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Abstract
In this thesis, we report on bifurcation analysis of a water droplet oscillating in an

oil phase under a dc electric field. From this analysis, we expected that the addition
of noise would induce the coherence oscillation of the oscillating water droplet. We
also demonstrated that the addition of noise to a dc bias voltage induced this coherent
motion of the droplet in our experiment. We also employed oil flow containing plastic
beads instead of a water droplet in an oil phase under a dc voltage. We could observe
rotation of the droplets and assumed it to be caused by the oil flow.

On the nano- and micro scales, the viscosity is much larger than inertia. Further-
more, we cannot ignore thermal fluctuations on such scales. Under these conditions,
it is difficult to drive a micro- or nano-sized object made by a conventional method
typically employed on macro scale. One solution is to apply the relevant phenomena
on the microscale. In the present study, We attempted to use a water droplet oscillating
in an oil phase under a dc electric field as a novel mechanism for driving a micro- or
nano-sized object. To accomplish this, we investigated the oscillating mechanism in
this thesis.

In Chapter 3, we report on the bifurcation analysis of a water droplet oscillating in
an oil phase under a dc electric field. In our experiment, we changed both the distance
and the voltage between the electrodes. This oscillation phenomenon of a water droplet
in an oil phase under a dc electric field is well known since the 1990s. However, the
threshold voltage has thus far not been determined, and its dependence on the scale of
the system has not been evaluated. To our best of our knowledge, the present study
is the first attempt to reveal the scale dependence of the oscillation phenomenon. We
also made a numerical model of the droplet motion in the oscillation phenomena, on
the basis of which we expected the droplet oscillation to be the limit cycle oscillation.
We also expected that the addition of noise stabilize the oscillation near the threshold
voltage. In Chapter 4, we evaluated this expectation. We added Gaussian white noise
to a dc bias voltage. Although the voltage between the electrodes was slightly smaller
than the threshold voltage, the additional noise enhanced the oscillation of the water
droplet in the oil phase. We examined the dependence of the droplet motion on the
magnitude of noise and found a suitable magnitude of noise exists at which oscillation
of the droplet occurs. We think that this droplet oscillation is a kind of coherence res-
onance. The nature of the oscillation as the limit cycle is crucial for driving a micro-
or nano-sized object, since the limit cycle is stable against disturbances. Droplet os-
cillation also generates coherence resonance, which is a desirable characteristic for the
micromachines functioning in noisy environments to account for instabilities such as
thermal fluctuation and so on.

In this study, we found that a water droplet oscillating in an oil phase under dc
voltage has some beneficial characteristics. Nevertheless, the water droplet is unsuit-
able in some scenarios. Water droplets suffer from the disadvantage of easily breaking
up and coalescing under an electric field. To overcome these disadvantages, we used
plastic beads instead of a water droplet in the present study, as described in Chapter 5.
As a result, we observed that they rotated between the electrodes. Since plastic beads
are not conductive, we did not consider them to be charged. We expected this rota-
tion to be caused by electrohydrodynamic (EHD) flow. We calculated the EHD flow
numerically and obtained a vortex similar to that of the rotating beads. As a result,
we confirmed that EHD flow caused the rotation of the beads. EHD flow is commonly

iii



used to drive a micro-pump. However, it has not been used as a power source for driv-
ing a microsized object. In the present study, we found that EHD flow could be used to
drive a microsized object. Although generation of rotational motion on the microscale
is difficult because of large friction, we were able to generate a rotational motion under
a dc electric field.

In summary, we examined the scale dependence of the oscillation of a water droplet
in an oil phase and found the oscillation to be a limit cycle and to have a characteristic of
coherence resonance. We also confirmed that EHD flow could rotate a microsized object
under a dc electric field and established a novel mechanism for driving a microsized
object. We anticipate this mechanism to be applicable to a micromachines in the future.
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Chapter 1

General Introduction

1.1 Perspective

At the micrometer scale, information is sticky and noisy (Fig. 1.1). Furthermore, at this
scale, viscosity is dominant over inertia. Autonomous regular motions in a microfluidic
system, i.e., with Reynolds number; Re ≪ 1, generally require continuous supply of
energy, since the viscosity or dissipation term becomes much more significant than the
inertia term for motion in such a system [3]. Moreover, thermal fluctuation becomes
significant in the motions of micro- to nanosized objects.

Progress in the field of microfabrication has facilitated development of microscale
technologies such as the microelectromechanical system (MEMS) technology, micro-
total analysis system (µTAS) technology [4], and 3D laser fabrication [5, 6]. However,
owing to the abovementioned problems, in the fablication of a small object mimicking
a conventional engine, it is challenging to reproduce the desired motion as can be done
on the macroscale. Therefore, there is a need to establish an innovative approach to
drive nano- and micromachines.

One way to overcome these problems is to explore or employ the mechanism of
biological motor proteins, which already exist in microorganisms (Fig. 1.2). Biologi-
cal motor proteins are usually present between the membranes that devide the inside
of the cell from its surroundings. They use the potential difference between the outer
and inner boundaries of the cell for movement. Studies on various biological motile
systems such as flagella, cilia, and other locomotive systems have been conducted to
clarify the mechanisms that underlie their energy transformation strategy [7–10]. Al-
though complete construction of an artificial motor protein has not yet been realized,
some research groups have utilized microorganisms as a power source for microma-
chine [11, 12]. Nevertheless, the features of the mechanism of the biological motor
proteins are capable of being utilized in generating forces of the surrounding noisy
environment.

In nonlinear and nonequilibrium physics, limit cycle oscillation is considered a suit-
able system for a noisy environment.A detailed introduction of limit cycle oscillation
is provided in Chapter 2. In limit cycle oscillation, only one trajectory is independent
of the initial condition, thereby indicating the robustness of this limit cycle oscillation.
If we can find a limit cycle oscillator on the microscale, it would be highly useful in
realizing an efficient micromachine.

Therefore, this thesis focused on the oscillation of a droplet/particle in an oil phase
under a dc electric potential. Many groups have studied this kind of system from scales
ranging from the sub-milimeter scale to centimeter scale. However, the threshold volt-
age for this system has not yet been determined, and its dependence on the scale of the
system has not been explored. In this study, first, we reduced the scale of this system
to the microscale. This system converts electric energy to kinetic energy, which is the
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FIGURE 1.1: Viscosity and thermal fluctuation are not of concern during
swimming or running motion. However, when an object is microsized,
viscosity is dominant over inertia. In this case, thermal fluctuations are

also comparable to the size of the object.
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FIGURE 1.2: In a situation where the viscosity and thermal fluctuation
are dominant, protein motors in microorganisms and minute organs in

cells can generate the desired force efficiently.



4 Chapter 1. General Introduction

same principle as that of biological motor proteins. Investigation of the behavior of
a microsized droplet oscillating under a dc voltage is connected to gaining an under-
standing of the motor protein. The oscillation of the droplet is caused by the balance
of energy pouring into the system and its dispersion. In this study, we demonstrate
that the oscillation is a limit cycle oscillation. We also demonstrate that his system is
robust against fluctuations. We investigate some aspects pertaining to this oscillation
to enable realization of a micromachine by means of a proposed novel mechanism.

1.2 Outline of thesis

In Chapter 2, two important topics for discussion pertaining to this thesis are intro-
duced: (1) Limit cycle and coherence resonance and (2) droplet oscillation between the
electrodes under a dc voltage in an oil phase. WeThis chapter also introduces a few
topics related to a microsized object in a dielectric liquid under an electric voltage.

In Chapter 3, back-and-forth micromotion under a dc electric field is described. We
reduced the scale of the droplet oscillation system to the microscale and investigated
the bifurcation of the droplet motion. It is important to establish the bifurcation point
between the oscillatory state and the stationary state for driving the microsized droplet.
In this study, we found that this oscillation is a limit cycle oscillation. This feature of
the microsized droplet oscillation system is suitable for its application to the micro-
machines. The contents of this chapter have been published in paper [1] listed at the
beginning of papers.

In Chapter 4, the coherence resonance occurring in the oscillatory motion of the
microsized droplet is demonstrated. To examine the stability of the droplet oscillating
under a dc electric field, we add noise to the oscillation system. As a result, the droplet
is found to exhibit coherence resonance, which refers the oscillation induced by noise.
If we apply this droplet oscillation system to a nano- or micromachine, we can not
ignore the effects of thermal fluctuation. The characteristic of the droplet oscillation of
being a kind of coherence resonance indicates that the oscillation can be stable even in
such a noisy environment. The contents of this chapter have been published in paper
[2] listed at the beginning of this thesis.

In Chapter 5, the effect of electrohydrodynamic (EHD) flow on the rotation motion
of microparticles rotation in an oil phase is numerically simulated. When plastic beads
are used instead of water droplets, they are observed to rotate between the electrodes,
where this rotation is induced by the EHD flow. In this chapter, we first adopt EHD
flow for analyzing the motion of a microsized object in an oil phase driven by an electric
field. Unlike a water droplet, plastic beads are not charged. However, EHD flow can
drive plastic beads under an electric field; this is the novel mechanism that we propose
for driving a microsized object.

In Chapter 6, the contents of this thesis are summarized, and the future problems
are presented.



Chapter 2

Background

2.1 Introduction

In this chapter, we introduce some fundamental topics aimed at understanding the
contents of chapters from Chapter 3 onward. First, we are going to introduce a limit
cycle as a nonlinear oscillator and the concept of coherence resonance related to a limit
cycle. Then, we summarize studies on the oscillation of a droplet in an oil phase under
a dc voltage. This is the primary topic of this thesis. We also explain a few topics
pertaining to a microsized object in a dielectric liquid under an electric voltage.

2.2 Limit Cycle Oscillation and Coherence Resonance

2.2.1 Harmonic Oscillator

We typically learn about a Harmonic Oscillator during our high school and/or in the
the first grade at university. This oscillator is fundamental and important to gaining
an understanding of advanced phenomena First, the oscillator is in its equilibrium po-
sition. When some energy is added to it, it starts oscillating. This periodic motion is
termed simple harmonic motion and is the reason why the oscillator is known as a har-
monic oscillator. In simple harmonic motion, the restoring force is directly proportional
to the displacement. One example of this motion is that of a spring. Let us consider
a point　mass with a spring (Fig. 2.1). When the point mass is at x = 0, it is in the

0

x

m

FIGURE 2.1: Point mass m and spring with the spring constant k. The
displacement of the mass from the natural length of the spring is de-

noted as x.

equilibrium state. When displacement x is added to it, the equation of motion of the
point of mass becomes

m
d2x

dt2
= −kx. (2.1)

We can solve this equation analytically and obtain the sinusoidal motion, as shown in
Fig. 2.2.
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FIGURE 2.2: Analytical solution of Eq. 2.1.
The initial condition is x(0) = 1. For the sake of simplicity, we take

m = k = 1.

This oscillation is ideal oscillation; it can not be observed in the world we live in.
The reason for this is resistance. In the next section, we introduce a harmonic oscillator
with resistance.

2.2.2 Harmonic Oscillator with Resistance

Resistance is the force that resists the motion. It can be of several kinds in the real
world, such as friction and air resistance.

When resistance is proportional to the velocity, the equation of motion, i. e., Eq.2.1
is modified as

m
d2x

dt2
+ γ

dx

dt
= −kx. (2.2)

This equation is not symmetric for time-inversion(t→ −t). We solve this equation and
acquire the oscillation with attenuation(Fig. 2.3).

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

x(t)

t

FIGURE 2.3: Analytical solution of Eq. 2.2.
The initial condition is x(0) = 1. We take m = k = γ = 1.

When γ < 0, the attenuation changes to amplification(Fig. 2.4).
,which means that energy is pouring into the system.
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FIGURE 2.4: Analytical solution of Eq. 2.2 with γ = −1.
The initial condition is x(0) = 1. We take m = k = 1.

2.2.3 Limit Cycle Oscillation

As discussed in the previous section, when energy is poured the energy into a harmonic
oscillator, it eventually approaches infinity. For example, when we sit on a swing, the
action of pumping our leg during swinging pours energy into the swing. However, the
swing does not approach infinity; this is because there is some resistance.

Let us add resistance to Eq. 2.2 with γ < 0 (Amplification). For the sake of simplic-
ity, we set m = k = 1. For preparation, we write the equation in two-dimensional form
as,

du

dt
+ γu = −v (2.3)

dv

dt
= u. (2.4)

In these equations, we denote the displacement as v and the velocity as u. Eqs. 2.3 and
2.4 are the same as Eq. 2.2. Then we add resistance to Eqs. 2.3 and 2.4. One solution is
to add the force proportional to u3 to Eq. 2.3.

du

dt
+ γu+ u3 = −kv (2.5)

dv

dt
= u (2.6)

Upon differentiating Eq. 2.5 with respect to t and substituting Eq. 2.6 into it, then we
get

d2u

dt2
+ (γu+ 3u2)

du

dt
= −u. (2.7)

This equation represents the van der Pol oscillator. 1 This equation can be solved
analytically in the limited condition. Here, we solve the equation numerically under
different initial conditions; the obtained result is shown in Fig. 2.5. The obtained trajec-
tories are the same under all these initial conditions. This is a feature of the limit cycle

1In 1926, van der Pol from Phillips (Company) discovered this equation. He first discovered this phe-
nomenon in electric circuits employing vacuum tubes.[13]
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FIGURE 2.5: Numerical solution of Eqs. 2.5 and 2.6 with γ = −0.1.
The initial conditions are indicated in the graph.

oscillation. In a harmonic oscillator, different initial conditions yield different trajecto-
ries. However, the trajectory of the limit cycle oscillation is independent of the initial
condition.

Examples of the limit cycle are everywhere around us, e. g., a firing nerve cell, a
bowed violin string, flying aircraft and the Belousov-Zhabotionsky (BZ) reaction [14].
Of these examples, the BZ reaction, which is a chemical reaction that oscillates, has
been studied extensively.

The color of a BZ solution changes synchronously over time. The oscillation of
the color corresponds to the concentration of the chemical species is changed. The BZ
solution does not oscillate when the combination of chemical species. However, when
a silver wire is inserted in the solution, the color of the solution is observed to change at
the point at which the wire touches the solution. What is the difference between these
two phenomena? We explain this difference in the next section.

2.2.4 Bifurcation

To understand the phenomena introduced in the previous section, we first introduce a
numerical model. We can write the equation that describe chemical reaction. However
these equations are so complicated that understanding their behavior becomes difficult.
A well-known numerical model for describing the BZ reaction is the Oregonator model.
The equations of the Oregonator model (Tyson’s version[15]) are as follows.

ϵ
du

dt
= u− u2 − fv

u− q

u+ q
(2.8)

dv

dt
= u− v (2.9)

To understand the behavior of these equations, we plot du/dt = 0 and dv/dt = 0 in a
phase plane (Fig. 2.6). These lines are called nullclines, and the cross point is a fixed
point2. When the point (u0, v0) is on the upper half of the du/dt = 0 line, du/dt < 0.
When the point (u0, v0) is on the upper half of the dv/dt = 0 line, dv/dt < 0. Every

2We consider fixed point as the point where (du/dt, dv/dt) = (0, 0). The system keeps stopping until
it is driven by some external force.
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FIGURE 2.6: Nullclines of Eqs. 2.8 and 2.9. (a) Oscillatory state (f =
1, q = 0.0008) and (b) excited state (f = 9, q = 0.0008). The cross point is

the fixed point.

point in the phase plane has (du/dt, dv/dt) as the vector. Therefore, we can understand
the behavior of the equations. The key factor for understanding this behavior is the
position of the fixed point. We can investigate whether the fixed point is stable or
unstable from the surrounding vectors. In Fig. 2.6, we can barely see where the fixed
point is. To address this issue, we employ the equations whose behavior is the same as
that of the Oregonator model:

ϵ
du

dt
= u(1− u)(u− a)− v, (2.10)

dv

dt
= u− bv − I. (2.11)

The nullclines are shown in Fig. 2.7 and they are similar to those of the Oregonator.
When a = b = I = ϵ = 0, these equations are the same as Eqs. 2.5 and 2.6.

(a) (b)Oscillatory Excited

-0.02

 0

 0.02

 0.04

 0.06
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-0.2  0  0.2  0.4  0.6 0.8  1
-0.02

 0

 0.02

 0.04

 0.06

0.08

 0.10

 0.12

-0.2  0  0.2  0.4  0.6 0.8  1

FIGURE 2.7: Nullclines of Eqs. 2.10 and 2.11. (a) Oscillatory state (a =
0.2, I = 0.4, b = 1) and (b) excited state (a = 0.2, I = 0, b = 3).
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The (du/dt, dv/dt) vectors are drawn as shown in Fig. 2.8. In Fig. 2.7(a), i. e.,
the oscillatory state, we start the point P far from the stable point. In Eq. 2.10 du/dt is
written with ϵ. This means that when the right-hand side of Eq. 2.10 is of the same order
as that of Eq. 2.11 ,du/dt ≫ dv/dt. Then, the system moves rapidly in the direction in
which u becomes greater and stops when the point reaches the du/dt = 0 line. Now, the
right-hand side of Eq. 2.10 is smaller than that of Eq. 2.11 . Then, when du/dt≫ dv/dt,
the point move upward the du/dt = 0 line to the top. When the point reaches the top of
the du/dt = 0 line, du/dt≫ dv/dt again. Repeating this behavior, the system oscillates.
This is known as a limit cycle. On the other hand, in the excited state (Fig. 2.7(b)), we
start the point P far from the stable point. The point moves on the same track to the
half way mark. However, a stable fixed exists point on the du/dt = 0 line. The point P
eventually overlaps with the stable fixed point, and the system does not change. When
we place the point P’ near the fixed point, the point again moves back toward the fixed
point again. If we add a large fluctuation to the point and let it move away from the
fixed point, the point moves along the pseudo-track and comes back to the fixed point.
This is the reason why this state is called the excited state. We can excite the system by
adding large fluctuation.

By adjusting the relevant parameters, we can change the behavior of a nonlinear
oscillator. This change in the behavior is called bifurcation, and it is one of the charac-
teristics of a nonlinear system.

(a) (b)Oscillatory Excited

Stable
-0.02

 0

0.02
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 0.06

0.08

 0.1

0.12

-0.5  0  0.5  1  1.5

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0.12

-0.5  0  0.5  1.0 0.5

P P
P’

Unstable

FIGURE 2.8: Nullclines with the vector (du/dt, dv/dt). (a) In the oscilla-
tory state, the system starts from the point P and shows the oscillation.
(b) In the excited state, the system starts from the point P and eventually

overlaps with the stable fixed point.

2.2.5 Coherence Resonance

As seen in the previous section, we can excite the system by adding a large fluctuation
when it is in the excited state. Then what would happen upon adding a continuous
fluctuation to a nonlinear system? In 1993, Gang found that addition of noisy force
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could cause the system – which possesses a limit cycle – to oscillate similar to a limit
cycle in which a parameter is smaller than its critical value [16]. Moreover, in 1997,
Pikovsky and Kurths also found that a limit cycle similar to the oscillation in the Fitz
Hugh-Nagumo (FHN) model can be generated in an excited state[17]. They termed this
phenomenon as Coherence Resonance. Gang and Pikovsky demonstrated coherence
resonance numerically; they revealed that there exists a suitable magnitude of noise
at which a periodic motion can be generated. The schematic illustration of coherence
resonance is shown in Fig. 2.9.

t

FIGURE 2.9: Schematic illustration of coherence resonance. First, the
point remains at the fixed point. Next, noise perturbs the potential and
the point escapes from the fixed point. Then the potential is restored and

moves around the plane and back to the fixed point.

Here, we attempt to reproduce Gang and Pikovsky’s numerical simulation. They
used the FHN model with external noise,

ϵ
du

dt
= u− u3

3
− v (2.12)

dv

dt
= u+ a+Dξ(t). (2.13)

where ξ(t) is Gaussian noise with a zero mean and it has the relationship < ξ(t)ξ(t′) =
δ(t − t′) >. Further, D is the magnitude of noise. In this model, if |a| < 1, a limit cycle
exists. On the other hand, if |a| > 1, only the attractor is a stable fixed point. We add
noise to a system with a = 1.05, which is an excited state but near the bifurcation point.
Figure 2.10 shows the results of the numerical simulation 3. As can be seen from this
figure, a suitable magnitude of external noise possibly exists at which an oscillation can
be generated.

Coherence Resonance can also be reproduced experimentally. In this study, we
employed the BZ reaction as an experimental example of a limit cycle. There are many
kinds of BZ reactions. The BZ reaction is of several kinds. For example, one kind of

3We could not perform the numerical simulation with the same coefficients as those of Pikovsky and
Kurths [17]. We instead used a Gaussian distribution having a zero mean and a variance is 1.0. We
also consider ϵ = 1.0. Though Pikovsky and Kurths [17] used the Euler method to solve the differential
equations, we used the fourth-order Runge-Kutta method.
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FIGURE 2.10: Results of numerical simulation. We added noise with
magnitude D to the excited state in the FHN model. When D = 0.1, u
vibrates around the fixed point. When D = 1.0, spikes similar to regular
oscillation in the oscillatory state are observed. When D is increased to

10.0, the spikes seem to occur randomly.

BZ reaction is that which is activated by light, where the reaction can be controlled by
controlling light. In this study, we adjusted a light-activated BZ reaction to the excited
state and illuminated it with light with a random brightness level. As a result, we could
observe pseudo oscillation.

2.2.6 Stochastic Resonance

Stochastic resonance is a phenomenon similar to coherence resonance. The difference
between them is that stochastic resonance requires an external periodic force, whereas
coherence resonance can generate a periodic motion just by the addition of noisy exter-
nal force.

Next, we present an example of stochastic resonance. Let us consider about a dissi-
pation system with the periodic external force.

∂x

∂t
= −∂V (x)

∂x
+ ξ. (2.14)

The dissipative force ξ is expressed as

< ξ(t1)ξ(t2) >= 2Mδ(t1 − t2). (2.15)

The potential V (x), which is the double-well potential, varies periodically, and it is
written as

V (x) = −a
2
x2 +

b

4
x4 − xh cos(Ωt). (2.16)
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Ω is the frequency of the external force. For the sake of simplicity, we take a = b = 1
and h≪ 1. The time dependence of V (x) is shown in Fig. 2.11.

FIGURE 2.11: Schematic illustration of the time dependence of the po-
tential V (x)(Eq. 2.16).

Let us consider the transition between each minimum state in the potential. We de-
note the probability of x < 0 as n− and that of x > 0 as n+; then, their time dependence
of can be expressed as,

dn±
dt

= −W∓(t)n± +W±(t)n∓. (2.17)

The normalized condition is

n+ + n− = 1. (2.18)

W+ is the transition rate from the left minimum to the right minimum and W− is that
one from the right minimum to the left minimum. If we determine W±, we can obtain
n±.

When an external force is absent, we can linearize Eq. 2.14 around the equilibrium
solution x = ±1. Then, we take x = ±1 + δx, and obtain dδx/dt = −2δx. Here, the
relaxation rate is 2.

As the time development of the external force is adequately slower than this re-
laxation rate, Ω ≪ 2, the transition rate is determined by the shape of the potential
at a particular time. If we consider the potential as expressed in Eq. 2.16, it becomes
V (x = 0) − V (x = ±1) = 1/4 ± h cos(Ωt). We substitute this expression into Kramers’
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formula 4 and obtain the probability of the transition rate as

W± = k0 exp(±
h

M
cos(Ωt)), (2.19)

k0 =

√
2

2π
exp(− 1

4M
). (2.20)

Upon expanding Eq. 2.19 using h, we get W±

W± = k0[1±
h

M
cos(Ωt) +O(h2)]. (2.21)

Upon substituting the normalized condition Eq. 2.18 in Eq. 2.17, we get

dn±
dt

= −(W+ +W−)n± +W±. (2.22)

We can solve Eq. 2.22 and substitute Eq. 2.21 into the acquired solution for obtaining a
long-time limit. Finally we get

n±(t) = k0e
−2k0t

∫ t

0
dae2k0s(1± h

M
cos(Ωs)). (2.23)

Here we use the formulae∫
dseas cos(bs) =

1

a2 + b2
e(as)(a cos(bs) + b sin(bs)), (2.24)

cos(A−B) = cosA cosB + sinA sinB. (2.25)

Then Eq. 2.23 becomes

n±(t) = −1

2
± h

2M

2k0√
4k20 +Ω

cos(Ωt− ϕ), (2.26)

tanϕ =
Ω

2k0
. (2.27)

This n±(t) depends only on the time development of the external force.
We can calculate the time coefficient of x under a periodic external force and dissi-

pation force by using Eq. 2.26 as

< x >=

∫ ∞

−∞
dx xP (x, t). (2.28)

The distribution function P (x, t) of the two-state system in Eq. 2.16 is

P (x, t) = n+(t)δ(x− 1) + n−(t)δ(x+ 1). (2.29)

Then, we get

< x >= n+ − n−. (2.30)

4This formula describes the transition rate from one state to another state in the potential. We can
derive it by solving the Fokker-Prank equation to probability conservation and integrating it.
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Substituting Eq. 2.23 into this equation, we get

< x >= A cos(Ωt− ϕ) (2.31)

A =
h

M

2k0√
4k20 +Ω2

. (2.32)

This is the first-order response of the system under a periodic external force and dissi-
pation force.

We next investigate how the response amplitude A of the external force h depends
the magnitude M of the dissipation force, when we fix this amplitude of the frequency
of that Ω of the external force. Under the limit of M → 0, according to Eqs. 2.20 and
2.32, A becomes

A ∝ 1

M
e−1/4M . (2.33)

A is close to 0. However, if M increases, A decreases as A ∝ 1/M . Thus, we except
a certain value of M to give the largest value of A. A schematic illustration of this
dependence is shown in Fig. 2.12.

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

FIGURE 2.12: Dependence of amplitude A on magnitude M of noise
with Ω = 1. The curvature has a peak at D ∼ 0.5.

As discussed in Sections2.2.6 and 2.2.5, we can derive a certain system we can drive
by adding noise. These phenomena are effective mechanisms where we cannot ignore
the noisy external force.

2.3 Review of Droplet Oscillation between Electrodes

In this section, we discuss previous studies on a conductive droplet oscillating between
electrodes in a dielectric liquid. We also introduce some topics useful in understanding
this oscillation mechanism.

2.3.1 Before Droplet Oscillation

It is known since the 1960s that a conductive droplet in the dielectric liquid can deform
under application of an electric field. Taylor, a theoretician published a paper on the
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Rayleigh-Taylor instability in 1950 and a paper on the deformation and flow inside and
outside of a conductive droplet in a dielectric liquid under an electric field in 1966 [18].
His latter paper is based on the experiment by Allan and Mason in 1961 [19], who
studied the effects of an electric field on the deformation of a droplet. In those days,
researchers were interested in the deformation of a droplet under shear. Taylor also
published a paper on the topic in 1934 [20]. Allan and Mason investigated electrical
effect on a droplet.
Subsequently, some researchers studied the deformation of a droplet under an electric
field in the flow. We believe that they observed a translational effect of the droplet un-
der the electric field. However, no paper was published on the oscillation of a droplet
between electrodes until 1990. For about 30 years before that, researchers studied heat
and mass transfer by a droplet under an electric field. This transition of interest per-
taining to a droplet in a dielectric liquid is depicted in Fig. 2.13.

Deformation & Breaking up Oscillation

mm ~ cm

+-

FIGURE 2.13: Schematic illustration of precious studies on a droplet os-
cillation. Before the 1990s, researchers were interested in the deforma-
tion, breaking up and coalescence of a conductive droplet in a dielec-
tric liquid under an electric field. After the 1990s, the research interest

shifted to oscillation of the conductive droplet.

2.3.2 Droplet Oscillation

The schematic illustration of these experiments we introduce next is shown in Fig. 2.14.
In 1990, Mochizuki et al. first reported on the oscillation of a water droplet between
electrodes under a dc voltage in an oil phase. They showed that the oscillation resulted
in heat and mass transfer [21]. and also developed a numerical model, in which electric
force and gravity were employed. In the model, the resistance was the viscosity of the
rigid particle for the droplet. The model was found to well reproduce the results of
an experiment, whose conditions were as follows; droplet diameter of about 5 mm;
parallel-plate-type electrodes; distance of 25 mm between the electrodes; and dimethyl
silicone oil (KF-96), n-heptane and FC-75 used as continuous phase.

In 2003, Eow et al. also observed that a water droplet exhibited translational mo-
tion between electrodes in n-heptane. They only evaluate the relationship between the
velocity of the droplet and the force [22]. Eow et al. published the papers on this phe-
nomenon in 2001 and 2002 [23, 24], they demonstrated that water could be eliminated
from the oil phase by the application of an electric field. We believe that they discov-
ered that droplet’s translation phenomenon while attempting to determine a way to
eliminate water from the oil phase.
On the other hand, in 2002, Khayari and Perez reported the oscillation of a metal parti-
cle between electrodes under a dc voltage [25]. Understanding the motion of a charged
metal particle was crucial to understanding the phenomenon of dielectric relaxation,
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which is of importance in the fields of academics and xerography. They also observed
the period-doubling bifurcation of the oscillating metal particle experimentally [26].
The aim of their experiment was to measure the electric potential at the time when the
particle was leaving one of the electrodes, and they did not investigate the oscillation
itself. In their experiment, the electrodes were facing in the vertical direction. First,
the particle remained on the bottom electrode because of gravity. Then once the volt-
age between the electrodes was increased, the particle acquired a charge and when the
charged particle subjected an electric force, it left the electrode.

The oscillation of a droplet gained widespread research attention following the pub-
lication of Hase et al.’paper in 2006 [27]. By this time, the concepts of laser tweezer
(2001) [28] and microfluidics (2005) has also become known. Furthermore, approaches
for manipulating microsized objects were being established. In the study of Hase et
al., the size of the droplet was about 100 µm, and the distance between the electrodes
was about 400 µm. Changing the dc voltage can enable, a change in the mode of the
droplet motion to oscillation, bouncing, and adhesion to the electrode. Hase et al. also
demonstrated a simple model, in which, they used an overdamped equation of motion
owing to the small scale.

In the same year, Link et al. reviewed the application of an electric field in mi-
crofluidics. They introduced the coalescence of droplets and driving of a droplet in
the desired direction by application of an electric field [29]. These phenomena were
somewhat far from the oscillation of the droplet but they nevertheless related. In 2007,
Kim et al. reported the motion and deformation of a droplet between electrodes [30];
they provided a precise formula of the force for including the deformation of a droplet.
However, they did not show the time dependence of the formula. They first considered
the effects of dielectrophoresis (we introduce this phenomenon in section 2.3.4). They
also published a paper in 2008 [31], in which, they speculated the amount of charging
of the droplet by observing its velocity. A figure of the droplet motion revealed that the
droplet appeared to be driven at a constant velocity. The group of Kim et al. also stud-
ied droplet motion with the aim of applying it to microfluidics and using the droplet
as a microreactor. In theirs studies, the scale of the distance between the electrodes was
about a few centimeters, and the size of the droplet was on the order of hundreds of
micrometers.

In 2009, Ristenpart et al. discovered a phenomenon where in application of an
electric field governs whether or not a changed droplet coalescences to the oppositely
charged bulk water [32]. When the electric potential becomes higher than a thresh-
old voltage, the droplet does not coalesce. This is not oscillation between the elec-
trodes, but a closely related phenomenon. Having an understanding of the behavior
of a charged droplet is useful for fields such as inkjet printing, mass spectroscopy, and
cloud physics.
In 2010, Takinoue et al. reported the rotation of droplet rotating between diagonally
arranged electrodes [33]. On the microscale, if we fabricate a machine according to con-
ventional engineering approaches, it would be difficult to reproduce the desired mo-
tion because of the dominance of viscosity and friction. The abovementioned droplet
rotation is a novel mechanism for driving microsized objects in such a scenario. Since
2010, many groups have reported on phenomena related to the oscillation of a droplet
between the electrodes, as presented in Table 2.1.
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+-

~ sub-mm
Hase et al.

mm ~ cm

+-

Mochizuki et al., Eow et al.

+-- - + +

Link et al.

~ sub-mmmm ~ cm

+-

Kim et al.
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-
~ 10 µm
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Rinstenpart et al.

Bouncing or Coalescence

Deformation

Rotation

Coalescence in microfluidics

Oscillation Oscillation between pin electrodes

FIGURE 2.14: Schematic illustration of previous studies on oscillation of
a droplet. Several study topics related to the oscillation of a conductive

droplet in a dielectric liquid under an electric field.
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2.3.3 Droplet Charging

Most research groups have explained droplet motion in a manner similar to that de-
scribed below and depicted in Fig. 2.15. First, the droplet attaches to the electrode, and
it acquires some charges that are of the same sign as the electrode. The charged droplet
is driven by the electric field. When the droplet reaches the other electrode, it acquires
the charges that are of the same sign as the other electrode. The droplet then moves
back toward the direction from where it came.

Some researchers have adopted charging models. For example, Mochizuki and
Eow used the model of Felici and Cho [44]. Consder a charge denoted by Q; according
to this model, it is expressed as

Q =
1

6
πr3ϵ1ϵ2E. (2.34)

Here, r is the radius of the droplet; ϵ1 and ϵ2 are the dielectric constant of the parti-
cle/droplet and the medium, respectively; and E is the electric field. This model was
also used by Khayari and Perez [25]. It assumes the droplet as the perfect conduc-
tor. Hase et al. also used this model; however, they considered the discharging of the
droplet. Further, Takinoue et al. did not account for the explicitness of the model, they
instead speculated that at the electrode, the droplet acquires some charges of the same
sign as the electrode and that it loses charges in other areas. Jung et al. reported a
difference between the model of Felici and Cho [44] and the charge estimated by them
from their experimentally mesured droplet velocity.

We need to consider the governing equation for the charging of a dielectric liquid
under an electric field.

2.3.4 Dielectrophoresis

In this section, we introduce the process of dielectrophoresis. Knowledge of this pro-
cess is crucial to understanding the motion of a water droplet in oil under an electric
field.

When a dielectric particle is placed in an electric field, dielectric polarization occurs
on the particle, which causes the particle to act as the electric dipole. If the electric field
is uniform, this dipole aligns to the direction of the field. However, when the droplet
is placed in a nonuniform electric field, it drives the droplet. The force that drives the
particle is called dielectric force [45], and it is described as

FDEP = 2πϵ1R
3K∇E2. (2.35)

Here, ϵ1 and ϵ2 is the dielectric constant of the medium and the particle, respec-
tively; R is the radius of the particle; E is the electric field. K denotes the Clausius-
Mossoti function, which is written as

K =
ϵ2 − ϵ1
ϵ2 + 2ϵ1

. (2.36)

When the particle is the water droplet, ϵ2 ∼ 80. The dielectric constant of oil is ϵ1 ∼ 2.
In this situation, K > 0. The direction of the dielectric force is as Fig. 2.16. Now, we
consider the dielectric particle to be placed in uniform electric field E. When the dipole
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formed on the particle is denoted as P , the relation between E and P is expressed as

P = αE. (2.37)

Here α is the macropolarizability. The force F that is applied to the particle under the
electric field E is

F = (P · ∇)E. (2.38)

Then, upon substituting P in Eq. 2.37, we get

F = (αE · ∇)E (2.39)
= (1/2)α∇E2. (2.40)

Here,

∇E2 = 2(E · ∇)E + 2E × (∇×E) (2.41)

When there is no magnetic field, we can use ∇ × E = 0. Comparison of Eq. 2.35 and
Eq. 2.40 gives

α = 4πϵ1R
3K. (2.42)

When we consider a water droplet in an oil phase, we assume that the droplet has
no charge. However, when there is a gradient of the electric field, the droplet can move
because of dielectric force. The electric field does not have a gradient when parallel-
plate electrodes are used.
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FIGURE 2.15: Schematic illustration of droplet oscillation. a) When
the droplet attaches to the electrode, it acquires some charges. b) The
charged droplet is driven by the electric field. c), d) The same phenom-
ena as those seen in a), b) occur. The droplet exhibits the behaviors in

a)-d) repeatedly.

E

F=α∇E


FIGURE 2.16: Schematic illustration of dielectrophoresis. The direction
of the particle motion is determined by the ratio of the dielectric constant
of the medium to that of the particle. When the particle is a water droplet
and the medium is oil, the dielectric constant of the particle is larger than
that of the medium. In this case, the droplet moves toward the direction

in which E2 becomes larger.
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2.3.5 Electrohydrodynamics

When a high voltage is applied to a dielectric liquid, it starts to flow. This phenomenon
is termed EHD flow (Fig. 2.17(a)). When one electrode is inserted in a dielectric liquid
and another is placed over the liquid, the liquid is observed to rise to the electrode as
shown in Fig.2.17(b). This flow has potential applicability to EHD pumps and actua-
tors. However, the mechanism of EHD flow is poorly understood. Two review papers
of the EHD have been published: one in 1993 and the other in 2012. The latter paper
includes only the detailed modeling of EHD flow.

When we use a completely dielectric liquid, it has low electric conductivity and
permittivity. EHD flow is extremely slow. Recently, Ryu et al. [46] found that polar
additives introduced in dielectric liquids enhance the EHD flow: they added Span 85
to dodecan solution and generated the EHD flow by application of ac voltage. In the
latest review in 2012, the importance of dissociation and association in EHD flow has
been reported.

GND electrode

+ electrode EHD Phenomenon

(a)

(b)

FIGURE 2.17: (a) Schematic illustration of EHD flow. When electric po-
tential is applied to dielectric liquid, the liquid starts to flow. (b) Ex-
periment on EHD. When a pair of electrodes is employed, the liquid is

attracted to the electrode in air [47].





Chapter 3

Micro back-and-forth motion under
DC electronic Field

3.1 Introduction

In Chapter 2, we introduced studies on a water droplet oscillating in an oil phase un-
der a dc voltage. In the present work, we explore application of this droplet oscillator
to nano- or micromachines. As mentioned in Chapter 1, the Reynolds number in a
small-scale system is rather small, because of which it becomes necessary to establish
a new methodology for fabricating nano- or micomachines. In the previous studies
introduced in Chapter 1, application of an electrical potential on the order of 100 V
was necessary to induce rhythmic or oscillatory motion where the distance between
the electrodes was on the sub-millimeter scale. In the present chapter, we examine the
effects of downsizing the experimental system and demonstrate that the critical voltage
to induce oscillation of the droplet then decreases down to the level of 10 V. Interest-
ingly, this decrease is not linear; rather, it exhibits dependence given by ∼1.5 power.
This suggests that not only the electric field (V/L) but also the dielectric effects, i.e.,
∇(V/L)2, have a decisive effect on the threshold voltage for inducing droplet oscilla-
tion. In addition, external noise enhances the oscillatory behavior as a kind of coherent
resonance.

3.2 Experimental Setup

objective lens 

of microscope

glass plate

water droplet

mineral oil

V

L

FIGURE 3.1: Schematic representation of the experimental setup. Sta-
tionary DC voltage was applied to the oil phase containing micro water

droplets. V: Applied DC voltage. L: distance between the electrodes.

25
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=

hydrophilic

hydrophobic

DOPC

10 µL DOPC 
in mineral oil

MilliQ water

Vortex ~3 s

FIGURE 3.2: Schematic illustration of preparation of water droplet in oil
phase. First, 10 µM DOPC was dissolved in mineral oil as a surfactant
and sonicated properly. Next, 2 µL of MilliQ water was added to 10 µL
of 10 µM DOPC in mineral oil. To generate a microsized droplet, a vortex
mixer was run for around 3 s. Subsequently, the oil containing the water

droplets was taken on a glass slide.

A schematic illustration of the experimental setup is shown in Fig. 3.1. A water
droplet was suspended in mineral oil on a glass slide and direct current (DC) volt-
age was applied to the droplet using tapered tungsten electrodes. The motion of the
droplet was observed using an optical microscope (KEYENCE VW-9000, Japan). To
stabilize the micro-droplet, phospholipid molecules 10 µM dioleylphosphatidylcholine
(DOPC) (WAKO, Japan) had been dissolved in mineral oil (Nacalai Tesque, Japan) by
sonication for 90 min at 50 ◦C. 2 µl of pure water (Millipore, Japan) was added to 100
µl of the prepared mineral oil, and then the mixture was shaken by a vortex mixer
for approximately 3 s to obtain w/o droplets (Fig. 3.2). In the present study, we have
added phospholipid to stabilize the micro-sized water droplet [48], by considering the
electro-chemical property that DOPC is zwitterion, i.e., low electronic bias.

3.3 Results

Figure 3.3 shows typical examples of the oscillatory motion of a water droplet in a DC
electric field between the tapered electrodes, with an increase in the applied voltage.
The experiments show that the system exhibits a certain critical voltage for droplet
oscillation, which is dependent on the distance between the electrodes. As shown in
Fig. 3.3(a), at an inter-electrode distance of L = 210 µm, the droplet exhibited no ap-
parent motion below a threshold voltage of 16.3 V where the voltage was gradually in-
creased from 0 V to 16.3 V. When the applied voltage reached the threshold, the droplet
started to oscillate between the edges of the electrodes. During this oscillatory motion
as in Fig. 3.3, the voltage was fixed at the threshold value. The decrease in the distance
between the electrodes to 140 µm resulted in a decrease in the threshold potential, as
shown in Fig. 3.3(b).

A phase diagram of the droplet motion is denoted in Fig. 3.4 with threshold volt-
age values function of the distance between the electrodes. The results suggest that
the threshold potential was almost independent of the size of the droplet. When the
distance between the electrodes was below 70 µm, the droplets adhered to an electrode
before or during voltage rising. The diagram indicates that the threshold voltage to
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FIGURE 3.3: Spatio-temporal diagram of the motion of a droplet with a
diameter of 34 µm at (a) L = 210 µm and (b) L = 140 µm. An increase in
the applied DC voltage results in bifurcation from the static stationary

to an oscillatory state.

cause the oscillation tends to diminish with the decrease of the counter-electrode dis-
tance, L. Notably, the threshold line exhibits nonlinear dependence, that is Vc ∼ Lγ

where γ is 1.3± 0.2.
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FIGURE 3.4: (a) Phase diagram for mode bifurcation between rhythmic
motion and a stationary state as observed for droplets with different di-
ameters, where each point represents the threshold value for bifurcation.
The right top point is adapted from the last paper of our group [27]. The
arrows correspond to the spatio-temporal behavior given in Fig. 3.3. (b)
Plot of Log L vs Log V for the experimental data given in (a). The blue

solid line is L1.3, which is a best fit line to the experimental data.
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FIGURE 3.5: Spatio-temporal diagram (right) of the motion of a droplet
together with the time trace of its center of mass (left) under the DC
potential of 6 V. The droplet firstly moved toward the right electrode,
then returned back, and finally stay still at the position near the middle

of the couple of electrodes.
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3.4 Numerical Simulation

Next, we discuss the underlying mechanism of the oscillatory motion with special em-
phasis on the effect of the distance between the electrodes, by adopting the simple
phenomenological equation of motion:

kẋ = qE + α∇E2/2 (3.1)

where k (= 3πηd ∼ 10−7 kg/s) is a coefficient of viscosity resistance, and kẋ represents
the viscosity resistance for a moving droplet with diameter d and velocity ẋ. qE and
α∇E2/2 indicate the electric force and dielectric force, respectively acting on a droplet
with charge q and polarizability α (∼= 2×10−11 Nm3/V2) [45]. Under our experimental
conditions, the Reynolds number is rather small; Re = ρud/η ∼ 10−3 ≪ 1, where
ρ (∼ 103 kg/m3) and η (∼ 10−3 Pa · s) are the density and viscosity of the mineral oil,
respectively, and u (∼ 10−4 m/s) and d (∼ 10−5 m) are the velocity and diameter of
the water droplet. As in Fig. 3.3, contribution of the inertia force is much smaller than
that of the viscosity. We thus adapt the overdamped Langevin equation to interpret the
droplet motion, by neglecting the inertial term in Eq. 3.1 for simplification. Now, we
assume that the time-dependent change in the effective droplet charge, q. We put β is
a coefficient that is associated with the electrostatic property and time scale. Then q is
described as,

q̇ = β
v

l
sinh(x)− q

t0
(3.2)

Here, we put v as the voltage and l as the distance between the electrodes. The first
term on the right hand in Eq. 3.2 (the hyperbolic sine term) represents the rapid charg-
ing effect for the droplet touching onto the electrode as a differentiable function by
considering the symmetry of the experimental system. Through such kind of contin-
uous function, we also incorporate the charging process for the droplet located near
the electrode surface [27]. The second term in Eq. 3.2 indicates the gradual discharg-
ing effect during the translational motion of the droplet between the electrodes. In the
past studies [27, 33], through the careful observation on gradual slowing down during
the translational motion of the droplet, especially around the parameter region near
the threshold between the oscillatory motion and the stationary states, it has been con-
cluded that the slowing down is attributed to the discharging effect. In order to show
the existence of the discharging effect, we exemplifies the observation on the slowing
down as Figure 3.5, where the voltage between the electrodes was decreased to be 6
V before t = 0. This figure indicates the actual contribution of the discharging effect
during the translational motion. The relaxation time is experimentally measured as
0.53± 0.18 s.

The electric field can be written as E = (Ex, Ey). From the geometrical charac-
teristics in the experiment, we can regard that the electric field Ex along the direction
between the tips of the electrode is almost constant, whereas the electric field Ey on the
normal direction should be much large around the edges of the electrodes. To describe
such spatial symmetry of Ey, we simply adapt the even power components, x2 and x4

are used as the lowest orders to interpret the observation as,

E2
y = (v/l)2

(
−(x+ 1)2(x− 1)2 + 1

)
. (3.3)

where the positions of the negative and positive electrodes correspond to (x, y) =
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(−1, 0) and (x, y) = (1, 0), respectively. The general form of Eq. 3.3 is shown in Fig. 3.6.
The detailed discussion about E2

y is in Section 3.7.1. The effect of the distance between

 0

 0.1

 0.2

 1-1 -0.5  0  0.5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
Ey(x,y~0)

FIGURE 3.6: Schematic illustrations of the E2
y(x, y ∼ 0).

the electrodes is taken in the coefficient. The x component in Eq. 3.1 can then be given
as kẋ = qEx + α∂xE

2/2 ∼= qEx + α∂xE
2
y/2 = qEx − (2αv2/l3)x(x+ 1)(x− 1),

ẋ = Exq/k − (2αv2/kl3)x(x+ 1)(x− 1). (3.4)

For simplification, we set Ex = −v/l, since a droplet moves on the line between the
electrodes during back-and-forth motion. Then Eq. 3.4 is given in a dimensionless form
as,

ẋ = −qv/kl − (2αv2/kl3)x(x+ 1)(x− 1). (3.5)

The qualitative behavior of ẋ is dominated by the balance between the dielectric and
electrostatic terms.

Figure 3.7 shows typical results of the numeric calculation with the coupled differ-
ential Eqs. 3.2 and 3.5, by mimicking the experimental condition in which the voltage is
gradually increased. In this regime, an increase in the voltage forces the droplet away
from x = 0 to exhibit oscillatory motion. The electrical field, v/l, in Fig. 3.7(a) is greater
than that in Fig. 3.7(b). The frequency of the back-and-forth motion of the droplet in-
creases in proportion to an increase in the electric field between the electrodes.

Figure 3.8 shows a phase diagram of the numerical simulation. The schematic illus-
tration of the phase field of each region I, II, and III is illustrated as Fig. 3.9. Regions I
and II exhibit a stable fixed point at x = 0 and the limit cycle, respectively. The station-
ary region I and the oscillatory region II exhibit a boundary line with vc =

√
kl3/t0α,

which roughly corresponds the boundary curve in the experiment. As shown in both
experiment and numerical simulation, the transition from stationary to oscillatory phase
is not proportional to L, but to 3/2 on the power of L as calculated in linear stability
analysis around stable fixed point [14]. The least square fitting on the present experi-
mental results as given by L3/2 relationship is extrapolated well to the data point re-
ported by Hase et al. [27], as is revealed in Fig. 3.3. Competition between the dielec-
tric force and the static electric forces causes the limit cycle in terms of the nonlinear
dynamics and this bifurcation. It should be noted that such kind of bifurcation is gen-
erated only for smaller length scale. In larger system, the relative importance of the
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effects change significantly accompanied by the decrease on the dielectric contribution
and increase on the inertia.

= 6.0 = 8.0=11.0 26.0(a) (b) =14.0 32.0
 0
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-1 -0.5  0  0.5  1 -1 -0.5  0  0.5  1

FIGURE 3.7: Spatio-temporal diagram deduced from the numerical cal-
culations based on Eqs. 3.2 and 3.5, where t0 = 0.6, α = 0.075, β =
0.025, k = 0.4. The corresponding value of voltage, v, changes linearly
as in the graph beside the x− τ diagram. The distance between the elec-
trodes is l = 6.0 in (a), l = 8.0 in (b). The applied voltage is changed
from v = 11.0 to v = 26.0, whereas in(b), the voltage is from v = 14.0 to
v = 32.0, as shown in the time-traces shown on the right. The time (τ )

and space (x) scales are arbitrary.
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FIGURE 3.8: Phase diagram showing the numerical results with changes
in l and v. The parameters are t0 = 0.6, α = 0.075, β = 0.025, k = 0.4.
v and l are dimensionless variables. At the open circles, the droplet ex-
hibits oscillatory motion. At the filled circles, oscillatory and stationary
states coexist. At the cross marks, the droplet falls to the fixed point
x = 0. At the square, the droplet is trapped at fixed points near the

electrodes or it oscillates. It depends on the initial condition.



34 Chapter 3. Micro back-and-forth motion under DC electronic Field

Region II

Region III

Region I

Unstable

Stablex = 0

q = 0

FIGURE 3.9: Schematic illustrations of the phase field of each region cor-
responds to Fig. 3.8.
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3.5 Discussion

The results of the numerical simulations thus has reproduced the essential aspects of
the experimental observations, including the scaling law on the bifurcation. Here, we
should mention that there exists some degree of discrepancy on the simulation from
the actual droplet motion near the electrodes. Such discrepancy is attributable to the
simple assumption in our numerical model, where the potential is represented only
with x2 and x4 terms, in order to grasp the essence of the oscillatory phenomena. It
is highly expected that the behavior of the droplet near the electrode would be more
precisely described by adapting the physico-chemical properties as reported for a metal
sphere [25] and also for a liquid sphere [34].

Region III exhibits a pair of attractive fixed points near the electrodes, however, it
is difficult to identify the fixed points in region III due to the adhesive behavior of the
droplet on the electrode under lower voltage in the experiment. Although we have
discussed the behavior around the boundary between regions I and II, the position
of droplet is not strongly confined because the trapping potential is broad around the
fixed point in the stationary region I. This fact is also observed in the experiments,
where the observed positions of the trapped droplet are dispersed. Therefore, the ad-
dition of pulses or noise with a certain strength can create large motion even in the
stationary region I. In addition, we can also apply pulses or noise to induce effective os-
cillations in the stationary region III. This feature corresponds to a coherent resonance
with a bistable velocity field with excitability, where the inherent bistability comes from
dielectric trapping near the electrodes.

To examine the above mentioned effect of noise, we performed the experiment with
external noise. Although noise can be present in force, charge, voltage, and so on, in
this experiment we could control the noise in voltage. Therefore Gaussian white noise
of 500 kHz bandwidth was applied on the electric potential. With a reduction in the
DC electric potential, the frequency of oscillation became intermittent. In the typical
demonstration shown in Fig. 3.11, the droplet stopped near the electrode under 5 V
(showed as Fig. 3.10). When the Gaussian noise was added to the DC potential, where
the offset was 5 V and peak-to-peak was 1 V, the droplet started to oscillate again. This
behavior is similar to the numerical calculation with noise although the dielectric trap-
ping or adhesion on the electrodes must be larger than that in the numerical equation.
In other words, the experiment clearly exhibits a characteristic of coherent resonance
[16] in an excitable system. It is, therefore, expected that the parameter area of the
oscillation is expanded under noisy environment.

Finally, we would briefly mention the effect of surfactants. Since we adapt relatively
small droplets, the effect of the morphological deformation was negligible small under
our experimental conditions. However, detergents such as Triton X-100 and Span 85
caused obvious deformation of the droplet under DC voltage: It may be an interesting
extension to examine the effect of deformation coupled with the oscillatory motion.
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FIGURE 3.10: Relation between the voltage and the frequency of the
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FIGURE 3.11: Spatio-temporal diagram of the motion of a droplet with
a diameter of 24 µm at L=56 µm. For the period from t = 0 to t = 100 s,
the stationary DC voltage is decreased in a stepwise manner as shown

in the figure. From t = 100 s, we started adding the noise to DC 5 V.
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3.6 Conclusion

In conclusion, we have demonstrated that sustained rhythmic motion between a pair of
electrodes is generated under DC voltage on the order of several volts through down-
sizing to the order of 10 µm. We propose a phenomenological model equation and re-
produce the essential behavior of the droplet motion. Significant effect of noise against
the stationary region is observed both in the experiments and the simulation, where
the noise promotes the occurrence of rhythmic motion of the droplet.

3.7 Supplemental Discussion

3.7.1 Functional form of Ey

In this time, we used the estimated functional form as Ey. We can not derive the ana-
lytically Ey. To examine the shape of Ey, we calculate it numerically.

The schematic representation of Eq. 3.3 is shown as Fig. 3.12. The value of Ey near
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FIGURE 3.12: Schematic illustration of the electrical field in out experi-
ment.

the electrodes is higher than the other region.
Next, we did the numerical calculation with using the finite element method soft-

ware COMSOL Multiphysics. The result is shown in Fig. 3.13. The triangles in the
right and left side represent the electrodes. The potential of right triangle is 1 and that
of the left is 0. The red vector represents the electrical field. The rainbow lines are the
equipotential lines. The tendency of the magnitude and direction of red vectors is the
same the arrows in Fig. 3.12.

From the numerical calculation, we thought Ey(x, y ∼ 0) can resemble as(
−((x/L) + 1)2((x/L)− 1)2 + 1

)
. (3.6)

Eq. 3.3 is the non-dimensional form of Eq. 3.6.
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FIGURE 3.13: Result of numerical calculation of the electric field by the
software(COMSOL Multiphysics). The red vector represents the electri-

cal field. The rainbow lines are the equipotential lines.
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3.7.2 Details of model

In this section, we discuss the numerical model more precisely.
At first, we have a equation of motion 3.1 as

kẋ = qE + α∇E2/2. (3.7)

Here, k is the viscosity coefficient, x = (x, y) is the displacement of the droplet, E =
(Ex, Ey) is the electric field, q is the charge of the droplet. In this time, we only think
about the x-displacement of the droplet.

We at first think the positions of the tips of electrodes are (x, y) = (l/2, 0) for the
plus electrode and (x, y) = (−l/2, 0). Then distance between the electrodes is l. For
the static electric force, we think the droplet is as a point qE ∼ qEx. We consider
Ex = −v/l. The term of dielectric force, the 2nd term in the right hand of Eq. 3.1, is
derived from the gradient of Ey. This is because we consider that Ex does not change
along x. We can not determine Ey under the geometry of the experiment analytically,
then we use

E2
y = (v/l)2

(
−(

x

l/2
+ 1)2(

x

l/2
− 1)2 + 1

)
. (3.8)

We substitute Eq. 3.8 to Eq. 3.1, Equation 3.1 comes out

kẋ = qEx + α∂xE
2/2 (3.9)

∼= qEx + α∂xE
2
y/2 (3.10)

= −qv/l − 2α
v2

l3
× x

l/2
(
x

l/2
+ 1)(

x

l/2
− 1). (3.11)

Here, we set x′ = x/(l/2), then

k(l/2)ẋ′ = −qv/l − 4α
v2

l3
× x′(x′ + 1)(x′ − 1). (3.12)

Finally we get the equation of motion as

kẋ′ = −2qv/l2 − 8α
v2

l4
× x′(x′ + 1)(x′ − 1). (3.13)

We also modify the equation of charge as

q̇ = β
v

l
sinh(x/(l/2))− q

t0
. (3.14)

t = 0 is the relaxation time of discharging. We as well set x′ = x/(l/2), then

q̇ = β
v

l
sinh(x′)− q

t0
. (3.15)

Therefore, the equations the droplet follows are

kẋ′ = −2qv/l2 − 8α
v2

l4
× x′(x′ + 1)(x′ − 1), (3.16)

q̇ = β
v

l
sinh(x′)− q

t0
. (3.17)
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Number of the fixed points

Firstly, we derive number of the cross points of f(x) and g(x).
For Eqs. 3.13 and 3.15, we put ẋ′ = 0, q̇ = 0, then we get,

0 = −2qv/l2 − 8α
v2

l4
× x′(x′ + 1)(x′ − 1) ⇔ q = 4α

v

l2
x′(x′ + 1)(x′ − 1), (3.18)

0 = β
v

l
sinh(x′)− q

t0
⇔ q = βt0

x

l
sinh(x′). (3.19)

We define as

q = 4α
v

l2
x′(x′ + 1)(x′ − 1) ≡ f(x), (3.20)

q = βt0
x

l
sinh(x′) ≡ g(x). (3.21)

The slopes of f ′(x = 0) and g′(x = 0) define the number of the fixed points. f ′(x = 0)
and g′(x = 0) are

f ′(x = 0) = −4α
v

l2
, (3.22)

g′(x = 0) = −βt0
x

l
sinh(x′). (3.23)

When f ′(x = 0) = g′(x = 0),

l = 4α/(t0β) ≡ l0. (3.24)

If l > l0, f(x) and g(x) has only one cross point. The cross point is x = 0. Otherwise,
f(x) and g(x) have three cross point, x = 0 and x = x0,−x0(x0 ̸= 0).

These cross points of f(x) and g(x) are the cross points of dx/dt = 0 and dq/dt = 0.
Therefore we can think the cross points as the fixed points.

Stability around the fixed point

Next, we check the stability of the fixed point. Here we take the fixed point (x, y) =
(x0, q0) and think the small displacement δx, δq ≫ 1. The equations of δx, δq can be
linearized, then we get f(x), g(x) as

d

dt

(
δx
δq

)
=

(
−4αv2(3x20 − 1)/kl3 −v/kl
−(βv/l) cosh(x0) −1/t0

)(
δx
δq

)
(3.25)

We represent the matrix on the right hand as A. We also decide

A =

(
a b
c d

)

trA = a+ d, detA = ad− bc.

The time-development of δx is written as eλt, here

λ =
trA±

√
(trA)2 − 4detA

2
. (3.26)
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If δx oscillates,

(trA)2 − 4detA < 0. (3.27)

Assuming that δx oscillates, the condition that the fixed point is stable is trA < 0.
Otherwise δx is amplified.

Now, we think the fixed point as x0 = 0. The bifurcation point is considered as

trA =
8αv2c
kl4

− 1

t0
= 0 (3.28)

The voltage vc means the threshold voltage and represent as

vc =

√
kl4

8t0α
(3.29)

The condition of oscillation is Eq. 3.27. When x0 = 0, Eq. 3.27 becomes

(trA)2 − 4detA =

(
8α
v2

l4
− 1

t0

)2

− 4

(
8α

v2

l4t0
− 2v2β

l3

)
. (3.30)

The first term in the right hand is plus. If we show the second term is plus, (trA)2 −
4detA is plus.

4

(
8α

v2

l4t0
− 2v2β

l3

)
< 0 (3.31)

is one of the conditions. By simplifying this, we get l > 8βt0/α.

Scaling of model

Now, we think the scaling of the model equations Eqs. 3.13 and 3.15. We use the di-
mensionless constant L for length, T for time and Q for charge and V for voltage. The
dimensionless variable is written with ′. x′ has already normalized.

k(1/T )ẋ′ = −2(QV/L2)q′v′/l′2 − 8α(V 2/L4)
v′2

l′4
× x′(x′ + 1)(x′ − 1), (3.32)

⇔ k(L2/V QT )ẋ′ = −2q′v′/l′2 − 8α(V/L2)
v′2

l′4
× x′(x′ + 1)(x′ − 1) (3.33)

˙(Q/T )q′ = β(V/L)
v′

l′
sinh(x′)− Qq′

Tt′0
⇔ q̇′ = β(V/TQL)

v′

l′
sinh(x′)− q′

t′0
. (3.34)

Here we decide T = 1 and

k′ = k(L2/V Q) (3.35)
α′ = α(V/L2) (3.36)
β′ = β(V/QL), (3.37)
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Then equations 3.33 and 3.34 becomes

k′ẋ′ = −2q′v′/l′2 − 8α′ v
′2

l′4
× x′(x′ + 1)(x′ − 1) (3.38)

q̇′ = β′
v′

l′
sinh(x′)− q′

t′0
. (3.39)

These are the same equations as 3.33 and 3.34.
k is the viscosity coefficient. We think it follows Stokes’ law, then

k = −6πηr. (3.40)

η is the viscosity of oil ∼ 10−3 (Pa · s). α is introduced as α = 4πϵ1r
3K. ϵ1 is the

dielectric constant of water ∼ 80. K = ϵ2 − ϵ1/ϵ2 + 2ϵ1 and ϵ2 is the dielectric constant
of oil ∼ 4. Here we decide r ∼ 10−5 then we get k ∼ 10−7 and α ∼ 10−13. β is the
parameter in our model and we cannot decide by using the real value.

Fitting of experimental data

We try to fit the experimental data (Fig. 3.4(b)). With using the fitting function of gnu-
plot, we first decided the power of the distance between the electrdes l. As we de-
scribed in the main part, the dependence of L is 1.3. From this result, we think the first
model we described in the main part is more suitable than modified one. In the mod-
ified model, we scale the Ey function (Eq. 3.3) with l. If the former model is correct,
the function of Ey does not change when we change the distance between electrodes.
This is reasonable when we consider the effect of the tapered electrode. When the dis-
tance between the electrodes becomes wider, the elecrical field near the electrode does
not change dramatically. Then we use the first introduced model for fitting. When
we fit the results by using the function f(x) = a ∗ L3/2 + b, we get the coefficients as
a = 0.060± 0.00069 and b = 3.0± 1.8.

Secondly, we are going to make Eq. 3.1 non-dimensional form,

kL

QV
ẋ = −q v

l
− αV

L2

2v2

l3
x(x+ 1)(x− 1). (3.41)

Here, we put α′ = (αV )/L2 and k′ = (kL)/(QV ). When we decide L = 25 × 10−6,
V = 1.0 and the parameters we use in the numerical simulation are α′ = 0.025 and
k′ = 0.4, α becomes 25 × 10−13. This value of α corresponds to the value when the
water droplet is about 30 µm. We can not decide k and Q independently. When the
droplet is about 30 µm, k becomes 5.6 × 10−7. Using this value of k, we get Q as
3.5× 10−12. Since the order of q, the charge in numerical calcuration, is about 0.01, the
order of charge in the experiments becomes 10−14 C. The other group measured the
charge of the droplet as 10−9 C. However, our scale of the experiment is smaller than
theirs. Thus we can think this is reasonable.

When we calculate the coefficient of L3/2 with using these constants, we get 0.02.
The order of the coefficient agree with that we get from fitting.

There are two assumed reason for this difference. One is that the surfactant makes
the drag coefficient k larger. When there are surfactants on the surface between a
droplet and surrounded liquid, the effective drag coefficient is larger than Stokes’ law
[49]. The second reason is that the surfactant make the dielectric constant of oil higher.
There are many micelles of surfactant in an oil phase. According to α = 4πϵ1r

3K and
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K = (ϵ2 − ϵ1)/(ϵ2 +2ϵ1), ϵ1 is the dielectric constant of water and ϵ2 is that of oil. When
ϵ2 becomes larger and close to ϵ1, K becomes smaller. Then α also becomes smaller, the
coefficient becomes smaller.





Chapter 4

Noise-supported actuator: Coherent
resonance in the oscillations of a
micrometer-sized object under a
dc-voltage

4.1 Introduction

We succeeded the downsizing of the droplet oscillator in an oil phase under dc voltage
in Chapter 3. We also indicate noise can broaden the region of oscillation. This means
the droplet can oscillate under the threshold voltage by adding noise. This stability for
a noisy environment is suitable for making the nano- or micro-sized machine. Because
we can not neglect the effect of thermal fluctuation when the system size becomes nano
to a few micron order.

In the present chapter, we confirm that for noise strength the noise-triggered motion
shows resonance behavior as a consequence of coherent resonance of the limit-cycle os-
cillation. We believe this noise-supported actuation of the small object through this sus-
tained and robust oscillation will be a key technology in constructing nano-actuators
working under strong thermal fluctuations or mimicking biological molecular motors
[10, 50].

4.2 Material and Methods

A schematic illustration of the experimental setup (Fig. 4.1) shows a size-selected wa-
ter droplet suspended in mineral oil on a glass substrate. The direct current (dc) volt-
age with Gaussian white noise (500 kHz bandwidth) was applied to a pair of tapered
tungsten electrodes immersed in the oil. To stabilize the micro-droplet, phospholipid
molecules 100-µM dioleoylphosphatidylcholine (DOPC, Wako, Osaka, Japan) was dis-
solved in the mineral oil (Nacalai Tesque, Kyoto, Japan) through sonication for 90 min
at 50 ◦C. DOPC works as a weak surfactant with zwitterions, i.e., neutral molecules
with a low electronic bias. During droplet preparation, 2 µL of pure water (Millipore,
Japan) was added to 100 µL of the mineral oil, and then the mixture was shaken by
a vortex mixer for approximately 3 s to obtain water-in-oil emulsion droplets. The dc
voltage with noise was generated by a function generator (WF 1974, NF Corp, Yoko-
hama, Japan), then magnified by a voltage amplifier (POS 60-2.5, Matsusada, Shiga,
Japan). A resistor of resistance (R=10 MΩ) was placed in series with the electrodes. The
motion of the droplet was observed using an optical microscope (VW-9000, Keyence,
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Function
Generator
(DC & noise)

Voltage
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objective lens 

of microscope

glass plate

water droplet
mineral oil

+-

FIGURE 4.1: Schematic representation of the experimental setup. L is
the distance between the electrodes. The function generator outputs a
dc bias voltage and voltage noise; the combined signal is then magnified

by the voltage amplifier.

Osaka, Japan), and then the acquired images were processed and analyzed through
MATLAB software.

We first confirmed the threshold point without noise for the oscillations of a droplet
between the electrodes. The threshold point depends on droplet size and electrode
separation [1], but was almost constant for an individual droplet during the series of
experiments. A typical result for threshold is shown in Fig. 4.2, where the droplet stops
around 35.8 to 41.8 V as the voltage was decreased. Next, we added various noise
signals to the applied voltage with the droplet stationary in a dc voltage of 35.8 V just
below the threshold. In this instance, the largest amplitude of the noise was constrained
to 41.8 Vp−p by the amplifier and the function generator. This Vp−p value of the noise
corresponds to a peak-to-peak value of a Gaussian distribution, which determines the
distribution of noise amplitudes. Note that the mean square value of the noise ampli-
tude was much smaller. We maintained the value of the electric potential for a while
and then decreased the noise amplitude for measurements.

4.3 Results

Figure 4.2 shows the initial stage of the time evolution of the droplet position. The
centroid of the binarized image of the droplet was traced. With a noise amplitude
of 41.8 Vp−p, the droplet stayed for long periods near the center between the elec-
trodes. Nevertheless, the droplet oscillated strongly when the noise was decreased by
23.7 Vp−p. However, under the smaller amplitude of 5.8 Vp−p, the droplet exhibited
small fluctuations near one of the electrodes (bottom panel of Fig. 4.2). In these experi-
ments, oscillatory behaviors were frequently seen at moderate noise amplitudes.

4.4 Analysis

At first, we did the short-time Fourier transformation (SFFT) to capture the essentials
observed with this phenomenon. The results of Short-time Fourier transformation was
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FIGURE 4.2: Time evolution of the droplet position. The voltage from
the amplifier is (a) 35.8 V + 41.8 Vp−p, (b) 35.8 V + 23.7 Vp−p, (c) 35.8
V + 5.8 Vp−p. The position of the droplet was measured along the axis
between the electrodes. The positions of the electrode tips, indicated by

broken lines, are 104 and 24 µm.

not so clear that we decide to use continuous wavelet transformation (CWT). The de-
tailed description is written in Appendix A.

Then, we applied CWT analysis to the time-series data.

To capture the essentials observed with this phenomenon, we applied continuous
wavelet transformation (CWT) analysis to the time-series data.

C(a, b; f(t), ψ(t)) =

∫ ∞

−∞
f(t)

1√
a
ψ∗(

t− b

a
)dt, (4.1)

which expresses the coefficient of the CWT where f(t) denotes the signal, and a and
b are constants. ψ∗(t) is the complex conjugate of ψ(t), which is the mother wavelet
of Symlet. The constant a ranged from 1 to 128, whereas b was set as the number of
data points. The sampling intervals of the data points are set at 1/30 s (droplet motion)
and 0.02 s (noise). In calculating the CWT of a signal f(t), one obtains a map of the
coefficient C(a, b; f(t), ψ(t)) which can be displayed as a two-dimensional plot of a and
b. To extract the relative intensity of the oscillatory motion from the map, we integrate
the map along the time b and normalized (divided) by b. Finally, the time-averaged
coefficient as a function of frequency or cycle was obtained.

Figure 4.4 shows the CWT spectra of the time series data for the voltage applied
across the electrodes immersed in the oil solution without droplets. An oscilloscope
was used in measuring this voltage. We confirmed the applied noise behaved as Gaus-
sian white noise. From Fig. 4.4(a), each curve for the applied voltage exhibits a near-
flat trend except near the end of the spectra for which the narrow peak at 4.9 Hz is
an artifact of the analysis. White noise is thus being applied and contains almost all
frequencies in the range of the present time scale of the droplet motion. Figure 4.4(b)
also shows the voltage distribution of the noise determined as deviations from the dc
bias value. Bin loses are due to mismatches between the oscilloscope and amplifier
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FIGURE 4.3: Comparing the CWT analysis with the Shot-time Fourier
transformation (SFFT). The result of CWT indicates the characteristic os-

cillation better than SFFT.

resolutions, where the sampling rate and its resolution were limited by the memory of
the oscilloscope. Nevertheless, noise clearly exhibits a Gaussian distribution.

Under the above mentioned conditions, we then estimated the CWT of the time trace
of the droplet position. Figure 4.5(a) shows spectra of the CWT coefficients. The vertical
scale, a time-averaged coefficient of the CWT, is dimensionless. When the noise was set
at 17.8 Vp−p, the droplet movement shows characteristic oscillations with a period of
around 2.0 sec. Essentially the same result occurs for noise with 23.7 Vp−p. In contrast,
conditions with smaller and with larger noise levels did not induce these characteristic
oscillations. There is no peak in the spectra from 0 Hz and 1.23 Hz, implying the droplet
motion mainly arises from fluctuations and slow drift motion; in other words, this
motion did not have typical oscillation modes. The CWT spectra indicate moderate
noise amplitudes make the droplet motion oscillatory with frequency of approximately
0.5 Hz. To clarify this resonance phenomenon, we plotted the typical frequency, which
is indicated by the peak in the curve [Fig. 4.5(a)]. Figure 4.5(b) shows there is a specific
noise amplitude at which oscillatory motion of the droplet is induced.

4.5 Discussion

The oscillations we observed have features of coherence resonance, which was first
proposed by Gang [16] in a numerical study. If a system is in a stationary state below
the bifurcation point of a limit-cycle oscillation, an additive noise can induce a quasi-
oscillation by exploiting the inherent nature of limit cycles. Specifically, coherent res-
onance extends the oscillatory region through support from additive noise. Pikovsky
and Kurths found the same phenomena in the Fitz-Hugh–Nagumo system [17]. As
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FIGURE 4.4: (a). Continuous wavelet analysis of the dc voltage accompa-
nied with additive noise. The vertical scale, a time-averaged coefficient
of CWT, represents the non-dimensional intensity. Each spectrum of the
coefficient is the average of three measurements. (b). Histograms of the
respective noise amplitudes based on the dc voltage. Resolution mis-
matching between oscilloscope and amplifier is the cause of the empty
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for experimental applications, the above features can be useful in describing certain
excitable systems, e.g., the Belousov–Zhabotinsky reaction [51, 52], steel pipe oscil-
lation [53], ions through carbon nanotube channel [54], nanowire system [55], and
electric circuit [56]. We have reported that the oscillatory phenomenon occurring in
a droplet between the electrodes corresponds to a limit-cycle oscillation [1], which can
generate excitable fixed points or weak stationary regions. In addition, adhesion of
the droplet on the electrode elicits a quasi-excitable state in actual experiments. With
the voltage below the threshold, and without noise, the droplet slowly fluctuates be-
tween the electrodes (Fig. 4.2) or attaches itself to the electrode and stops. Under the
latter conditions, noise of moderate power dislodges the droplet from its trap. If this
power is weak compared with the depth of the effective trapping potential, e.g., below
17.8 Vp−p in our experiments, the droplet remains positioned in the trap. However,
noise with a strong amplitude, above 23.7 Vp−p, drives the droplet to various random
degrees (Fig. 4.2). These features including the resonance behavior of noise–frequency
(Fig. 4.4) exhibited in the experiments are almost the same as those of coherence reso-
nance. The present voltage-driven actuator indicates the effective application of coher-
ent resonance to micro- and nano-machineries

Here we note that the present noise is not truly additive but rather multiplicative.
That is, the voltage noise is not external, affecting not only the electrostatic force driv-
ing the droplet but also the charge of the droplet. The terms involving noise in the
governing equations complicates the solutions. We had exploited the voltage noise to
use its regulatory aspect to confirm the behavioral response in experiments, but for the
future, applications of light and thermal fluctuations is suggested. If this system can
be down-sized to a few micrometers or smaller, then the oscillatory object is exposed
to relatively stronger thermal fluctuations. A double minimum potential generated by
optical tweezers has demonstrated the oscillatory motion through the use of thermal
fluctuation as coherent resonance or stochastic resonance [57].

4.6 Conclusion

In conclusion, we confirmed a coherence resonance-like oscillation of a water droplet
in an oil phase induced by a dc voltage applied between a pair of tapered electrodes.
Certain noise amplitude on the dc bias voltage induces droplet oscillations, even below
the pure dc threshold value for oscillation. In essence, the present dc voltage driven
actuator can be exploited for small machinery operating under noisy environments.
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4.7 Supplemental Data

All the track of the droplet of the experiment is shown in Fig. 4.6.
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FIGURE 4.6: All the tracked data of the experiments. When Vp−p =
35.8 V , the droplet seems to exceed the tip of the electrode. This means

the droplet goes to the upper or lower side of the electrode.

4.8 Supplemental Discussion

We made the phase diagram and the numerical model of the droplet oscillation in
Chapter 3. In this experiment of coherence resonance, the distance between the elec-
trodes is smaller than 100 µm. When we do the experiment, the resonance behavior is
well observed in the smaller scale. Then we think the region is corresponding to the
adhesive region in the phase diagram in Fig. 3.4 and the region III in the numerical
phase diagram in Fig. 3.8. The nullclines corresponding in the region III is shown in
Fig. 3.9. There is two stable fixed point and one unstable fixed point. The system is a lit-
tle different from the excited state. However the schematic illustration of the potential
can be considered as Fig. 4.7.

Under this potential, when we add an external noise, it is expected to show a
pseudo oscillation like coherence resonance.
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FIGURE 4.7: Schematic illustration of the supposed potential in the re-
gion III is shown in Fig. 3.9

Stable Stable

Unstable

With small noise

With medium noise With large noise

FIGURE 4.8: When the potential is like Fig. 4.7, we expected the droplet
to behave as a coherence resonance. With the small noise, the droplet can
not leave the fixed point. In contrast, with large noise, the noise drives
the droplet randomly. With the medium magnitude of noise, the droplet

can leave the fixed point occasionally and it seems to oscillate.





Chapter 5

Effect of EHD flow on micro-sized
particle rotation in an oil phase

5.1 Introduction

In Chapters 3 and 4, we observed the motion of a water droplet in an oil phase. How-
ever, a water droplet easily sticks to electrodes. Droplets also coalesce easily. These
features are undesirable for their application. In previous studies, it was important
for the droplet to carry a charge. Therefore, in the present work, we employed plastic
beads instead of a water droplet. Plastic beads cannot exhibit behavior similar to water
droplets. When parallel-plate electrodes are used, the beads only line up perpendicular
to the electrode [2]. On the other hand, when tapered electrodes are used, the beads
revolve or rotate between the electrodes. In this chapter, we report on our discovery
of the generation of regular motion of a solid plastic object under a stationary dc elec-
tric field. Interestingly, a dual-whirl rotary motion is observed for the solid object̶in
contrast to back-and-forth oscillatory motion observed for a water droplet̶between
facing sharp-pointed electrodes situated along a line. The mechanism of generation of
such interesting regular motion is discussed later, along with evaluation of the effects
of a coexisting surfactant in the oil phase. Interestingly, a double convective motion is
generated by the application of a dc voltage. In other words, it is shown that stable ro-
tary motion of a fluidic solution occurs and that microplastic particles undergo orbital
motion driven by convective fluidic flow. We also report on the results of a numerical
simulation with a simple fluid equation, indicating the reproduction of the essential
aspect of the experimental trend.

5.2 Materials and Methods

A schematic illustration of the experimental setup is shown in Fig. 5.1. Polyethylene
particles (Sumitomo Seika Chemicals Co., Japan) were suspended in silicone oil (KF-
56, Shin-Etsu Chemical Co., Japan) containing 0.5 M surfactant; anionic surfactant, Di-
(2-ethylhexyl)phosphoric acid (Sigma-Aldrich Co., USA) or cationic surfactant, Di-(2-
ethylhexyl)amine (Wako Pure Chemical Industries, Ltd., Japan). We have obtained
homogeneous oil phase through the mechanical agitating with a vortex mixer for 1
minute. This silicone oil containing particles was situated on a glass slide, and constant
voltage was applied to the silicone oil droplet using cone-shaped tungsten electrodes.
The motion of plastic particles was observed by using an optical microscope (IX71,
Olympus Co., Japan).
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FIGURE 5.1: Schematic representation of the experimental setup. Sta-
tionary DC voltage was applied between the pair of tapered tung-
sten electrodes inserted into silicone oil containing polyethylene micro-

particles.

5.3 Results

In Fig. 5.2 is exemplified the rotary motion of number of plastic particles. It is found
that dual whirls are generated on the both side with respect to the line between the
pair of tapered electrodes, and that the direction of the rotations are opposite to each
other. The existence of pair of the whirls suggests that the rotary motions of particles
are driven under the cyclic flow of the bulk oil phase. Here, it is noted that such kind
of pair of rotary motions have not been observed for the motion of droplets under
constant DC voltage, where a single cyclic motion as well as back-and ‒ force motion
has been reported. Refs.

Figure 5.3 shows the angular velocity of the particle vs. the position angle dur-
ing one period of the revolution. We decided the position angle as follows. When
the particle is closest and farthest to positive electrode, the position angle is π and 0,
respectively. The particle drives at maximum velocity when it moves from negative
electrodes to a positive electrode.

Figure 5.4 shows the change of rotary speed depending on the applied voltage in
the same experimental system given in Fig. 5.3. Above the threshold voltage around
60-70 V, the rotary speed increases linearly with the applied voltage. Whereas, below
the threshold voltage, any motion of the particles is not generated, indicating that the
transition is characterized as a kind of sub-critical bifurcation.

Figure 5.5 shows the snapshot of the particle in two different kinds of surfactants.
One is the anionic surfactant(Fig. 5.5.(a)), another is cationic surfactant(Fig. 5.5.(b)).
The particle shows the orbital motion of counter clockwise rotation with anionic sur-
factants in oil, and the orbital motion of clockwise rotation with cationic surfactants
in oil. In these experiments, we have adapted the anionic and cationic surfactant with
rather bulky hydrophobic group. It has been well established in colloid chemistry that
such kind of surfactant with the bulky group forms inverted micelles in an oil phase,
where the characteristic size is on the order of 10-100 nm being much smaller than the
optical wave length. In other words, the inverted micelles with such small sizes are
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t = 0s

100µm

Snapshots : Every 0.53s

100µm

FIGURE 5.2: Self-revolution of plastic particles. (a) Initial condition at
t=0 s from when DC voltage is applied. (b) Overlap of snapshots at
every 0.53 s. Plural number of polystyrene particles with the radii of
r = 50 − 175µm are rotating in the oil phase with anionic surfactant at

V =170 V.
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FIGURE 5.3: Angular velocity and angular acceleration depending on
angular position of the particle in the presence of the anionic surfactant.
The blue solid line is the velocity and the red dotted line is the accelera-
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FIGURE 5.4: Revolving speed vs. applied DC voltage for a polystyrene
sphere in the same experimental system as in Fig. 5.3.
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FIGURE 5.5: Overlap image on the snapshots of a polystyrene sphere in
the presence of a cationic surfactant, di-(2-ethylhexyl)amine, at V =150 V,
at every 0.53 s. It is noted the arrangement of the positive and negative
electrodes are the same as in Fig. 5.3, whereas the direction of the rotary

motion is opposite to that with the anionic surfactant.

usually transparent to optical light. The inversion of the rotary direction between an-
ionic and cationic surfactants is, thus, attributable to the difference on the electronic
acceptability. It may be reasonable to expect that anionic surfactant may gain negative
charge in contact with the negative electrode, but it may be difficulty to be positively
charged when it contacts with the positive electrode. The reverse situation may hold
for the inverted micelles with cationic surfactant.

5.4 Numerical Modeling

The above experimental trends suggest the important role of the fluidic motion of the
bulk oil phase as the plausible underlying mechanism on the twin-scroll motion of the
plastic particles. In order to shed light on the plausible mechanism, we have performed
numerical simulation on a simple fluidic model. We assume that invisible nano-sized
inverted micelles play the role as charge carrier [58, 59]. We consider that the driving
force on the micelles is proportional to the electric field. In order to abstract the essence
of the mechanism, we assume that the homogeneous bulk phase containing invisible
inverted micelles can carry electronic charge between the electrodes.

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u+Eρe (5.1)

u is the velocity of the fluid, and p is the pressure. E is the electrical field. ρ is the
charge density. As the Reynolds number (Re) of our experiment is around 10−8, we
can neglect the inertia term from Eq. 5.1.

∂u

∂t
= −∇p+ 1

Re
∇2u+Eρe (5.2)
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As for the time-dependent change of the charge density, we adapt the following equa-
tion, where ρ is the charge density at the unit volume. Here is the time-development of
the charge density,

∂ρe

∂t
+∇(ρeu) = (σ + ρeµ)∆ϕ (5.3)

σ is the conductivity, µ is the permittivity of the fluid. ϕ is the electric potential, E =
−∇ϕ.

In the electrode configuration of the present study, near the each electrode nm-sized
inverted micelles tend to be charged with the same sign of the electrical potential of the
electrode. Then, we take the assumption that the medium proximal to the electrode
accepts the charge from the contacting electrode.

At the first step of the numerical simulation, we calculate the electrical field. To
get the electrical field, we solve the Poisson equation. The condition is as follows. The
whole area we adapted for the calculation is 100× 100. The positions of the electrodes
are (x, y)=(0-45, 50-51) and (56-100, 50-51). The positions and shapes are shown in Fig.
5.6. The left one is a minus, and another is a plus. When we calculate the Poisson equa-
tion, we fix the potential difference as unity. We adjust the magnitude of the electric
field through the coefficient that we multiply with the electrical field.

100
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50

100

450

45

100

51

1

FIGURE 5.6: Geometry adapted for the numerical simulation with a pair
of electrodes (gray rectangles) and fluidic region (blue). The given num-
bers correspond to pixel numbers. The boundary condition is taken as
no-flux for simplicity. The rectangle with red dashed line is the region

we showed in Fig. 5.7.

At the next step, we run the Stokes equation. We concern the periphery as a wall.
The wall is far enough that does not affect the flow around the electrodes. We also
consider the border of the electrode as wall. At this time, the parameters we used are
Re = 0.05, σ = 1.0e−8, µ = 1.0e−7. We fix the charge density at the electrode. That at the
plus electrode is 0.5, and that at the minus electrode is -0.5.
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FIGURE 5.7: Numerical result on the flow profile after the application
of DC voltage. The color means the charge density as in the scale given
in the color bar on the right of the figure. The red arrows indicate the

velocity of the liquid.

As seen in Fig. 5.7, the twin vortexes between the electrodes are generated in the
numerical simulation. Where, the bulk oil solution plays the role as the charge carrier.

5.5 Discussion

In our experiment, we discover the appearance of twin scrolls on the rotary motion
of the plastic beads under stationary DC voltage. In the past studies on the droplet
motion, such kind of twin rotary motion has never been observed. When we use the
metal particle instead of the droplet, the particle oscillates between the electrodes under
DC electric field. Metal is a conductor and easy to be charged. When we use a water
droplet, we can see the back-and-forth motion between the electrodes. Some groups
measured how was the droplet charged. They say that they cannot consider the water
droplet d as a complete insulator. On the contrary, a plastic bead is dielectric. Its
dielectric constant is smaller than that of water. When we put dielectric matter under
the electric field, its inductive dipole moment is along the electric field. When there are
many plastic beads, the beads are gathered and linked together because of their dipole
interaction. Under the uniform electric field, they stop once their dipole moment is
along the field. If they are under the non-uniform field, the dielectrophoretic force
along the gradient of the electric field drives them. Although without charging, the
particle stops at the electrode. For this reason, we consider the fluid effect.

This phenomenon has relation to the EHD flows[60]. There are some papers de-
scribe that a dielectric liquid with some additives flows with the electrical field. They
say we can apply EHD flow to a pump. With the condition of our experiment, we show
EHD flow is also useful to generate a rotary motion. We can carry a micro sized thing
with using this kind of flow.





Chapter 6

General Conclusion

6.1 Conclusion

In this thesis, we investigated the effects of system downsizing, noise, and flow on the
oscillation of a microsized object in an oil phase. In Chapter 3, we found scale and volt-
age dependencies of the mode bifurcation between stationary and oscillatory states of
a water droplet in an oil phase. A threshold voltage affected by the dielectric force was
found to exist. When the applied voltage is under this threshold voltage, the water
droplet remains between the electrodes. With a gradual increase in the voltage un-
til it exceeds the threshold voltage, the droplet starts to oscillate. From the numerical
model, we expect that the addition of noise will widen the region of droplet oscillation.
In other words, noise can stabilize the oscillation when the voltage is slightly under
the threshold voltage. In Chapter 4, we verified this expectation quantitatively via ex-
periments. We added noise to the applied dc voltage and changed its magnitude. The
droplet was found to oscillate well at a certain magnitude of noise with the dc bias
voltage below the threshold voltage. This behavior implies that the system possesses
a characteristic of coherent resonance. These results demonstrate that a water droplet
oscillating in an oil phase can be stabilized by the addition of noise when the system is
downsized. A microsized water droplet would be useful as a microreactor. However,
water droplets easily stick to electrodes. Moreover, water droplets tend to coalesce un-
der an electric field. In some cases, these characteristics are undesirable, for example,
when we wish to use the motion of the droplet as a power source for a micromachine.
To overcome this disadvantage, we employed plastic beads instead of water droplets
in this work. In Chapter 5, we presented some experiments performed using plastic
beads. The beads did not oscillate as a water droplet would; rather, they rotated be-
tween the electrodes. Because plastic beads are not charged, we expected them to drift
along the oil flow. To confirm this phenomenon, we performed a numerical simula-
tion. The cause of the flow was thought to be charged micelles; surfactant micelles
are charged and driven by the electric field. This kind of electrically generated flow is
called EHD flow. In a system with a small Reynolds number, such as the present sys-
tem, laminar flow is usually dominant. However, an electric field can cause turbulence
in a small-Reynolds-number system. Therefore, we can obtain an oil vortex and rotat-
ing beads in an oil phase in spite of the low Reynolds number. In conclusion, a water
droplet oscillating in an oil phase is robust on the microscale. We also found that plas-
tic beads can rotate in an oil phase by using the vortex generated by the electric field.
We demonstrated this mechanism by means of a simple nonlinear physical model. We
anticipate that this mechanism will be highly useful and effective in designing efficient
micromachines in the future.
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6.2 Future Problems

Our studies on the motion of a microsized object in an oil phase under a dc voltage have
brought to the surface several problems or difficulties, and some of them remain un-
solved. The following are some of the problems that need to be addressed in the future.
First, in Chapter 3, we did not measure the charge of the droplet. We need to examine
the process of charging during the experiment. Some research groups have measured
the electric current. In our experimental system, the oil phase contains many micelles,
which also carry a charge. Therefore, we cannot distinguish the charge of the droplet
from that carried by the micelles. Therefore, it is desirable to visualize the charge of the
droplet itself. One way to measure the charge of the droplet is to use coloring matter as
a pH Indicator. Second, we found that the water droplet could not oscillate as soon as
the oil containing numerous water droplets was placed on the slide. We think that this
is because of the condition of the electrode surface. When we first placed the droplet-
containing oil on the slide, the electrode surface was not covered by micelles. The
electrodes we employed were made of tungsten, which is a hydrophilic metal. Hence,
the droplets easily stick to the electrode. After a few seconds, we expect the electrode
surface to be covered by micelles and to become hydrophobic. This change is impor-
tant in order for a droplet to not stick to the electrode. We also expect the presence of a
thin water layer around the electrode. In this case, coalescence and breaking up of the
droplets under a high electric field are expected to occur, as described by Ristenpart
et al. Furthermore, when we use silicone oil and a surfactant for silicone oil instead
of DOPC and mineral oil, we rarely observe oscillation of the droplet in the oil phase.
The droplet only coalesces with another droplet. Therefore, selection of appropriate
oil and surfactant is crucial. In Chapter 4, we did not include the effects of noise in
the numerical model. In our experiments, since we added noise to the dc voltage, the
noise affected not only the electric field driving the droplet but also the charging of the
droplet. This effect of noise is highly complicated. In Chapter 5, we found that the
micelles cause flow in the oil phase. However, it is necessary to check the effects of this
flow on the oscillating droplet. Apparently, no flow occurred in an oil phase contain-
ing a water droplet. One possible reason for this is that we used different surfactants
in the flow experiment and the oscillation experiment. It would also be interesting to
examine quantitatively whether a difference in the surfactant polarity would change
the direction of rotation. In this thesis, we revealed the fundamental mechanism for
driving microsized objects in an oil phase. A related issue to be addressed in the fu-
ture is further downsizing to the nanoscale. All these problems are interesting from the
viewpoint of not only the field of physics but also the field of chemistry and industrial
application.



Appendix A

Wavelet Transformation

A.1 Introduction of wavelet transformation

In this section, we introduce wavelet transformation we used in the analysis in Chap-
ter 41.

When we want to know the typical spectrum of the analog signal, we firstly use
Fourier transformation Eq. A.1.

f̂(ω) =

∫ ∞

−∞
e−itωf(t)dt (A.1)

Fourier transformation requires the entire time of a signal. Also, if the signal is the delta
function δ(t− t0), the Fourier transformation of the signal is e−it0ω. All the component
of the frequency does not become zero. In this point of view, Fourier transformation
for the real signal is not suitable.

D.Gabor pointed this problem in his paper in 1964. He introduced the window
function to localize the time. This Gabor transformation uses the Gauss function as the
window function Eq. A.3.

(Ga
b f)(ω) =

∫ ∞

−∞
(e−itωf(t))ga(t− b)dt (A.2)

ga(t) =
1

2
√
πα

exp(− t2

4α
) (A.3)

Here, α > 0 and α is constant. In short-time Fourier transformation, we can use other
suitable function as the window function. We can think Gabor transformation is the
special occasion in the short-time Fourier transformation. The function suitable for the
window function w(t) has the character as

tw(t) ∈ L2(R). (A.4)

The short-time Fourier transformation is written as

(G̃a
b f)(ω) =

∫ ∞

−∞
(e−itωf(t))w(t− b)dt (A.5)

w̄ means the complex conjugate of w.
There is the uncertainty principle of the sort-time Fourier transformation.

∆w∆ŵ ≥ 1

2
(A.6)

1This section is based on the description in [61, 62].
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In particular, the equation is attained if and only if

w(t) = ceiatga(t− b) (A.7)

and c ̸= 0, α > 0, a, b ∈ R. In this thesis, we abridge the certification. But we show the
schematic illustration in Fig. A.1. Gabor transformation has smaller time-frequency
window in any other short-time Fourier transformation. The width and height of Ga-
bor window are not changed as the frequency. This means Gabor transformation can
not capture the too high and low frequency.

FIGURE A.1: Window for Gabor translation.

To overcome this problem, we use the wavelet transformation. In wavelet transfor-
mation, we use a mother wavelet ψ(t). A mother wavelet ψ(t) is like e−itω in Fourier
transformation. A mother wavelet is like Fig. A.2.

We expand and translate the mother wavelet and integrate with the signal. Then
we get the coefficients of wavelet transformation as

C(a, b; f(t), ψ(t)) =

∫ ∞

−∞
f(t)

1√
a
ψ∗(

t− b

a
)dt. (A.8)

The mother wavelet ψ(t) is scale-translated as ψ((t−b)/a), then the window of wavelet
transformation becomes like Fig. A.3. The width and height of those window are
changed as the frequency.

There are many kind of mother wavelets. We can use them as what we want to
know. Haar wavelet is one of the cardinal wavelet. Morlet wavelet, too. They are
not orthogonally and compact. We can use then only for limited way. Meyer wavelet is
orthognally, but is not compact. This is suitable for the signal has symmetry and infinite
regularity. In this thesis, we use Symlet as the mother wavelet. Symlet is orthogonally
and compact. There are similar wavelets, Daubechies and coiflets wavelets. These
wavelets are suitable for the signal which has vanishing moments. They also has the
character of poor regularity.
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A.2 Example of analysis

Here is the example of wavelet transformation Fig. A.4. To simplify the explanation,
we put the sampling frequency as 1 Hz. We use Symlet (N=2) and we take the range of
a as a = 1 : 128.
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FIGURE A.4: Example of data and coefficient of wavelet transformation.

When we use other wavelets, we can get the coefficients as Fig.A.5. In this time, we
think Symlet is the most suitable wavelet.

We can see the change of frequency in the signal. In C(a, b; f(t), ψ(t)), color means
the value of coefficient, yellow is high and blue is low. There is the blue region on the
right top. We can not calculate the coefficient in the region. The mother wavelet ψ(t) is
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effective at [−L,L]. For each wavelet we use can be written as

ψ(t)a,b =
1√
a
ψ(
t− a

b
). (A.9)

This wavelet ψ(t)a,b is effective at [a− bL, a+ bL]. The cone of influence is the set of all
t included in the effective support of the wavelet at a given position and scale. This set
is equivalent to:

|t− a| ≤ bL. (A.10)

We can eliminate the region by using this cone of influence. This is decided for each
wavelets.

For this example, we can also calculate the cone of influence. We put the region on
the coefficient map in Fig. A.6. The red lines are the limit of the valid coefficients. In
the analysis in this thesis, we use this efficient area.

A.2.1 Scale to frequency

After the transformation, we have to transform the scale a to the frequency. The wavelet
does not seem to have peculiar frequency. But each wavelet has the own center of
frequency. Figure A.7 is the Symlet wavelet (N=2) and cosine wave of its center of
frequency Fc = 0.667.

We can calculate the frequency Fa by using this center of frequency Fc = 0.667.

Fa =
Fc

a ·∆
(A.11)

Here, a is the scale and ∆ is the sampling period.
In Fig. A.6, we can see the time shift of the peak frequency. Now we are interested

in the frequency. When t < 1000, we can see the scale peak is around a = 30. The
pseudo-frequency corresponding to Fa = 0.022. When t > 1600, we can see the scale
peak is around a = 50. The pseudo-frequency corresponding to Fa = 0.013.

When we use fast Fourier transformation (FFT) to the same data, we get the power
vs. frequency as Fig. A.8. The results of pseudo-frequency consistent with the result of
FFT. Moreover, the result of wavelet transformation distincts the frequency well.

In this thesis, we do not need the time changing of the frequency. We integrate
the map along the time b and normalized (divided) by b. Then we get the scale a vs.
intensity plot like Fig. A.9. we can also grasp the frequency well in this way.
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