppression of the electro-osmotic flow and inversion at large f and a small

c+
b , should remain intact.

Appendix 2.A Local equilibrium conditions for the components

Because we apply an external field E along the x direction (see Fig. 18), the total elec-

trostatic potential is not ψ(z) in eq. (2.4), but instead is ψtotal(x, z) = ψ(z)−Ex. Assuming

the local equilibrium condition, the chemical potential of the cation and anion is given by

eqs. (1.44) and (1.44) replaced ψtotal instead of ψ. In the geometry of the investigated system,

the diffusion flux of the ion, given by

ji = − c
i

ζ i
∇µi, (2.29)
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is divided into two components:

ji = jixx̂+ jizẑ, (2.30)

jix = ± c
i

ζ i
E, (2.31)

jiz = − c
i

ζ i
∂

∂z

[
kBT ln(cia3

i )± eψ(z)
]
. (2.32)

Here x̂ and ẑ are the unit vectors along the x and z axes, respectively. Because the system

is confined by the walls at z = 0 and 2L, the diffusion flux along the z direction vanishes

at steady state. Thus, we obtain the Boltzmann distribution along the z axis. On the

other hand, the diffusion flux remains along the x axis. Because the applied electric field is

sufficiently weak and orthogonal to −∇ψ, it influences neither the concentration fields nor

the polymer conformation.

Appendix 2.B Scaling behaviors in polyelectrolyte solutions

The scaling behaviors of polyelectrolyte solutions are known to widely differ from those

of uncharged polymer solutions. At the overlap concentration c∗ in a polyelectrolyte so-

lution, the monomer density inside the coil equals the overall monomer density in the

solution.[75] In our notation, the overlap concentration in a theta solvent is determined

by c∗(1 + 2c+
b /c

∗f)−3/2 ≈ N−2a−2`−1
B f−2.

In the low-salt or salt-free regime, the overlap concentration becomes c∗ ≈ (a2`BNf)−1.

Conversely, it approaches c∗ ∼= {8(c+
b )3a−4`−2

B f−7N−4}1/5 in the high-salt regime. Between

these two extremes, the overlap concentration decreases as f increases. Given the same

polymer length N , polyelectrolyte chains expand more than their uncharged counterparts.

The viscosity of polyelectrolyte solutions also obeys scaling behaviors, which depend on

the solvent quality and the polymer concentration regime. For example, the viscosity of a

semidilute solution in a theta solvent is given by η ≈ η0Na`
1/2
B fc1/2(1 + 2c+

b /fc)
−3/4. If the

salt is not dissolved or is insufficiently dilute, this expression approaches η ≈ η0Na`
1/2
B fc1/2;

that is, the viscosity is proportional to c1/2 (Fuoss law). On the other hand, in highly saline

conditions the viscosity behaves as η ≈ η0Na`
1/2
B (c+

b )−3/4f 7/4c5/4. The viscosity depends on

the polymer concentration as c5/4, identical to that of an uncharged polymer solution in a

theta solvent, namely η ≈ η0N(ca3)1/(3ν−1) with ν = 3/5. Physically, this result implies that

electrostatic interactions in a polyelectrolyte solution are well screened by the salt.
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3. NONLINEAR ELECTRO-OSMOSIS OF UNCHARGED POLYMER SOLU-

TIONS WITH LOW IONIC STRENGTH

In previous section, we consider linear behavior with respect to small electric field. How-

ever, when we apply a strong electric field, the structure of double layer may change and

it would make electro-osmosis nonlinear. In this section, we investigate such a nonlinear

behavior. Unfortunately, we restrict discussion about neutral polymer at low salinity. Main

part of this section is published in ref. [84].

3.1. Toy model

First, we propose a toy model for electro-osmosis of polymer solutions. A dilute solution

of non-adsorbing polymers is considered. The viscosity of the solution is given by

η = η0(1 + ηsp), (3.1)

where η0 is the viscosity of the pure solvent, and ηsp is the specific viscosity of the solution.

The gyration length of the polymers is defined as δ0, which is of the same order of the

equilibrium depletion length. It is assumed that the polymers have δ0 ≈ 100 nm. Ions are

also dissolved in the solution with the Debye length λ. When a well deionized water is

considered, the Debye length is of the order of λ ≈ 103 nm although such a salt-free water is

hardly realized owing spontaneous dissolutions of carbon dioxides. The interfacial structure

near a charged surface is characterized by λ and δ0. When an external electric field is applied,

a shear flow is locally imposed within the distance λ from the wall, and the resultant shear

rate is

γ̇ ≈ µ0E

λ
, (3.2)

where µ0 is the electro-osmotic mobility for the pure solvent and is estimated typically as

µ0 ≈ 10−8 m2/(V· s). According to the studies of the cross-stream migration in the uniform

shear flow,[34] the depletion layer thickness depends on the shear rate,

δ ≈ δ0(τ γ̇)2, (3.3)

where τ is the characteristic relaxation time of the polymers,

τ ≈ η0δ0
3

kBT
, (3.4)
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where kBT is the thermal energy and is typically 10−4 s at room temperature. Using eqs.(3.2)

and (3.3), the depletion length in the presence of the applied electric field E can be expressed

by

δ ≈



δ0 for E < E0,

(
E

E0

)2

δ0 for E0 ≤ E ≤ E1,

λ for E1 < E,

(3.5)

where E0 = λ/τµ0, and E1 = E0

√
λ/δ0. Here, for simplicity, we assume that the depletion

length does not exceed the Debye length. The effective viscosity in the double layer is given

by

ηeff ≈ η0

[
1 + ηsp

(
1− δ

λ

)]
, (3.6)

and the nonlinear mobility can be estimated by µ ≈ µ0(η0/ηeff). Therefore, the mobility is

obtained as

µ ≈



µ0

1 + ηsp(1− (δ0/λ))
for E < E0,

µ0

1 + ηsp(1− (E/E1)2)
for E0 ≤ E ≤ E1,

µ0 for E1 < E.

(3.7)

Fig. 27 (a) shows schematically the thickness of a depletion layer as a function of electric

field strength. Fig. 27 (b) is the nonlinear electro-osmotic mobility. The mobility increases

and is saturated with increasing electric filed. The threshold electric field E0 is typically

103 V/m that is experimentally accessible.

3.2. Model for simulation

In this section, our method of Brownian dynamics simulation is described. As shown in

Fig. 28(a), a dumbbell is simulated in a electrolyte solution with a no-slip boundary at z = 0.

The dumbbell shows a dilute solution behavior. The solvent is described by a continuum

fluid with the viscosity η0 and fills up the upper half of space (z > 0). Electrolytes are

also treated implicitly with the Debye length λ = κ−1. The dumbbell has two beads whose
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FIG. 27. (a) The depletion length as a function of the applied electric field. (b) The electro-osmotic

mobility as a function of the applied electric field. Reproduced from ref. [84] with permission of

The Royal Society of Chemistry. doi:10.1039/C5SM01507C

hydrodynamic radii are a, and actually the bead consists of many monomeric units of the

polymer (see Fig. 28(c)). The positions of the beads are represented by x1 and x2 (see

Fig. 28). Then we solve overdamped Langevin equations[85] given by

dxnα
dt

= u0(zn)δαx +
∑
m,β

(
Gnm
αβ Fmβ + kBT∇mβGnm

αβ

)
+
√

2kBT
(√

G
)nm
αβ
· ξmβ,

for n = 1, 2, α = x, y, z, (3.8)

where Xnα is the α component of a vectorXn. u0(z) is the external plug flow,∇nα = ∂/∂xnα,

G is the mobility tensor, Fn = −∇nU is the force exerted on the nth bead, U is the

interaction energy given as a function of xn, and kBT is the thermal energy.
√
G is the square

root of G such that
(√

G
)nl
αγ

(√
G
)ml
βγ

= Gnm
αβ , whereas · denotes the Itô multiplication,[86]

and ξn is the Gaussian white noise which satisfies the relation as

〈ξnα(t)ξmβ(t′)〉 = δnmδαβδ(t− t′). (3.9)

To include the effects of the no-slip boundary, Rotne-Prager approximation for Blake

tensor[87] is used for the mobility tensor for distinct particles (n 6= m), [88, 89] although it

is valid only for particles separated far away. In this study, we neglect lubrication corrections

for nearby particles.[90] The Blake tensor for the velocity at x2 induced by a point force

at x1 with the no-slip boundary at z = 0 is given by the Oseen tensor and the coupling
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no-slip boundary

a dumbbell

(a) (b)

(c)

FIG. 28. (a) A dumbbell in the simulated box with L× L×D. Periodic boundary condition has

imposed at x-y plane. (b) A x-z projection of the dumbbell in the electro-osmotic flow. (c) An

enlarged illustration of the bead in the dumbbell. It is composed of a large number of monomeric

units of the polymers. Reproduced from ref. [84] with permission of The Royal Society of Chemistry.

doi:10.1039/C5SM01507C

fluid-wall tensor as,[87]

GB
αβ(x2,x1) = Sαβ(q) + GW

αβ(x2,x1), (3.10)

where q = x2−x1, R = x2− x̄1, and x̄1 is the mirror image of x1 with respect to the plane

z = 0 (see Fig. 28(b)). The Oseen tensor given by

Sαβ(q) =
1

8πη0

(
δαβ
q

+
qαqβ
q3

)
, (3.11)

where q is the magnitude of q, and the second term in eq. (3.10) is

GW
αβ(x2,x1) = −Sαβ(R) + z2

1(1− 2δβz)∇2
RSαβ(R)

−2z1(1− 2δβz)Sαz,β(R), (3.12)
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where

Sαβ,γ(q) = ∇qγSαβ(q), (3.13)

and ∇qγ = ∂/∂qγ. The Rotne-Prager approximation of the Blake tensor is given by[9, 88–91]

GRPB
αβ (x2,x1) =



(
1 +

a2

6
∇2

1 +
a2

6
∇2

2

)
GB
αβ(x2,x1) +O(a4)

for q > 2a,

1

6πη0a

[
δαβ −

9q

32a

(
δαβ −

qαqβ
3q2

)]
+

(
1 +

a2

6
∇2

1 +
a2

6
∇2

2

)
GW
αβ(x2,x1) +O(a4)

for q ≤ 2a.

(3.14)

The mobility tensor for the self part is given by[9, 88–91]

Gself
αβ (z) = lim

x→x1

GRPB
αβ (x,x1)

=


µ‖(z) 0 0

0 µ‖(z) 0

0 0 µ⊥(z)

 , (3.15)

where

µ‖(z) =
1

6πη0a

[
1− 9a

16z
+

1

8

(a
z

)3
]

+O(a4), (3.16)

µ⊥(z) =
1

6πη0a

[
1− 9a

8z
+

1

2

(a
z

)3
]

+O(a4). (3.17)

Finally we obtain the mobility tensor as

Gnm
αβ = δnmGself

αβ (zn) + (1− δnm)GRPB
αβ (xn,xm). (3.18)

The non-uniform mobility term in eq. (3.8) can be simplified within using the Rotne-Prager

approximation of the Blake tensor because the relation∑
β=x,y,z

∇mβGRPB
αβ (xn,xm) = 0, (3.19)

is hold. Thus, the non-uniform mobility term is rewritten by∑
m,β

∇mβGnm
αβ = δαz∇nzµ⊥(zn). (3.20)
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The interaction energy includes spring and bead-wall interaction given by

U = U s(q) +
∑
n=1,2

Uw(zn), (3.21)

where U s is the spring energy as

U s(q) =



H

2
q2, Hookian dumbbells,

−H
2
q2

0 ln

[
1−

(
q

q0

)2
]
, FENE dumbbells,

(3.22)

where a FENE dumbbell stands for a finitely extensible nonlinear elastic dumbbell, and a

parameter b = Hq2
0/kBT is defined for convenience. Uw is the bead-wall interaction,[92]

which is purely repulsive as

Uw(z) =


w

[
2

5

(a
z

)10

−
(a
z

)4

+
3

5

]
for z ≤ a,

0 for z > a.

(3.23)

Eq. (3.8) is numerically solved. Reflection boundary condition is set at z = D. When

the center of the dumbbell goes across the boundary, the z-coordinate of each beads are

transformed from z to 2D − z. For the lateral directions, the periodic boundary conditions

are imposed. The size of the lateral directions is L× L.

3.3. Results of simulation

The concentration and velocity profiles are calculated by

c(z) =
1

L2

〈
δ

(
z − z1 + z2

2

)〉
, (3.24)

and

δu(z) =
1

η0L2

〈∑
n=1,2

min(z, zn)Fnx

〉
, (3.25)

where δ(z) is the delta function, δu(z) = u(z) − u0(z) is the velocity increment due to the

polymeric stress, and 〈· · · 〉 means a statistical average in steady states. The derivation of

eq. (3.25) is written in Appendix 3.A.
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TABLE 2. Simulation parameters. Nt is the number of total steps, Ni is the number of interval

steps for observation, Nm is the number of the sampling for each parameter set, and ∆τ is the

time increment. Reproduced from ref. [84] with permission of The Royal Society of Chemistry.

doi:10.1039/C5SM01507C

Hookian FENE b = 600 FENE b = 50

Nt 5× 1010 5× 1010 25× 1010

Ni 5× 103 5× 103 25× 103

Nm 3 3 5

∆τ 0.01 0.0025 0.0001

For the surface with small zeta potential compared to kBT/e where e is the elementary

charge, the imposed electro-osmotic flow u0(z) is given by

u0(z) = µ0E
(
1− e−κz

)
, (3.26)

where µ0 is the electro-osmotic mobility in the pure solvent, and E is the applied electric

field.[2] Eq. (3.8) is rewritten in a dimensionless form with the length scale δ0 =
√
kBT/H

and time scale τ = 6πη0a/4H. The different types of dumbbells are simulated with the

parameters noted in Table 2. It should be noted that the simulated systems are treated as

dilute systems and the linearity with respect to the bulk polymer concentration is preserved.

After sample averaging, we obtain the concentration at the upper boundary c(D), which

slightly deviates from (L2D)−1 because of the inhomogeneity near the surface. Hereafter,

we define the normalized concentration as,

C(z) =
c(z)

c(D)
. (3.27)

As well as the concentration profile, the velocity increment δu(z) has the linearity with

respect to c(D). For convenience, we set a characteristic concentration cb = 0.1δ0
−3, and

the nonlinear electro-osmotic mobility is defined by

µ(E) = µ0 +
cb

c(D)

δu(D)

E
. (3.28)

The top boundary is placed at D = 100δ0, the lateral size is set to L = 1000δ0, and the Debye

length is set to λ = κ−1 = 10δ0. We also set w = 3kBT , and a hydrodynamic parameter h∗
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FIG. 29. The concentration profiles of the Hookian dumbbells with varied applied electric fields.

The inset shows the depletion length as a function of the applied field. The points are obtained

by the Brownian dynamics simulation and the line is fitted by δ/δ0 = A(E/E0)B, where A = 7.08

and B = 0.22. Reproduced from ref. [84] with permission of The Royal Society of Chemistry.
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as[34]

h∗ =
a√
πδ0

= 0.25. (3.29)

Fig. 29 shows the steady state profiles of the Hookian-dumbbell concentration as func-

tions of the distance from the wall. In the equilibrium state of E = 0, the profile shows

the depletion layer whose thickness is of the same order as the gyration length δ0. When

the applied electric field is increased stronger, the depletion layer becomes larger than the

equilibrium one and a peak is formed. The inset in Fig. 29 shows the depletion length as a

function of the applied field. The depletion length is defined by the position of the concen-

tration peak. It shows a power-law behavior and its exponent is 0.22, which is much smaller

than 2.0 in the case of a uniform shear flow.[34] The value of the concentration at the peak

also increases as the electric field is enlarged.
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FIG. 30. (a) The concentration profiles of the polymers at E = 1000E0 in the different types of

dumbbells. (b) Plots of the nonlinear electro-osmotic mobilities with respect to E. Reproduced

from ref. [84] with permission of The Royal Society of Chemistry. doi:10.1039/C5SM01507C

The results mentioned above are for the Hookian dumbbell which is infinitely extensible

with the shear deformation. To consider more realistic polymers, the finitely extensible

nonlinear elastic dumbbell is simulated. Fig. 30 (a) shows the concentration profiles at

E = 1000E0. Interestingly, the one-peak behaviors are also observed in the FENE dumbbells.

In the case of the Hookian dumbbell, the concentration near the surface remains finite. On

the other hand, in the case of the FENE dumbbells, the concentrations near the surface are

negligibly small. Fig. 30 (b) plots the electro-osmotic mobilities with respect to the applied

electric field. It is clearly shown the resultant electro-osmosis grows nonlinearly with respect

to applied electric field. When the applied field gets stronger, the mobility increases and is

saturated similarly to that in the toy model. The two types of the dumbbells have different

rheological properties from each other at the bulk,[93–95] so that this nonlinearity is not

owing to the rheological properties of the dumbbells. On the other hand, the mobility is

almost constant for E . 10E0, and this threshold of the linearity is larger than E0, that is

predicted by the toy model. Likewise the saturation is observed when E ≈ 104E0, which is

larger than E1.

To clarify the difference of the profiles near the surface, 〈q2〉 and 〈q2
z/q

2〉 are plotted with

respect to the distance from the surface. Fig. 31 (a) shows the profiles of 〈q2
z/q

2〉. In the

bulk, they approach to 1/3, which means the dumbbells are distributed isotropically. Near

the surface, the polymers are inclined by the shear flow. Concerning the angles between
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FIG. 31. (a) The profiles of 〈q2

z/q
2〉 at E = 1000E0 in the different types of the dumbbells. (b)

The profiles of 〈(q/δ0)2〉 at E = 1000E0 in the different types of the dumbbells. The curved lines

are calculated by eqs. (3.62) and (3.71). Reproduced from ref. [84] with permission of The Royal

Society of Chemistry. doi:10.1039/C5SM01507C

the z-axis and the dumbbell direction, that of the Hookian dumbbell is the largest among

them. Fig. 31 (b) plots the profiles of 〈q2〉. In the bulk, they approach to 3δ0 which is

the equilibrium value of them. Near the surface, they become larger since the polymers are

elongated by the shear flow. In the case of FENE dumbbells, the saturations of the dumbbell

length are observed. These behaviors are largely different from the minor difference in the

concentration profiles.

3.4. Kinetic theory

In this section, a kinetic theory for a dumbbell is developed based on Ma-Graham

theory.[34] The probability function Ψ(x1,x2, t) obeys the continuity equation

∂Ψ

∂t
= −∇1 · (ẋ1Ψ)−∇2 · (ẋ2Ψ), (3.30)

where ẋn is the flux velocity being given by[57]

ẋnα = u0(zn)δxα −
∑
m,β

Gnm
αβ∇mβ(U + kBT ln Ψ). (3.31)

In the kinetic model, the beads are treated as point-like particles. Thus, the mobility tensor

is obtained by using GB instead of GRPB for both the self and distinct parts. The continuity
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equation can be rewritten with q and r as

∂Ψ

∂t
= −∇r · (ṙΨ)−∇q · (q̇Ψ), (3.32)

where r = (x1 +x2)/2 is the center of the mass of the dumbbell. We also define ∇1 and ∇2

as

∇1 =
1

2
∇r −∇q, (3.33)

∇2 =
1

2
∇r +∇q. (3.34)

Then, the probability function is also regarded as a function of r and q. Here we neglect

the interaction between the wall and beads. The flux velocities for r and q are obtained by

ṙα =
1

2
[u0(z1) + u0(z2)]δxα +

1

2
ḠαβF

s
β

+
kBT

2
Ḡαβ∇qβ ln Ψ−DK

αβ∇rβ ln Ψ, (3.35)

q̇α = [u0(z2)− u0(z1)]δxα − ĜαβF
s
β

+
kBT

2
Ḡαβ∇rβ ln Ψ− kBT Ĝαβ∇qβ ln Ψ, (3.36)

where F s = −∇1U
s is the spring force, and DK is the Kirkwood diffusion tensor which

characterizes the diffusivity of macromolecules, given by

DK =
kBT (G11 + G12 + G21 + G22)

4
. (3.37)

Ḡ and Ĝ are a variation of the mobility tensors defined by

Ḡ = G11 −G12 + G21 −G22, (3.38)

Ĝ = G11 −G12 −G21 + G22. (3.39)

The concentration field c(r, t) can be obtained by integrating the probability function with

respect to the spring coordinate. It is given by

c(r, t) =

∫
Ψ(r, q, t)dq. (3.40)

We also define the probability function only for the spring coordinate as

Ψ̂(q, t; r) =
Ψ(r, q, t)

c(r, t)
. (3.41)
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These new fields satisfy the continuity conditions, such that

∂c

∂t
= −∇r · (c〈ṙ〉q), (3.42)

∂Ψ̂

∂t
= −∇q · (Ψ̂q̇), (3.43)

where 〈· · · 〉q means the average with the spring coordinate, as

〈· · · 〉q =

∫
· · ·Ψ(r, q, t)dq

c(r, t)
=

∫
· · · Ψ̂(r, q, t)dq. (3.44)

For the limit of q � r, Ḡ and DK can be expanded with r. With keeping only the leading

term, we obtain

Ḡ =
3

32πη0z2


−qz 0 −ωqx

0 −qz −ωqy
ωqx ωqy −2qz

+ · · · , (3.45)

DK =
kBT

12πη0a

[
I +

3a

4
S(q)

]
+ · · · , (3.46)

where

ω =

[
1 +

q2
x + q2

y

4z2

]−5/2

. (3.47)

It should be noted that the approximation is more accurate than that in a previous study[34]

since they considered only ω ≈ 1, which is not satisfied near the surface. With the approx-

imation, eq. (3.36) is averaged by Ψ̂, and finally we obtain the concentration flux for z

direction as

c〈ṙz〉q = cumig(z)− d

dz

[
c〈DK

zz〉q
]
, (3.48)

where

umig(z) =
1

2
〈ḠzβF

s
β − kBT∇qβḠzβ〉q

=
3

64πη0z2

×
〈
ω(qxF

s
x + qyF

s
y)− 2qzF

s
z − 2kBT (ω − 1)

〉
q
.

(3.49)

Eq. (3.48) indicates two opposite fluxes of the polymers due to the external flow field. One

is the migration flux from the wall toward the bulk and originates from the hydrodynamic

interaction between the wall and the force dipoles.[34] The other is the diffusion flux from
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the bulk to the surface wall and is not found in the case of polymers in uniform shear

flows.[34] It should be noted that the second flux includes not only the ordinary diffusion

flux 〈DK
zz〉q∇r,zc, but also the diffusion flux due to the q-inhomogeneity, c∇r,z〈DK

zz〉q. When

the external shear flow is uniform, the second flux vanishes, and the depletion length is

proportional to the square of the shear rate since the migration velocity is proportional to

the normal stress difference.[34] In the case of a plug flow, the diffusion flux suppresses the

growth of the depletion layer and it may answer why the exponent of the depletion length

is much smaller than 2.0 in the uniform shear flow. In steady states of the electro-osmosis,

the total flux in eq. (3.48) becomes zero, and thus,

dc

dz
=

c

〈DK
zz〉q

(
umig −

d〈DK
zz〉q
dz

)
. (3.50)

This equation shows the migration flux and the diffusion flux are balanced at the peak of

the concentration profiles. Finally the concentration profile is calculated by

c = cb exp

[∫ z

D

1

〈DK
zz〉q

(
umig(z′)− d〈DK

zz〉q
dz

)
dz′
]
. (3.51)

The resultant flow profile can be calculated by

δu(z) = − 1

η0

∫ z

0

σp
xz(z

′)dz′, (3.52)

where σp is the polymeric part of the stress tensor as

σp = c〈q ⊗ F s〉q − ckBT I. (3.53)

To obtain explicit expressions of c and δu, it it necessary to estimate umig, 〈DK
zz〉q, and σp.

For this purpose, eq. (3.43) should be analyzed. However, eq. (3.43) is highly complicated.

Even without the wall effects, it cannot be solved exactly, so that several approximation

methods have been proposed.[96] For simplicity, all the hydrodynamic interactions are ig-

nored, and thus, the continuity equation is given

∂Ψ̂

∂t
= −∇qα

[(
du0

dz
qzδzα −

2F s
α

6πη0a

)
Ψ̂− 2kBT

6πη0a
∇qαΨ̂

]
. (3.54)

For the Hookian dumbbell eq. (3.54) can be solved for the second moment of q, and for

the FENE dumbbell pre-averaged approximation[94, 95] is employed. The curved lines in

Fig. 31 are calculated with these approximations, and they agree quantitatively well with
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FIG. 32. (a) The concentration profiles of the Hookian dumbbell as a function of the distance

from the surface. The points show the simulation results and the curved line is calculated by the

kinetic theory. (b) The nonlinear electro-osmotic mobilities of the Hookian dumbbell as a function

of a applied electric field. (c) and (d) Those for the FENE dumbbell with b = 600. (e) and (f)

Those for the FENE dumbbell with b = 50. Reproduced from ref. [84] with permission of The

Royal Society of Chemistry. doi:10.1039/C5SM01507C
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the simulation results. In Appendix 3.B, approximated expressions for these quantities of

the Hookian and FENE dumbbells are written.

Fig. 32 (a), (c) and (e) show the concentration profiles for the applied field E = 1000E0.

The points are obtained by the Brownian dynamics simulation and the curved lines are

obtained by the kinetic theory. The theoretical calculations quantitatively cover well the

simulations. Moreover, they reproduce the differences in the concentration near the surface

between the Hookian and FENE dumbbells, since the migration velocities can be approxi-

mately proportional to 〈ω〉q (see Appendix 3.B), and it is much suppressed in the case of the

Hookian dumbbells. Fig. 32 (b), (d), and (f) show the nonlinear electro-osmotic mobilities

with respect to the applied field. The theoretical curved lines also have an acceptable ten-

dency with the simulation results. However, they are not so consistent with the simulation

results in weak applied electric fields since the equilibrium depletion layer is not considered

in the kinetic theory.

3.5. Summary and remarks

With Brownian dynamics simulations, nonlinear behaviors of electro-osmosis of dilute

polymer solutions are studied. The simulation results agree with a toy-model and analytical

calculations of a kinetic theory. The main results are summarized below.

(i) Under an external plug flow, the polymer migrates toward the bulk. The concentration

profile of the polymer shows a depletion layer and a single peak. The thickness of the

depletion layer depends on the electric field. At the peak, the migration flux is balanced

to the diffusion flux.

(ii) The growth of depletion layer leads to increment and saturation in the electro-osmotic

mobility. Qualitatively this behavior does not depend on the rheological properties of

the dumbbells.

(iii) Analytical calculation of the concentration and the nonlinear mobility by the kinetic

theory is in agreement with the Brownian dynamics simulation. The threshold of the

electric field for the nonlinear growth and saturation of the mobility is much larger

than the prediction of the toy model, since the diffuse flux suppresses the migration

toward the bulk due to the inhomogeneous shear flow.
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We conclude this study with the following remarks.

(1) Nonlinear electro-osmosis with λ � δ0 has already been observed experimentally.[29,

30] They reported the mobility is increased with increasing the electric field. However,

the nonlinear electro-osmosis with λ� δ0 has not been reported experimentally, and

therefore, experimental verification of our findings is highly desired.

(2) It would be a future problem whether the hydrodynamic interaction between the poly-

mers and the surface plays an important role in electro-osmosis in polymer solutions

even though λ � δ0 or not. In this case the elongation of the polymers is strongly

inhomogeneous under the plug flow with a short Debye length, and thus, more realistic

chain models should be considered.

(3) Addition of charged polymers into solutions can change the direction of the linear

electro-osmotic flow.[10, 26] When a sufficiently strong electric field is applied to this

system, the direction of the flow might recover its original one. It needs to be investi-

gated theoretically and experimentally.

Appendix 3.A Derivation of the velocity for Brownian dynamics simulation

In this appendix, the derivation of eq. (3.25) is explained. The velocity field induced by

the polymer is given by

δu(z) = − 1

η0

∫ z

0

σp
xz(z)dz, (3.55)

and the polymeric part of the stress tensor is obtained by averaging those of the microscopic

expression in the lateral directions as

σp
αβ =

1

L2

∫
dxdyσ̂p

αβ(x). (3.56)

Here the microscopic expression of the stress tensor is given by

σ̂p
αβ(x) = −1

2

∑
n

∑
m 6=n

Fnm,αxnm,βδ
s
nm(x), (3.57)

where Fnm is the force exerted on the n-th bead from the m-th bead and δs
nm(x) is the

symmetrized delta function given by

δs
nm(x) =

∫ 1

0

dsδ(x− sxn − (1− s)xm). (3.58)
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The symmetrized delta function is integrated in the lateral directions as

δ̄s
nm(z) =

∫
dxdyδs

nm(x) =

∫ 1

0

dsδ(z − szn − (1− s)zm)

=
θ(z − zm)− θ(z − zn)

zn − zm
, (3.59)

where θ(zn − z) = 1− θ(z − zn). Then we obtain∫ z

0

dz′δ̄nmS (z′) =
(z − zn)θ(z − zn)− (z − zm)θ(z − zm)

zm − zn

=
min(z, zn)−min(z, zm)

zn − zm
, (3.60)

where min(z, zn) = zθ(z)− (z− zn)θ(z− zn). Finally, the velocity increment is expressed by

δu(z) =
1

2η0L2

∑
n,m

Fnm,1(zn − zm)

∫ z

0

dz′δ̄s
nm(z′)

=
1

2η0L2

∑
nm

Fnm,1[min(z, zn)−min(z, zm)]

=
1

η0L2

∑
n

min(z, zn)Fn,1. (3.61)

Appendix 3.B Approximated expressions for kinetic theory

3.B.1 Hookian dumbbell

Eq. (3.54) can be rewritten in a closed form for the second moment of the spring coordi-

nates in a steady state with an imposed plug flow. The solution is given by[95]

〈q ⊗ q〉q =
kBT

H


1 + 2θ2 0 θ

0 1 0

θ 0 1

 , (3.62)

where

θ = τ
du0

dz
= τκµ0Ee

−κz. (3.63)

Therefore, we have

〈q ⊗ F s〉q = H〈q ⊗ q〉q, (3.64)
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and the polymeric stress tensor is

σp = c〈q ⊗ F s〉q − ckBT I

= ckBT


2θ2 0 θ

0 0 0

θ 0 0

 . (3.65)

The Kirkwood diffusion constant can be estimated by

〈DK
zz〉q =

kBT

12πη0a

[
1 +

3a

4

〈
1

q

(
1 +

q2
z

q2

)〉
q

]

≈ kBT

12πη0a

[
1 +

3a

4

〈q2 + q2
z〉q

〈q2〉3/2q

]
, (3.66)

where the second term is split into the second order moments, and thus, we obtain

〈DK
zz〉q =

kBT

12πη0a

[
1 +

3a

4δ

2(θ2 + 2)

(2θ2 + 3)3/2

]
. (3.67)

It is differentiated with z as

d

dz
〈DK

zz〉q =
kBT

12πη0a

3a

4δ

4κθ2(θ2 + 3)

(2θ2 + 3)5/2
. (3.68)

The migration velocity can be estimated using the splitting approximation of the averages

as

umig(z) =
3kBT

64πη0z2

〈
ω(q2

x + q2
y)− 2ω

〉
q

≈ 3kBT

32πη0z2
〈ω〉q〈q2

x + q2
y − 2〉q

=
3kBT

32πη0z2
〈ω〉qθ2, (3.69)

where

〈ω〉q =

〈(
1 +

q2
x + q2

y

4z2

)−5/2
〉
q

≈
(

1 +
θ2 + 1

2z2

)−5/2

. (3.70)
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3.B.2 FENE dumbbell

The second moment of the spring coordinate for a FENE dumbbell can be obtained by

pre-averaged closures of p-FENE model.[94, 95] It is given by

〈q ⊗ q〉q =
kBT

H

Θ

θ


1 + 2Θ2 0 Θ

0 1 0

Θ 0 1

 , (3.71)

and

〈q ⊗ F 〉q = kBT


1 + 2Θ2 0 Θ

0 1 0

Θ 0 1

 , (3.72)

where

Θ = 6

√
3 + b

54
sinh

{
1

3
arcsinh

[
bθ

108

(
3 + b

54

)−3/2
]}

. (3.73)

The polymer stress tensor is

σp = ckBT


2Θ2 0 Θ

0 0 0

Θ 0 0

 . (3.74)

The Kirkwood diffusion constant is

〈DK
zz〉q =

kBT

12πη0a

[
1 +

3a

4δ

√
θ

Θ

2(Θ2 + 2)

(2Θ2 + 3)3/2

]
, (3.75)

and its derivative is

d

dz
〈DK

zz〉q =
kBT

12πη0a

3a

4δ
× κ
√
θ

Θ

×
[
θ
dΘ

dθ

4Θ(Θ2 + 3)

(2Θ2 + 3)5/2
+

(
θ

Θ

dΘ

dθ
− 1

)
2(Θ2 + 2)

(2Θ2 + 3)3/2

]
,

(3.76)

where

dΘ

dθ
= 2

√
b+ 3

54
cosh

{
1

3
arcsinh

[
bθ

108

(
3 + b

54

)−3/2
]}

× b

108

[(
bθ

108

)2

+

(
b+ 3

54

)3
]−1/2

. (3.77)
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Finally the migration velocity is obtained as

umig ≈
3kBT

32πη0z2
〈ω〉qΘ2, (3.78)

where

〈ω〉q ≈
(

1 +
Θ

θ

Θ2 + 1

2z2

)−5/2

. (3.79)
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4. SUMMARY

4.1. Conclusion

Electro-osmotic flow of charged and uncharged polymer solutions is studied by theories

and simulations. We close this thesis with the following conclusion.

(i) In the linear regime, charged and uncharged polymer solutions are treated within

the framework of self-consistent field theory. When the polymer is uncharged and

non-adsorbing, the structure of the electric double layer is characterized by the two

lengths: the Debye length and the depletion length of the polymer. The electro-osmotic

mobility varies according to the equilibrium structure of the double layers. When the

salinity is low enough that the Debye length exceeds larger than the depletion length,

the mobility is suppressed by the polymeric stress. On the other hand, when the

salinity is large, the mobility is as large as that without the polymer.

(ii) When the polymer is charged and chemically non-adsorbing to surfaces but electrically

attractive, the depletion-adsorption transition occurs at a specific salt concentration.

The transition is quite sharp, and the electro-osmotic mobility also varies sharply

near the transition point. Furthermore, in the strong adsorption state, the linear

mobility changes its sign. Flow reversal is induced by a combination of a high-viscosity

adsorption layer and the overcharging potential.

(iii) In the nonlinear regime, a neutral non-adsorbing polymer solution is studied using a

Brownian dynamics simulation and theoretical calculation of the Fokker-Planck equa-

tion. The profile of the polymer concentration in a strong electric field shows a dynamic

depletion layer that is ten times as thick as the equilibrium one. The mobility reflects

the structure near the surface and become larger with increasing external electric field.

When the depletion length equals the Debye length, the magnitude of the mobility

is saturated and is nearly equal to that without the polymer. Theoretical calculation

reproduces these results quantitatively.
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4.2. Future works

Finally, we remark on the prospects. We have already given specific remarks in each

section, so here we present remarks relevant to the entire thesis.

(a) To verify our theory, it is desirable that more experimental studies to be reported.

Our theory assumes that the complex molecular force between the surface and the

polymer is treated by a simple boundary condition, and the individual properties of

the polymers are totally neglected. Therefore, our prediction is only qualitatively

meaningful. To make the theory more accurate and quantitative, experimental data

are indispensable.

(b) In sections 2 and 3, we totally ignored the dielectric nonuniformity induced by polymer

adsorption and depletion. Most polymers have a dielectric constant of ∼ 5 which is

much smaller than that of water; thus, it seems to be important to consider the effect

on the distribution of ions and the electrokinetic properties.

(c) Using our results, we can control the electro-osmotic mobility by changing the salinity,

charge fraction, and applied electric field. However, the magnitude of the mobility does

not exceed the mobility without the polymer. To exceed it, it seems to be crucial that

the added polymer reduce the original viscosity. One idea is adsorption to the surface

with strongly hydrophobic polymers. This will create a pseudo-boundary, and the

water molecules will be repelled from it to form the water depletion layer.

(d) In this thesis, our study is limited to fundamental research to clarify the characteris-

tic behaviour of the electrokinetics in polymer solutions. To promote and encourage

experimental research, we should investigate more practical problems such as the ef-

ficiency of energy conversion. Another consideration is the entrance and exit effect

on the electrokinetics, which is unavoidable in experiments. Around the entrance and

exit of the channel or capillary, a concentration polarization is induced by the charge

neutrality condition. This effect on the electrokinetics in the middle of channels or

capillaries seems to be severe.
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