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Abstract 

 

Mangroves are vital components of coastal ecosystems worldwide, but they are under 

threat from expanding human settlement, an explosion of commercial aquaculture, the 

exploitation of wood fuel and the impact of climate change. Such threats led to 

increasing demand for detailed mangrove maps for the purpose of measuring the extent 

of deterioration of the mangrove ecosystem. However, it is difficult to produce a 

detailed mangrove map mainly because mangrove forest is very difficult to access. Thus, 

remote sensing technology provides a genuine alternative to the traditional field-based 

method of mangrove mapping and monitoring. Due to its many advantages, such as 

being cost-effective, time-saving, and providing access to long-term data, the 

application of remote sensing technology to mangrove studies is already well 

established. However, a number of advanced remote sensing applications with the 

capability of using low-cost satellite data remain unexplored for the purpose of 

mangrove mapping, change detection, and monitoring. Thus, this study aimed to 

develop a cost-effective protocol of remote sensing application using low-cost satellite 

data for mangrove forest monitoring. 

 

Mangrove areas in Sabah, Malaysia, are declining at an alarming rate due to conversion 

to agricultural, shrimp-pond farming, and urban-development areas, as well as other 

types of deforestation, even though it has the largest mangrove forest distribution in 

Malaysia. The use of satellite technology for studying Sabah’s mangrove regions 

remains poorly developed. Therefore, Sabah was selected as the study area for applying 

remote sensing technology for mapping, change detection, and monitoring of the 

mangrove forest. The mangrove forest at Mengkabong, located on the west cost of 

Sabah, was selected as the specific study area due to the problem of mangrove 

destruction that exists there. To promote cost-effective and long-term monitoring, low-

cost satellite data of the Landsat series (TM, ETM+, and OLI_TIRS) were used in this 

study. Detailed protocols of satellite data acquisition and data processing were 

developed in this study. Studies have shown that the application of processed Landsat 

data series using developed protocols and processing procedures has potential for 
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classifying mangrove forest land cover in the Sabah area. The gap-filling processing 

used in this study produced good results in terms of the ETM+ SLC-off gap-filled data. 

The NDVI and maximum likelihood classification techniques that were applied to all 

processed Landsat data series showed good results of land cover classification. However, 

there remain several limitations and challenges in the interpretation of mangrove areas 

when using these conventional methods.  

 

Therefore, due to the potential of recent advances of remote sensing techniques, a 

decision-tree learning method was determined and applied for classifying and detecting 

the rapid changes in the Mengkabong mangrove forest area. Multi-temporal Landsat 

series (TM, ETM+, and OLI_TIRS) data from the years 1990, 2000, 2005, 2010, and 

2013 were used in this study. The result of this study showed that the use of the 

decision-tree learning method on a combined dataset containing multi-temporal Landsat 

series and GIS (digital elevation model and distance to coastline) data was effective at 

delineating spatial and temporal changes of the mangrove forest. Various integrated 

sources of remote sensing data such as greenness, vegetation moisture content, and 

reflectance band values improved the classification accuracy of mangrove due to the 

similarity of the spectra of forest and water–vegetation mixed pixels.  

  

Aquaculture activities such as shrimp pond farming have been identified as a major 

factor of degradation of Mengkabong’s mangrove area. Therefore, this study 

demonstrated the potential of MODIS time-series data for detecting the timing of 

conversion of mangrove areas to shrimp pond farming in Mengkabong. A simple and 

robust statistical method of change analysis was developed and applied to MODIS 

enhanced vegetation index (EVI) time-series data. The findings of this study confirmed 

that the technique could successfully determine the history of mangrove deforestation 

and aquaculture development in the Mengkabong area during a 14-year period (2000–

2013). With the continuation of satellite data acquisition by the MODIS sensor, this 

method may also be useful for the monitoring and verification of changes of Sabah’s 

mangroves in the future. Next, a simplified methodology of application of remotely 

sensed data for mangrove monitoring in Sabah was developed. To promote the 

advantages of using remote sensing technology, cost-effective and long-term multi-
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temporal remotely sensed data, such as Landsat series and MODIS data, were suggested 

for the application. The schematic procedures began with the detection of nature change 

problems. Thus, five potential study sites were identified around Sabah. These study 

sites were facing mangrove destruction due to human activities such as aquaculture and 

urbanization. Then, standard protocols and processing procedures for the Landsat 

satellite and MODIS data that were applied in the previous study were proposed as 

methods. The methodology protocols included remotely sensed data preparation, pre-

processing, classification analysis, selection of change detection algorithms, and 

evaluation of the change detection results. Subsequently, monitoring program 

procedures for a mangrove conservation management plan in Sabah  were  suggested.  

 

The effectiveness of the developed protocols for mangrove monitoring in Sabah are 

evaluated in Chapter 7 of this work. The selection of the satellite data characteristics of 

Landsat and MODIS for mangrove study were evaluated by comparing with those of 

high-resolution data. The cost-effectiveness was evaluated by comparing the cost of the 

data used with the cost of high-resolution data. The price quotations of satellite data 

were obtained from the Remote Sensing Agency of Malaysia. The limitations of the 

developed  protocols were evaluated, and they are discussed in this same chapter. The 

findings showed that the selection of Landsat and MODIS data and the cost-

effectiveness of these data should promote the effective use of low-cost satellite data for 

mangrove monitoring and change detection in the Sabah area. 

 

Thus, remote sensing technology offers considerable advantages in mangrove studies 

and has become a useful tool for monitoring change of the mangrove ecosystem in 

Sabah. In addition, the availability of schematic procedures for applying remotely 

sensed Landsat series and MODIS data for mangrove change detection will promote the 

potential for application of these data for mangrove monitoring in Sabah in the future. 

 

Keywords 

Mangrove, remote sensing (RS), geographic information system (GIS), change 

detection, monitoring,  Sabah. 
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Chapter 1 

 

Introduction 

 

 

1.1 Research Background 

 

Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions 

throughout the world. They provide various ecological and economic ecosystem 

benefits such as coastal erosion protection, water filtration, habitat for marine organisms, 

sources of building materials, medicinal ingredients, and attraction for tourists (Giri et 

al., 2008; Zhang et al., 2003). However, mangroves are also facing threats. Currently a 

vulnerable ecosystem worldwide, they have experienced a dramatic decline during the 

last half century.  

  

Uncontrolled exploitation of mangrove forest areas has led to degradation of 

coastal environments. Problems include coastal erosion, loss of wildlife habitat, and 

climate change (Barua et al., 2010; Giri et al., 2011). The mangroves of Sabah, 

Malaysia, also have declined at an alarming rate due to deforestation activities. This 

problem has affected the coastal erosion along Sabah’s coastline and has led to the loss 

of habitat for migratory birds (Sabah Forestry Department, 2010). To overcome these 

problems, further extensive monitoring should be conducted continuously.  

 

In the last two decades, remote sensing and geographic information system (GIS) 

technology has demonstrated high potential in mangrove studies, such as for mapping, 

identification, monitoring, and detecting changes. The applications of this technology 

are reflected by the large number of scientific papers that have been published. There 

are many advantages to using remote sensing and GIS technology in mangrove studies, 

such as the cost-effectiveness of the technique, its ability to provide large-scale 

monitoring, time savings, and access to long-term data (Aschbacher et al., 1995; Blasco 

et al., 1998; Green et al., 1998; Hernanderz et al., 2005; Manson et al., 2003; Mironga, 
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2004; Mumby et al., 1999; Lee &Yeah, 2009; Wang et al., 2003). Such remotely sensed 

data can be obtained at different spatial resolutions, such as medium-resolution images 

(e.g., Landsat series, MODIS, SPOT), high-resolution images (e.g., Quickbird, 

IKONOS), hyperspectral images (e.g., compact airborne spectrographic imager [CASI]), 

and radar (e.g., synthetic aperture radar [SAR]).  

 

The Landsat data series, including multispectral scanner (MSS), thematic mapper 

(TM), enhanced thematic mapper plus (ETM+), MODIS, and SPOT data, has been 

demonstrated to be extremely useful for providing information on various components 

of the coastal environment. In addition, the available MODIS Aqua satellite data have 

been established as being useful in environmental monitoring and natural resource 

management on a wide scale. MODIS Aqua remotely sensed data have been used 

widely in mangrove studies compared to other satellite data because of their advantages, 

which include free access, the availability of multi-date data, large-scale coverage, and 

the availability of low- to medium-resolution datasets (Green et al., 1998; Chander et al., 

2011).  

  

Many remote sensing techniques such as visual interpretation, vegetation index, 

pixel-based classification (supervised and unsupervised), and spectral transformation 

have been used to detect and delineate mangrove and non-mangrove areas by using 

different spatial resolutions (low, medium, and high) of remotely sensed data (Kuenzer 

et al., 2011). All such approaches can provide important information for monitoring the 

real extent and changes of mangrove areas. However, in the context of mangrove 

studies, applications of these techniques still face several limitations and challenges, 

such as limitations on species-level mangrove interpretation and confusion between 

mangroves and other types of vegetation (Al Habshi et al., 2007; Benfield et al., 2005; 

Gao et al., 1999).  

 

Recently, there has been rapid development in remote sensing techniques and 

satellite data that has aided the interpretation of data and the extraction of information 

from the data (Gillespie et al., 2008; Wooster, 2007)., and several new analysis 

techniques, such as object-based image analysis (OBIA), rule-based (decision-tree 
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learning) classification, and neural networks, have been employed to classify remotely 

sensed data about mangroves (Kuenzer et al., 2011). However, few studies have used 

these techniques in the context of mangrove studies, especially with low-cost remotely 

sensed data.  

 

To determine the potential of low-cost remotely sensed data in combination with 

new analysis techniques for mangrove studies, it is important to explore applications of 

Landsat and MODIS data. Thus, in the first phase of this research, protocols for using 

Landsat data for mangrove classification in Sabah are developed. Then, in the second 

phase, new remote sensing techniques are used with Landsat data for mangrove 

classification and change detection. In the third phase of this research, the major factors 

that affect mangrove deforestation and determine the history of mangrove deforestation 

are identified using MODIS data. In the fourth phase, the protocols and methods of 

using low-cost remotely sensed data for mangrove studies are simplified. Finally, in the 

last phase of this research, the developed protocols for mangrove forest monitoring in 

Sabah are evaluated. The major emphasis of this study is to understand the potential of 

low-cost remotely sensed data in mangrove studies in the Sabah area. 

 

1.2 Significance of Study  

 

An awareness of the importance of the mangrove ecosystem and the effects of its 

decline on the global ecosystem forms the basis of this study to promote the use of 

remote sensing and GIS technology with cost-effective methods for mangrove research. 

The use of remote sensing technology in the study of mangroves will provide a 

spatiotemporal framework for the current and the past status of mangrove areas. The 

output of this study will be a baseline for remote sensing studies of Sabah’s mangroves. 

Thus, Sabah’s mangroves will be managed extensively using this technology. In 

addition, it will increase public awareness, especially among local people, of the 

importance of the mangrove ecosystem.  
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1.3 Research Objectives 

 

The main objective of this study is the development and application of new remote 

sensing techniques with low-cost satellite data for monitoring changes of the mangrove 

areas of Sabah. Several specific objectives of this study, required to achieve the main 

objective, are listed below: 

 

1. To develop a protocol of low-cost remotely sensed data for classifying and 

mapping the mangrove forest. 

2. To apply and compare the effectiveness of new remote sensing techniques 

for classifying the mangrove forest. 

3. To determine the potential of low-cost satellite data for detecting and 

monitoring the deforestation of mangrove areas. 

4. To propose an effective method of remote sensing technology application 

for mangrove monitoring in Sabah. 

5. To evaluate the effectiveness of the developed protocol for monitoring 

mangrove forest in Sabah. 

 

1.4 Research Outline  

 

This dissertation consists of eight chapters (Figure 1.1.). The main contents of this 

thesis are presented in chapters 3 to 7. These five chapters are the core of the thesis and 

are accompanied by an introduction (Chapter 1), literature review (Chapter 2), and 

conclusion (Chapter 8). In Chapter 3, the study demonstrates the classification protocols 

on the mangrove forest land cover in Sabah using Landsat data series. The details of the 

protocols include satellite data acquisition, data processing, and mangrove land cover 

classification. Then, in Chapter 4, the study determines the effectiveness of the new 

remote sensing technique, decision-tree learning, integrated with low-cost satellite data, 

on classifying the mangrove land cover in Mengkabong. Chapter 5 demonstrates the 

potential of satellite MODIS data for detecting and monitoring the deforestation of a 

specified mangrove area over 10 years. In this study, change-point analysis is used to 

detect the regional-scale conversion of Mengkabong mangrove area to aquaculture. In 
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Chapter 6, the study develops a simplified schematic satellite monitoring procedures for 

the mangrove conservation management plan in Sabah. Chapter 7 evaluates the 

developed protocols in terms of satellite data characteristics and cost-effectiveness for 

mangrove forest monitoring in Sabah.  
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Figure 1.1 Framework of the study 

 

How to continuously monitor the protected mangrove forest?  

How to detect the mangrove change using low-cost satellite data with the advanced technique? 

      What is the effectiveness of developed  protocols for mangrove study in Sabah?  

How to develop & apply the Remote 

Sensing & GIS for Sabah’s mangrove 

classification? 

Main Objective:  

 

To evaluate of developed  protocol  for  monitoring  mangrove forest in Sabah 

 

Main Objective:  

 

To propose the effectiveness of remote sensing application for mangrove monitoring in Sabah 

 

Main Objective:  

 

To determine the potential of low-cost satellite data for detecting  mangrove forest deforestation 

 

What is the advanced Remote sensing 

technique can be applied  for mangrove 

classification? 

Application of Remote sensing and  Geographic Information System Techniques 

to Monitoring of Protected Mangrove Forest Change in Sabah, Malaysia 

Chapter 1 Introduction 

Chapter 2 Literature 

Review 

Main Objective:  

 

To develop protocol for classifying mangrove 

forest  from low-cost satellite data 

 

Chapter 3 Classification Protocol 

for  Mangrove Forest Land Cover 

in Sabah using Landsat Data Series 

Main Objective:  

 

To apply a new remote sensing technique 

for classifying the  mangrove forest 

 

Chapter 4 Machine Learning 

Approach in Mengkabong Mangrove 

Forest Land Cover Classification 

 

Chapter 5 Detections of Regional-scale Conversion of Sabah`s Mangrove to 

Aquaculture Using Change-point Analysis of MODIS Time-series Data 

 

Chapter 6 Satellite Monitoring Procedures  for Mangrove Change 

Detection and Conservation Management Plan in Sabah 

 

Chapter 7 Evaluation of Developed Protocols for Monitoring Protected 

Mangrove Forest in Sabah 
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Chapter 2  

 

Literature Review 

 

 

2.1 Global Mangrove Distribution 

 

Currently, mangrove forest covers an area of about 15 million hectares worldwide and 

exists in 118 countries (FAO, 2007; Giri et al., 2010; Zhang et al., 2003). Mangrove 

forest is distributed extensively in the Indo-Pacific region (6.9 million ha), followed by 

Americas and Caribbean region (4.1 million ha), and Africa (3.5 million ha) (FAO, 

2007; Zhang, 2004). Figure 2.1 shows the distribution of mangrove forest around the 

world.  

 

 

 

Figure 2.1 Mangrove forest distribution around the world 

 Source: FAO (2007)  
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According to FAO (2007), 10 countries have been identified for their extensive 

mangrove forest distribution (Figure 2.2). Among these countries, Indonesia has the 

most extensive mangrove forest distribution (19%), followed by Australia (10%), Brazil 

and Nigeria (7%), Mexico (5%), Malaysia and Cuba (4%), and Myanmar, Bangladesh, 

and India (3%). The total mangrove distribution in these 10 countries represents 65% of 

the global mangrove area. The remaining 35% is spread among 108 other countries. 

 

 

 

Figure 2.2 Percentage of world mangrove forest by country in 2005 

Source: FAO (2007) 

 

2.2 Mangroves in Malaysia 

 

Malaysia has approximately 556,181 ha of mangrove forest, which is the second largest 

amount, after Indonesia, among Asian countries (Malaysia Department Statistics, 2013). 

Out of the total mangrove areas in Malaysia, Sabah has the largest mangrove area, 

320,000 ha (58%), followed by Sarawak, 132,000 ha (24%), and Peninsular Malaysia, 

104,181 ha (18%). Table 2.1 lists statistics of the total area of mangrove forests in 

Malaysia from the year 2006–2010 (Malaysia Department Statistics, 2013). In 

Peninsular Malaysia, Perak has the largest mangrove area, 41,617 ha (42.8%), followed 
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by Johor, 27,342 ha (20.6%), and Selangor, 18,794 ha (19.1%) (Table 2.2) (Malaysia 

Department Statistics, 2013).  

 

Table 2.1 Area of mangrove forest in Malaysia during 2006–2010 (ha) 

Region  

Years (ha) 

2006 2007 2008 2009 2010 

Sabah 340,889 340,689 340,448 340,488 320,000 

Sarawak 117,000 117,000 117,000 112,570 132,000 

Peninsular 100,042 102,334 101,824 101,800 104,181 

     Source : Malaysia Department Statistics (2013) 

 

Table 2.2 Percentage distribution of mangrove forest area in Peninsular Malaysia in 

2010 

States  Percentage (%) 

Perak 42.4 

Johor 27.8 

Selangor 19.1 

Kedah 6.3 

Pahang 2.5 

Terengganu 1.3 

Penang 0.3 

Negeri Sembilan 0.2 

Melaka 0.1 

   Source : Malaysia Department Statistics (2013) 

 

The mangroves in Peninsular Malaysia occur along most of the west coast. The 

sheltering effect by the island of Sumatra provides a relatively calm sea in the Straits of 

Malacca compared to the South China Sea, which abuts the east coast of Peninsular 
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Malaysia. Along the east coast, which faces the South China Sea, mangrove formation 

is generally small and restricted to river mouths, where it usually extends 0.5–1 km 

inland (Ibrahim et al., 2000).  

 

In Sabah, mangroves occur largely on the east coast, facing the Sulu and 

Sulawesi seas, whereas in Sarawak, they occur largely at the mouths of the Sarawak and 

Rajang rivers. Figure 2.7 shows the estimated geographic distribution of mangrove 

forests in Malaysia. The details of Sabah’s mangroves are presented in Section 2.3. 

 

 

 

Figure 2.3 Mangrove forest distribution in Malaysia 

Source: Malaysia Department Statistics (2013) 

 

2.3 Mangroves in Sabah 

 

Sabah, which is located in the northern part of Borneo at 4°20ʹ–7°20ʹ N latitude and 

115°15ʹ–119°15ʹ E longitude, has a landmass of 7.37 million ha. It has an equatorial 

climate with an annual temperature range of 26–32°C, relative humidity range of 85 to 

95%, and total rainfall range of 1500 to 4500 mm. Various types of forest, varying from 

mangroves at sea level up to sub-alpine vegetation on Mt. Kinabalu (4097 m above sea 
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level), occur in Sabah. The high heterogeneity of forest types is due to the occurrence of 

several different soils and latitudinal zones (Sabah Forestry Department, 2012). There 

are three broad mangrove zones in Sabah (Sabah Forestry Department, 2012), as 

described below. 

 

(i) Seaward/Front Mangrove Zone  

 

This zone occurs at the forefront of the mangrove zonation and is usually exposed to 

harsher physical conditions, mainly tidal current and wind. The forest usually has low 

structure (<10 m tall and small trunk diameter). Mangrove species such as Avicennia 

alba and Sonneratia alba commonly grow in this seaward mangrove zone.  

 

(ii) Main Mangrove Zone 

 

This zone is usually in the central parts of the mangrove zonation and is less affected by 

tidal current and wind. It has higher structure (up to 15 m tall with various medium-

sized trunk diameters) and a diversity of mangrove communities and associates. 

Rhizophora apiculata and Rhizophora mucronata are the major mangrove species in 

this zone. Other mangrove species that are commonly distributed randomly in this zone 

are Ceriops tagal and Bruguiera parviflora. 

 

(iii) Back Mangrove Zone 

 

The back mangrove zone is often located behind the main mangrove zone, where the 

duration of tidal influence is short. Three major mangrove associates (Nipah swamp, 

Nibung stand, and Bruguiera stand) have been colonizing and dominating this zone. 

Figure 2.4 shows the mangrove zonation in the Sabah. 
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Rhizophora sp. Avicennia sp. 

Brugeuira sp. Nipa Palm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Mangrove zonation in Sabah 

Source : Sabah Forestry Department (2010) 

 

Presently, the total mangrove area in Sabah is 320,000 ha (Sabah Forestry 

Department, 2010) (Figure 2.5). From the total, 95.7% (304,000 ha) has been reserved 

as permanent forest, but the remaining amount is allocated to supply timber and other 

products (Sabah Forestry Department, 2010). The reservation was conducted under the 

Forest Enactment, which is administered by the Sabah Forestry Department. The 

important uses of mangrove resources in Sabah are forestry (timber and charcoal), 

fishery (prawn, molluscs, crab, and fish), and ecotourism (Sabah Forestry Department, 

2012).  
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Figure 2.5 Mangrove distribution in Sabah  

Source : Sabah Forestry Department (2010) 

 

2.4 Importance of Mangrove Forest 

 

Mangrove forest has a variety of importances to ecosystem goods and services. 

Examples of ecosystem goods and services include timber and fuel (Walters et al., 

2008), carbon sequestration (Komiyama et al., 2008), nutrient cycling to the marine 

system (Carlos & Cebrih, 1996), habitat for rare terrestrial fauna (Dvorak et al., 2004), 

economically important fisheries (Laegdsgaard et al., 2001; Mumby et al., 1999), 

filtration of pollution (Harbison, 1986), and potential reduction of the impacts of 

tsunami and storm surge (Giri et al., 2010).  

 

The importance of the mangrove ecosystem in providing ecosystem goods and 

services is well established (Zhang et al., 2003). Mangrove ecosystems provide 

important goods and services that can be divided broadly into four categories: 

supporting, regulating, provisional, and cultural (Corvalan, 2005; Giri et al., 2011; 

Kathiresan & Bingham, 2001; Manson et al., 2001; Spalding, 1997; Walters, 2008). The 

ecosystem provides valuable goods and services that support and regulate the climate, 

biodiversity, and human well-being (Corvalan, 2005). For example, 45 species of 
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mammals, 45 species of reptiles, 315 species of migratory birds, 177 species of fish, and 

31 species of shrimp were found in the mangrove ecosystems of Bangladesh and India 

(Rashid et al., 1994). The mangrove forests here are the world’s largest and contain a 

diversity of mangrove fauna. 

 

In many countries such as Malaysia, Myanmar, India, and Sri Lanka, mangrove 

forest is a major source valuable timber and wood fuel (FAO, 2007; Zhang et al., 2003). 

The timber industry in the Matang mangrove forest, which is located on the west coast 

of Peninsular Malaysia, employs 2,400 people and generates a revenue of US $6 million 

per year, and the associated fishing industry in the area employs about 10,000 people 

and has an annual revenue of US $12–30 million (FAO, 2007). 

 

A study by Robertson and Duke (1987) found that mangrove forests dominated by 

Rhizophora sp. can assimilate approximately 219 kg of nitrogen and 20 kg of 

phosphorus per hectare per year. This benefit may reduce the incidence of 

eutrophication and possibly red tides. Recent reviews by Costanza et al. (1997) and 

FAO (2007) suggested that the overall average value (based on the value of the US 

economy) of the physical and ecological services provided by the mangrove ecosystem 

is around USD 1000/ha.  

 

2.5 Threats to the Mangrove Forest 

 

Mangroves are sensitive to changes of habitat condition, so the forests are vulnerable to 

destruction. Changes to mangrove habitat may occur due to natural factors or human 

activities (Giri et al., 2010; Kuenzer et al., 2011; Zhang et al., 2003). Recently, more 

than 50% of the world’s total mangrove forests have been reduced due to both factors 

(Alongi et al., 2009; Giri et al., 2010). Table 2.3 shows the changes of mangrove forest 

according the regions that include the total world’s mangrove forests (FAO, 2007).  
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Table 2.3 Mangrove change by region (1980–2005) 

Region 
Year/1000ha 

1980 1990 2000 2005 

Asia 7,769 6,741 6,163 5,858 

Africa 3,670 3,428 3,218 3,160 

North & Central America  2,951 2,592 2,352 2,263 

Ocenia 2,181 2,090 2,012 1,972 

South America 2,222 2,073 1,996 1,978 

World Total 18,793 16,924 15,741 15,231 

 

       Source: FAO (2007) 

 

 A study by Giri et al. (2008) found that some mangrove areas in India and Sri 

Lanka that were affected by the Indian Ocean tsunami in 2004 suffered severe damage 

from breaking and uprooting. Another case study by Hussain and Archa (1994) found 

that 45 million hectares of mangroves areas in Bangladesh had been damaged due to the 

shortage of freshwater flows. The freshwater shortage may have been caused by the 

construction of dams and the diversion of water for irrigation.  

 

However, more than 50% of global mangroves have been destroyed by human 

activities, such as land reclamation, conversion of mangrove forest into areas of 

aquaculture, agriculture, urban development, and residential settlement (Giri et al., 

2008; Kathiresan & Bingham, 2001; Kuenzer et al., 2011; Primavera, 1997), 

overexploitation of mangrove forest goods such as timber and wood fuel (Giri et al., 

2010), domestic and industrial pollution, and waste disposal (Wasserman et al., 2000). 

Table 2.4 summarizes mangrove areas affected by human activities. 
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Table 2.4 Mangrove areas affetced by human activities 

 

Note: None represents unavailable data 

Source: Ivan et al. (2001) 

 

 According to Giri et al. (2008), the conversion of mangrove areas to areas of 

aquaculture, especially shrimp farming, has been spreading quickly, especially in Asian 

countries. A survey by FAO (2007) found that the high economic return of shrimp 

farming has been promoted to increase its national economic potential as a source of 

income for local communities, especially in developing countries. This activity has 

caused a major loss of mangrove forests in parts of Asia, such as in Indonesia, Malaysia, 

and Myanmar (Giri et al., 2008) (Figure 2.6).  

 

A report by FAO (2007) stated that Malaysia lost about 110,000 ha of mangroves 

between 1980 and 2005. During the first decade (1980–1990) of this time period, 

mangrove loss was due primarily to the conversion of land to agriculture, shrimp 

farming, or urban development. However, shrimp farming was spreading quickly in the 

country, especially in Peninsular Malaysia, and this led to reclamation and conversion 

Asia America Africa Australia Word Total
Percentage of 

World (%)

Shrimp culture 12.00 2.30 None 0.01 14.00 38.0

Forest use 4.60 4.90 None None 9.50 27.0

Fish culture 4.90 None None None 4.90 13.0

Diversion of freshwater 4.00 None 0.09 None 4.10 11.0

Land reclaimation 1.90 None None None 1.90 5.0

Herbicides 1.00 None None None 1.00 3.0

Agriculture 0.8 None None None 0.80 3.0

Salt ponds 0.02 None 0.03 None 0.05 None

Coastal development 0.05 None None None 0.05 None

Total Area 29.77 7.2 0.12 0.01 36.3 100.0

Area affected by each activities (10
3
km

2
)

Activity
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of large areas of mangroves to ponds. The National Mangrove Committee of Malaysia 

has strongly recommended that strict guidelines be implemented for development of this 

industry in the future.  

 

 

 

Figure 2.6 Mangrove changes in Asia due to human activities 

Source: Giri et al. (2008) 

 

 

2.5.1 Threats to Sabah Mangrove 

 

The pressures of increasing population occurring simultaneously with the expansion of 

agriculture, aquaculture, and urban development have resulted in the destruction of a 

significant proportion (6.2% or 21,142 ha) of Sabah’s mangrove forest reserve since the 

1990’s (Jakobsen et al., 2007; Sabah Forestry Department, 2011). Aquaculture activities 

have been conducted on a large scale in the mangrove areas in Sabah (Jakobsen et al., 

2007). As a result, production from aquaculture increased rapidly (Sabah Fisheries 

Department, 2010). Figure 2.7 shows statistics of aquaculture production in Sabah.  
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      Figure 2.7 Aquaculture production in Sabah 

  Source: Sabah Fisheries Department (2010) 

 

Shrimp farming has been considered a major contributor to the aquaculture 

production, and it plays an important role in meeting the demand for fresh shrimp by the 

local seafood industry in Sabah (Sabah Fisheries Department, 2012). It also creates 

economic opportunities for other related supportive activities, such as hatcheries, feed 

producers, packaging, processing, retailers, exporters, and aquaculture consultants 

(Norasma, 2007).  

 

Urban development for housing, industry, and tourism has been considered as the 

second major activity, after aquaculture, affecting the mangrove forest areas in Sabah 

(Jakobsen et al., 2007). A study by Lo Man et al. (2011) reported that the demand for 

residential development in Sabah has been increasing due to increasing population. 

Figure 2.8 shows the population growth in Sabah (Malaysia Department Statistics, 

2013).  
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Figure 2.8 Population in Sabah 

Source: Malaysia Department Statistics (2011) 

 

According to the Sabah Forestry Department (2012), deforestation of mangrove 

areas has resulted in some mangrove areas being threatened. These include the areas in 

Kota Kinabalu, Tuaran, Tawau, Sandakan, and Semporna. Uncontrolled exploitation of 

mangrove forest areas has led to some degradation of the coastal environment, such as 

coastal erosion, loss of wildlife habitat, and climate change (Barua et al., 2010).  

 

Sabah’s coastline is also facing coastal erosion, as are the areas in Tuaran and Papar 

where mangrove forests have been degraded. Thus, it is necessary to monitor and assess 

the mangrove forest structure and dynamics to gain both a better understanding of their 

basic biology and to help guide the conservation and restoration efforts.  

 

2.6 Application of Remote Sensing and Geographic Information System (GIS) 

Technology to Mangroves Research 

 

Remote sensing and geographic information system (GIS) technologies have been 

found to be very valuable application tools for classifying various types of vegetation, 
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including mangroves. The use of these technologies provides valuable information 

about land cover, such as the types of habitats and the ecological diversity present in 

certain areas. Previous studies have also shown that remote sensing is a significant tool 

for inventorying, mapping, classifying, monitoring, managing, and developing effective 

strategies for the sustainable utilization of natural resources (Aschbacher et al., 1995; 

Chauvaud et al., 2001; Karthisen & Birgham, 2001). 

 

2.6.1  Characteristics for Identifying Mangroves in Remotely Sensed Data 

 

Mangroves grow at the land–sea interface. Therefore, the three major features 

contributing to the pixel composition in remotely sensed imagery are vegetation, soil, 

and water. However, any mixture of individual surface appearance is influenced by 

seasonal and diurnal intertidal interactions. According to Blasco & Aizupuru (2002), 

these circumstances are the major obstacles to rigorous radiometrics and greatly affect 

spectral characterization.  

 

Additionally, the diversity of mangrove species, especially in Asia, where it is 

higher than in tropical and subtropical regions, aggravates the difficulties of 

discrimination because of the high number of spectrally unique species (Kuenzer et al., 

2011). In Malaysia, 36 main mangrove species have been recorded in the Peninsular 

region, and 34 species have been recorded in Sabah and Sarawak (Hamdan et al., 2012; 

Mohd Lokman et al., 2001; Sabah Forestry Department, 2012). However, the most 

important species in Malaysia belong to the genera Rhizophora, Avicennia, Sonneratia, 

and Laguncularia (Hamdan et al., 2012).  

 

Kairo et al. (2002) suggested that the textural and spectral characteristics of the 

canopy and leaves are the main features used to distinguish mangrove communities. 

Their structural appearance, more homogenous or more heterogeneous, depends on 

several factors such as species composition, distribution pattern, growth form, density 

of growth, and stand height. The spectral signature of a single species is defined by age, 

vitality, and physiological characteristics (Blasco et al., 1998). 
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Kuenzer et al. (2011) described that the near-infrared signal from remote sensing 

reveals different reflections in relation to internal leaf structure, thus facilitating 

mangrove discrimination. Furthermore, spectral distinctions caused by other leaf 

components interacting with electromagnetic radiation at longer wavelengths in the 

near- and mid-infrared regions might work even better (Vaiphasa et al., 2005). A study 

by Jones et al. (2004) confirmed that the different spectral signatures of Rhizophora and 

Avicennia species in the near-infrared signal of satellite data is a reflection of their 

principal biophysical and chemical properties, such as water, cellulose, and chlorophyll 

pigments.   

 

2.6.2 Overview of Low-cost and High-cost Satellite Remote Sensing Data Based 

on the Studies and Methods of the Mangrove Ecosystem (Application and 

Methods) 

 

2.6.2.1 Application of Low-cost Satellite Data to Mangrove Study 

 

For more than two decades, low-cost satellite data have been used extensively to obtain 

facts and data about the condition of and the extent of the threat to mangrove 

ecosystems. Table 2.5 lists several selected mangrove studies that provide a summary 

of the large variety of mangrove studies that have been conducted over the last 20 years 

using low-cost satellite data and methodologies.  

 

More than 70 studies that used low-cost satellite data in more than 16 countries 

have been reviewed. Most of these studies applied the data for mangrove mapping, 

classification of mangrove and non-mangrove vegetation, mangrove land cover change 

detection, and monitoring, and several different methods have been used to extract the 

this information.   
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Table 2.5  Summary of selected mangrove studies during the past 20 years 

Satellite  

Data  

Methods (Years & Study area) 

 Visual  

Interpretation 

Vegetation 

Indices 

Pixel-based 

classification 

Neural 

Network 

Decision-

tree 

learning 

Object-

based 

Aerial 

Photography 

 

 

Sulong 

&Ismail,’90; 

et al.,’99,’00 

(Malaysia) 

 

None 

Manson et 

al.,’01 
(Australia) 

Everit et 
al.,’91 

(America) 

 

None 

 

None 

 

None 

Kairo et 

al.,’00 
(Kenya) 

Binh et al.,’05 
(Vietnam) 

Landsat MSS Vasconcelos 

et al.,’02 

(Guinea-

Bissau) 

Giri et 

al.,’07 

(Bengal) 

Seto et 

al.,’07 
(Vietnam) 

Seto et al.,’07 

(Vietnam) 

 

None 

 

None 

 

None 

Landsat -

5TM 

 

Green et 

al.,’98 (Turks) 

Sulong et 

al.,’00 

(Malaysia) 

Wang et 
al.,’00 

(Tanzania) 

Green et 

al.,’98 

(Turks) 

Seto et 

al.,’07 

(Vietnam) 

Giri et 

al.,’07 
(Bengal) 

Green et 

al.,’98 

(Turks) 

 Alongi et 

al.,’08 (US) 

Thu & 

Populus, ’04 

(Vietnam) 

Seto et al.,’07 

(Vietnam) 

Liu et al.,’08 

(China) 

 

None 

Green et 

al.,’98 

(Turks) 

Landsat 7 

ETM+  

Mumby et 

al.,’99 (Turks) 

Luo et 

al.,’12 
(China) 

Fatayinbo et 

al.,’08 
(Africa) 

Alongi et 

al.,’08 (US). 

 

None 

 

None 

 

None 

SPOT Green et 

al.,’98 (Turks) 

Fromard  et 

al.,’04 
(French) 

 

None 

Blasco et al., 

01 (Bangal) 

Thu & 

Populus, ’04 

(Vietnam) 

Zhang et 

al.,’11(China) 

Concheda et 

al.,’08 

(Senegal) 

Green et 

al.,’98 

(Turks) 

MODIS Vo et al.,’13 
(Vietnam) 

Jian et 
al.,’13 

(China) 

Rahman  et 
al.,’13 

(Indonesia) 

 

None 

 

None 

Rivera et 
al.,’12 

(American) 

 

None 
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 (i) Mangrove Studies Based on Aerial Photography 

 

For several decades, aerial photography has been a dominant remote-sensing technology 

used to analyze surface events. However, only a few studies on mangroves have been 

published. Green et al. (1996) remarked that the lack of appropriate publications or 

presentations makes it difficult to obtain an overview of such studies. Based on this 

review, several such studies have been conducted in locations such as Australia 

(Manson et al., 2001), Kenya (Kairo et al., 2002), Vietnam (Binh et al., 2005), Texas 

(Everit et al., 1991), and Malaysia (Sulong & Ismail, 1990; Sulong & Veddin, 1999; 

Sulong et al., 2002).  

 

Most studies have suggested that aerial photography is suitable for highly detailed 

mapping in very small and narrow coastal areas (Sulong & Ismail, 1990; Sulong & 

Veddin, 1999; Sulong et al., 2002). Furthermore, by using different scales of aerial 

photographs, mangrove forest can be classified into different forest types (Kairo et al., 

2002; Sulong & Ismail, 1990; Sulong et al., 2002; Tarmizi et al., 1998). However, 

large-scale aerial imagery reduces the accuracy of aggregation, but does provide details 

of individual trees. Table 2.6 summarizes types of mangrove forest mapping by aerial 

photo-interpretation.  

 

Table 2.6 Summary of the types of mangrove forest mapping by aerial photographs 

Authors  Year Scale of Arial 

Photographs 

Results 

Sulong & Ismail 1990 1:40 000   3 forest types 

Tarmizi et al. 1998          1:5000 12 forest types 

Sulong et al. 2000 1:20 000   7 forest types 

Kairo et al. 2001 1:25 000   9 forest types 

Sulong et al. 2002          1:5000 14 forest types 
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The visual interpretation method, such as by using color, texture, structures, and 

other image attributes, has been used extensively for species identification (Sulong & 

Ismail, 1990). The color attribute of aerial photography has potential for the detection of 

mangrove forest. Manson et al. (2001) used the color of aerial photographs to detect 

changes of mangrove forest in northern Australia. The combination of the color data and 

the ISODATA clustering algorithm method successfully extracted changes of mangrove 

in the study area. Verification based on a field survey indicated that mangrove changes 

were detected with high accuracy.  

 

Furthermore, Binh et al. (2005) used 58 aerial photographs taken in the year 1968 

and 154 images from the year 1992 and assembled them into a photographic overview 

mosaic to identify changes in land cover over this long-term period. They identified a 

rapid increase of shrimp farming from 1997 onward, and the forest area (mainly 

mangroves) was reduced by about 75%, of which 60% was due to the demand for 

agricultural land and 40% was due to the development of new shrimp farms.  

 

Based on previous studies, aerial photograph data have been used mostly for 

mangrove classification and mangrove change detection. Many studies have 

demonstrated the potential of using satellite data for mangrove studies. However, only a 

few methods have been used to extract mangrove information from aerial photography. 

 

(ii)  Mangrove Studies Based on Landsat Series 

  

The Landsat satellites have been providing multispectral data of the earth environment 

since the early 1970s. Landsat data have been used in a variety of studies, such as land–

water management, land surface change detection, pollution monitoring, and classifying 

various types of vegetation, including mangroves (Blasco et al., 1998; Giri et al., 2007; 

Green et al., 1998; Karthisen & Birgham, 2001).  

 

The Landsat data series (MSS, TM, and ETM+) are free data provided by the 

National Aeronautics and Space Administration (NASA) and the U.S. Geological 

Survey (USGS). More than 20 studies have applied the Landsat data series and more 
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than 10 countries have been reviewed. These Landsat data have been used extensively 

for classifying, mapping, detecting changes, and monitoring mangrove forest (Giri et al., 

2007; Green et al., 1998; Sulong et al., 2002) (Table 2.5).  

 

Among these data, Landsat TM and ETM+ have been used widely for mangrove 

studies. The improvements of several additions of infrared bands and better spatial 

resolution (30 meters) of TM and ETM+ have promoted the application of both data for 

mangrove monitoring (Green et al., 1998). Additionally, the availability of multi-

temporal Landsat data series has helped develope the application of change detection 

analysis to mangrove ecosystems.  

 

Change detection analysis using satellite data is a powerful tool to visualize, 

measure, and thus understand better the trends of mangrove ecosystems (Binh et al., 

2005; Seto et al., 2007; Thu & Populus, 2004; Wang et al., 2003). It enables the 

evaluation of subtle changes over a long period of time (trends) as well as the 

identification of sudden changes due to natural or dramatic anthropogenic impacts (e.g., 

tsunami destruction or conversion to shrimp farms) (Giri et al., 2008; Sirikulchayon et 

al., 2008; Thu & Populus, 2004).  

 

Many previous studies have successfully measured, visualized, and monitored 

changes of mangrove forest using multi-temporal Landsat data. Sirikulchayon et al. 

(2008) examined the impact of the 2004 tsunami on mangrove vegetation in Phang Nga 

Bay, Thailand, using a Landsat 7 ETM+ dataset. The data were acquired before and 

after the impact of the tsunami. This study suggested that a mangrove belt of 1,000–

1,500 m, parallel to the coast, would be optimal to weaken the destructive impacts of 

tsunami waves to the hinterland.  

 

A study by Thu and Populus (2004) successfully measured and visualized the 

changes of mangrove forests in Tra Vinh Province, Mekong Delta, Vietnam, between 

1965 and 2001 using Landsat ETM+ data. The mangrove changes in this area were 

related mostly to the conversion to shrimp farming activities. Furthermore, Seto et al. 

(2007) analysed time series of Landsat MSS and TM data for the Red River Delta in 
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Vietnam between 1975 and 2002. The study calculated the extent and density of 

mangrove, the extent of aquaculture, and the landscape fragmentation to assess the land 

cover condition as a function of time. Their findings indicated that multi-temporal 

Landsat data series are are useful for analyzing the changes of mangrove forest.  

 

Furthermore, various methods have been used to extract mangrove information 

from Landsat data series. More than five image-processing methods have been used 

extensively to extract mangrove information. The methods can be applied exclusively or 

in combination. Visual interpretation, unsupervised classification such as ISODATA, 

and supervised classification such as maximum likelihood methods are frequently used 

for mangrove mapping (Giri et al., 2007, 2008; Sulong & Ismail, 1990; Sulong et al., 

1990, 2002; Wang et al., 2003).  

 

Other common approaches for the classification of mangroves using multispectral 

imagery include spectral vegetation indices such as the normalized difference vegetation 

index (NDVI) and the leaf area index (LAI). Vegetation indices have been used widely 

in pre-classification steps to separate vegetation from non-vegetation and mangrove 

(Alongi et al., 2008; Giri et al., 2007; Green et al., 1998; Thu & Populus et al., 2007).  

 

Several studies have been carried out to investigate and compare the suitability of 

various classification algorithms for spectral separation of mangroves (Green et al., 

1998). In general, application of the supervised maximum likelihood classifier (MLC) is 

the most effective and robust method for classifying mangroves based on traditional 

satellite remote sensing data (Giri et al., 2007; Green et al., 1998).  

 

Even though applications of these traditional satellite remote sensing data and 

methods have been used widely, several limitations and challenges remain in mangrove 

studies. Confusion between mangroves and other vegetation is commonly reported as a 

source of classification error (Benfield et al., 2005; Green et al., 1998). Another source 

of classification error is the omission of fringe mangroves that are less than the pixel 

size, resulting in mixed pixels (Manson et al., 2001).  
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Therefore, new classification approaches such as the neural network, machine 

learning, and object-based methods have been developed to improve the accuracy of 

mapping the extent of mangrove and detecting change over a time (Green et al., 1998; 

Liu et al., 2008; Seto et al., 2007). Most studies have shown high potential of recent 

classification approaches compared with common methods.  

 

A study by Liu et al. (2008) used the machine learning approach with multi-

temporal Landsat TM data and ancillary GIS data to identify mangrove in the Pearl 

River Estuary. According to these authors, this approach can produce superior 

mangrove classification results by using only imagery or ancillary data. Furthermore, 

according to Zhang et al. (2011), the machine learning method has significantly 

improved the separability between mangrove and water–vegetation mixed pixels. The 

results of this study showed that the kappa coefficient and the commission error of 

mangrove identification were 0.90 and 7.9%, respectively.  

 

Only a few object-based approaches have been used in mangrove studies. The 

object-based method allows the use of additional variables such as texture, shape, 

context, and other cognitive information provided by the image analyst to segment and 

classify the image features to improve classification (Blaschke, 2010). Vo et al. (2013) 

successfully detected areas with mixed aquaculture–mangrove land cover with high 

accuracy in Ca Mau Province, Vietnam. However, few mangrove studies have explored 

the use of these recent approaches. 

 

(iii) Mangrove Studies Based on MODIS 

 

Moderate Resolution Imaging Spectroradiometer (MODIS) data have been used for 

environmental monitoring and natural resource management at the global, regional, and 

country-wide scale. MODIS data also have been applied widely in mangrove studies 

since 2000. The instrument was launched to earth orbit in 1990 and 2000 onboard the 

Terra and Aqua satellites, respectively. MODIS data are provided by the National 

Aeronautics and Space Administration (NASA) and the U.S Geological Survey (USGS) 

and can be accessed freely.  
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Based on the previous studies (Table 2.5), MODIS data have been used widely 

for the mapping and monitoring of mangrove forest. The advantages of MODIS data, 

such as providing multispectral data and low spatial resolution (250–1000 m), have 

stimulated extensive application of these data in a large-scale mapping of mangrove (Vo 

et al., 2013). Based on this review, more than 10 studies in 10 countries have used 

MODIS data for mangrove research. 

 

A study by Rahman et al. (2013) analyzed MODIS time series (2000–2010) data 

to monitor changes of mangrove forest in the Mahakam Delta, Indonesia. The results of 

this study showed that 21,000 ± 152 ha of mangrove land on the Mahakam Delta were 

deforested and converted to shrimp pond areas within 11 years. Furthermore, a study by 

Duong (2004) analyzed MODIS 500 m 32-day global composite data for mangrove 

land-cover mapping in Vietnam.  

 

The special characteristic of MODIS data for providing large spatial coverage is 

its ability to observe an entire region or a whole country at the same time with the same 

atmospheric conditions, which simplifies data processing and analysis (Doung, 2004; 

Rahman et al., 2013; Vo et al., 2013). MODIS data are also available in short revisit 

times (2 to 4 days). This advantage offers the possibility of creating a cloud-free 

composite, which is essential for the establishment of a multi-temporal dataset, a most 

important resource for environmental monitoring. Therefore, the availability of 

continuously acquired MODIS data has promoted application of these data in mangrove 

monitoring and mapping (Rahman et al., 2013; Vo et al., 2013).  

 

Pixel-based classification, such as maximum likelihood and vegetation indices 

such as the normalized difference vegetation index (NDVI) and the leaf area index 

(LAI), methods have been used extensively to extract mangrove from MODIS data 

(Jiang et al., 2013). Rivera et al. (2012) proved that MODIS data are very affordable 

and effective by identifying and discriminating land use classes at the country level. 

According to these authors, the accuracy of the map was very high, particularly for 

classes such as mangrove forest and commercial agriculture and especially in the 

tropical country of study.   
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2.6.2.2 Application of High-cost Satellite Data for Mangrove Study 

 

High-cost satellite data, which are high-resolution data, have been used in mangrove 

studies since the early 1990s. Application of these data began with data from the SPOT-

1 satellite, followed by QuickBird and IKONOS data. Due to the advantage of these 

data of having high spatial resolution, most studies have applied the data to mangrove 

species mapping. However, due to limitations such as high cost and small coverage area, 

no more than 20 studies have been conducted using these data. The paragraphs below 

provide a review of the use of SPOT, IKONOS, and QuickBird data in mangrove 

studies. 

 

(i) Mangrove Studies Based on SPOT 

 

SPOT data have high resolution, which promoted application of these data to mangrove 

studies. SPOT data have been used by many studies for mapping, change detection, and 

monitoring of mangrove (Giri et al., 1996; Rasolofoharinoro et al., 1998; Thu & 

Populus, 2007; Tong et al., 2004). A study by Tong et al. (2004) assessed the ecological 

status of mangrove with discrimination by age, density, and species in Phangnga Bay, 

Thailand, using SPOT XS data. In a similar environment, Thu and Populus (2007) 

assessed the status and change of mangrove forest in Tra Vinh Province, Mekong Delta, 

Vietnam, between 1965 and 2001. 

 

Rasolofoharinoro et al. (1998) produced the first inventory map of a mangrove 

ecosystem in Mahajamba Bay, Madagascar, based on SPOT data. A study by Blasco et 

al. (2002) conducted mangrove ecosystem mapping on a regional scale using SPOT 

multispectral data. They analyzed the ecosystems along three major rivers in the tropical 

Bay of Bengal, along the Irrawaddy, and along the Mekong and included various 

criteria such as phonology, physiognomy, and density of the mangrove stands. The 

result of this study found that mangrove density is influenced by both natural factors 

and human activities such as the presence and density of aquaculture. Tong et al. (2004) 

assessed the impact of shrimp aquaculture on the mangrove ecosystem in the Mekong 

Delta using SPOT scenes from the years 1995 and 2001. They identified five 
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ecologically distinct landscape classes but faced difficulty in applying the same method 

in a second study area a few hundred kilometres away.  

 

As for other satellite data, several common methods have been used to extract 

mangroves in SPOT data. Fromard et al. (2004) successfully used visual interpretation 

of SPOT XS data to map the extent and the status of mangroves at Mida Creek, Kenya. 

Rasolofoharinoro et al. (1998) used the vegetation index (VI) NDVI on a multispectral-

layer stack for supervised classification of SPOT data. The study showed that the NDVI 

clearly improved discrimination of non-mangrove and mangrove vegetation. Green et al. 

(1998) found that the NDVI data derived from SPOT XS were correlated to a high 

degree (r = 0.913) with the percentage of mangrove canopy closure.  

 

Furthermore, supervised classification such as maximum likelihood and 

unsupervised classification ISODATA approaches have been used to detect and 

delineate mangrove in SPOT data (Blasco et al., 2002; Giri et al., 1996; 

Rasolofoharinoro et al., 1998; Saito et al., 2003; Thu & Populus, 2007; Tong et al., 

2004). These processing methods have been shown to be acceptable for the applications 

of mapping mangrove, habitat management (including mangrove inventory and 

mapping), change detection (deforestation), and management of aquaculture activities. 

According to Rasolofoharinoro et al. (1998), SPOT images can be used to classify and 

identify mangrove forest with 81–95% accuracy using maximum likelihood 

classification.  

 

Recent approaches such as object-based classification also have been used to map 

and detect changes of mangrove forest. Conchedda et al. (2008) mapped the mangrove 

land cover in Lower Casamance, Senegal, using SPOT XS data and an object-based 

classification method. A change detection approach was performed by means of a 

region-growing algorithm on a multi-date composite for the years of 1986 and 2006. 

The classification results from the SPOT data for 2006 allowed clear separation between 

the different land cover classes within the research area, as well as separation among the 

mangrove classes. 
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(ii) Mangrove Studies Based on QuickBird 

 

QuickBird satellite data have been used in mangrove studies from 2001 until present. 

Fewer than 10 studies have been conducted for mapping, change detection, and 

monitoring of mangrove.  However, many studies have applied these satellite data for 

mangrove species mapping. Several data interpretation methods and processing 

techniques, including conventional methods (vegetation index, supervised and 

unsupervised classification) and recent techniques (object-based, neural network), have 

been used.  

 

QuickBird satellite data have been suggested to be the best high-resolution data 

for mangrove species identification (Everet et al. 2008; Lee & Yeah, 2009). Everet et al. 

(2008) successfully descriminated black mangrove communities in the Texas Gulf 

Coastal region by integrating conventional and advanced classification techniques. A 

study by Lee and Yeah (2009) showed high accuracy (97%) mangrove species 

classification using QuickBird satellite data. However, mangrove monitoring at a broad 

scale with integrated QuickBird satellite data has not been well applied due to the 

limitation of high cost.  

 

(iii) Mangrove Studies Based on IKONOS 

 

IKONOS satellite data have been used in mangrove studies since the early 2000s. As 

discussed in the previous section (2.6.2), most studies have used these data for 

mangrove species dicrimination. IKONOS satellite data have more detailed spectral 

reflectance (Wang et al., 2004). The application of conventional and recent advanced 

classification techniques has promoted high accuracy in mangrove discrimination 

studies (Kovacs et al., 2004; Wang et al., 2004). As for other high-resolution data, high 

cost and small coverage have limited the use of these data for mangrove monitoring 

studies.  
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2.7.  Conventional and Advanced Remote Sensing Techniques for Mangrove Land 

Cover Mapping 

 

2.7.1 Conventional Approaches of Remote Sensing Techniques 

 

Most studies have used conventional approaches of remote sensing techniques to detect 

and delineate mangrove and non-mangrove areas to the species level. Conventional 

remote sensing approaches can provide the important information required to monitor 

the areal extent and changes of mangrove. Several conventional techniques, such as 

visual interpretation, vegetation index, pixel-based classification (supervised and 

unsupervised), and spectral transformation, have been used in previous studies. The 

details of conventional approaches of remote sensing techniques that have been used in 

mangrove studies are provided below.  

 

(i) Visual Interpretation  

 

The visual interpretation technique is highly dependent on the interpreter’s ability to 

recognize and analyze various characters of the study area. For example, shape, size, 

and patterns with respect to the spectral bands and the brightness values from field data 

or aerial photographs indicate that decisions about different mangrove structures can be 

achieved without further computations or statistical processes (Green et al., 1998; 

Sivakumar, 2002). However, to facilitate visual comprehension of imagery information, 

radiometric enhancement (contrast or pseudo-color) needs to be applied.  

 

Sulong et al. (2002) classified nine classes of mangrove forest in Kemaman 

District based on the texture and tone of aerial photograph and Landsat TM data. For 

example, a light tone with a coarse texture and a dark tone with a medium texture could 

be classified as Avecennia–Sonneratia and Bruguiera mangroves, respectively. Green et 

al. (1998) also reported that the visual interpretation technique can be up to 50% 

accurate. This technique has been used extensively to map complex ecosystems (Blasco 

et al., 1998; Gang & Agatsiva, 1992; Selvam et al., 2003; Wang et al., 2003).  
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(ii) Vegetation Index 

 

A vegetation index is a number that is generated by some combination of remote 

sensing bands and may have some relationship with the amount of vegetation in a given 

image pixel (Ray, 1994). Many different vegetation indices are available to transform 

multispectral information into a single index. They may be broadly categorized into 

three types: ratio indices (e.g., normalized difference vegetation index (NDVI); Jensen, 

1986), orthogonal indices (e.g., tasseled cap transformation; Crist & Cicone, 1984), and 

others (Logan & Strahler, 1983; Perry & Lautenschlager, 1984). Of these, ratio indices 

have been applied most frequently to mangrove data.  

 

The NDVI technique has been used widely in pre-classification steps to separate 

vegetation from non-vegetation (Almeida, 2002; Binh et al., 2005; Green et al., 1998; 

Tong et al., 2004; Thu & Populus, 2007). The NDVI is calculated based on the 

following equation:  

NDVI =
(𝐼𝑅 + 𝑅𝑒𝑑)

(𝐼𝑅 − 𝑅𝑒𝑑) 
, 

 

where Red and IR refer to the spectral reflectance measurement acquired at red and 

infrared wavelength, respectively. For mangrove studies, this index can be calculated by 

comparing the spectral reflectance from Landsat TM bands 3 and 4 and from SPOT XS 

bands 2 and 3 (Green et al., 1998). A study by Jensen et al. (1991) found that NDVI 

data derived from SPOT XS were correlated to a high degree (r = 0.913) with the 

percentage of mangrove canopy closure.  

 

Canopy closure charts or density maps provide additional information on the 

dynamics of mangrove vegetation and their its status (Giri et al., 2007; Ramsey & 

Jensen, 1996; Ruiz-Luna et al., 1999; Seto & Fragkias et al., 2007). The degree of 

canopy closure can be used for estimations of canopy structure, which can be described 

in terms of LAI, defined as the total leaf surface area per unit ground surface (Araoujo 

et al., 1997; Green et al., 1997). In mangrove studies, LAI cannot be measured directly 

from satellite imagery. However, Ramsey and Jensen (1996) have identified a strong 
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relationship (R
2
 = 0.84) between LAI data derived from in situ mean values of canopy 

closure and the estimated NDVI for numerous satellite platforms, which was confirmed 

by the work of Green et al. (1997).  

 

(iii) Pixel-based Classification  

 

There are two common techniques of pixel-based classification (supervised and 

unsupervised) that have been used in mangrove studies. In supervised classification, the 

spectral features of some areas of known land cover types are extracted from the image. 

These areas are known as training areas. Every pixel in the whole image is then 

classified to one of the classes, depending on how similar its spectral signature is to the 

training areas.  

 

In unsupervised classification, the computer program automatically groups the 

pixels in the image into separate clusters, depending on their spectral features. Each 

cluster is then assigned a land cover type by the analyst (Liew, 2001). An advantage of 

unsupervised classification is that no prior knowledge of the scene is required. However, 

without further information from ground investigation or published sources, the result 

cannot be attributed directly to a particular area (Gibson & Power, 2000). 

 

Both of these techniques are frequently used for mangrove mapping (Berlanga & 

Luna, 2002; Giri et al., 1996, 2007, 2008; Sirikulchayanon et al., 2008; Tong et al., 

2004; Vasconcelos et al., 2002). Additionally, several studies have been carried out to 

investigate and compare the suitability of various classification algorithms for spectral 

separation of mangroves (Gao, 1999; Green et al., 1998; Saito et al., 2003).  

 

In general, according to previous studies, application of the supervised maximum 

likelihood classifier (MLC) is the most effective and robust method to classify 

mangroves based on traditional satellite remote sensing data (Aschbacher et al., 1995; 

Gao, 1999; Green et al., 1998; Rasolofoharinoro et al., 1998; Tong et al., 2008).  
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(iv) Spectral Transformation Technique 

 

Spectral transformation techniques have been used to improve mangrove classification 

results (Beland et al., 2006; Binh et al., 2005; Green et al., 1997, 1998; Keunzer et al., 

2011; Kovacs et al., 2001). There are two common spectral transformation techniques 

that have been used in mangrove studies, principle component analysis (PCA) and 

tasseled cap transformation (TCT). Both techniques use a measuring pixel intensity of 

each band in multispectral images to reduce the number of band data. In PCA analysis, 

scatter plots of pixel intensity in the bands for two different times are used to detect 

changes of mangrove area.  

 

Unchanged pixels are highly correlated over time and lie in a narrow, elongated 

cluster along the principle axis, whereas changed pixels are scattered some distance 

away from it. A study by Green et al. (1997) dramatically improved the classification 

accuracy between mangrove and other vegetation using the Landsat TM bands and 

bands derived from TCT analysis. Other studies by Binh et al. (2005), Green et al. 

(1998), and Kovacs et al. (2001) reported that when PCA incorporated with the tasseled 

cap transformation technique is applied, highly accurate results are produced for 

mangrove classification and change detection analysis.  

 

Hueman et al. (2011) reported that by using conventional techniques, the 

classification accuracies of mangrove classes ranged from 75% to 90%. Despite the 

wide application of these conventional remote sensing techniques, several limitations 

and challenges to using traditional approaches of mangrove study remain. Confusion 

between mangrove and other vegetation is commonly reported as a source of 

classification error (Al Habshi et al., 2007; Benfield et al., 2005; Gao et al., 1999). 

Another source of classification error is the omission of fringe mangroves that are less 

than the pixel size (Al Habshi et al., 2007; Green et al., 1998) and detection of 

individual species or estimation of canopy structures (Hermann et al., 2011).  
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2.7.2 Recent Advanced Approaches of Remote Sensing Techniques 

 

Many image processing and new analysis techniques have been developed to aid the 

interpretation of remote sensing images and extract information to the greatest extent 

possible from the images. According to Kuenzer et al. (2011), several new analysis 

techniques, such as object-based image analysis (OBIA), rule-based (decision-tree 

learning) classification, and neural networks, can be employed to classify remotely 

sensed data of mangroves. However, all the techniques except for decision-tree learning 

classification have been explored extensively for mangrove study. Detail explanations 

of recent advanced techniques that have been applied in mangroves studies are listed 

below.  

 

(i) Object-based Image Analysis (OBIA) Classification 

 

Object-based image analysis (OBIA) is a technique used to analyze digital images in 

object space rather than in pixel space. The objects can be used, rather than pixel value, 

as the primitives for image classification, and the technique was developed relatively 

recently compared to traditional pixel-based image analysis (Blaschke & Burnett, 2004). 

The process of detecting objects in an image by applying the object-based approach 

consists of sequences of image segmentation and classification procedures, which 

together develop the rule sets.  

 

Only a few studies using the OBIA technique for mangrove research have been 

conducted due to preference for the pixel-based technique, which is easier to implement 

(Kamal & Phinn, 2011; Kuenzer et al., 2011). However, previous studies have reported 

that the classification results of OBIA techniques are more accurate compared to the 

maximum likelihood classifier technique (Herman et al., 2011; Kamal & Phinn, 2011; 

Kuenzer et al., 2011; Moskal et al., 2011; Wang et al., 2004). For the most part, 

previous studies have preferred to use high-resolution satellite data such as QuickBird 

and IKONOS data, rather than medium-resolution satellite data, for OBIA analysis 

(Kamal & Phinn, 2011; Kuenzer et al., 2011).  

 



37 

 

(ii) Neural Network (NN) Classification 

 

Neural network classification is a statistical analysis procedure that relies on parametric 

and non-parametric multivariate analysis, such as discriminant analysis and cluster 

analysis (Figueredo et al., 1992; Terhune et al., 1993). According to Gopal and 

Woodcock (1994), neural network classification provides more flexible solutions to 

discriminate different classes because no assumption concerning the probability 

distribution of the classes has to be made. Yet, the neural network technique has seldom 

been applied to mangrove studies (Kuenzer et al., 2011).  

 

Xiang et al. (2010) used this technique to classify a mangrove landscape, and the 

results showed that the neural network had high classification accuracy (86.86%) 

compared to maximum likelihood (50.79%). Other studies have also proved that neural 

network classification has high accuracy in mangrove studies compared to the 

maximum likelihood method (Paola & Schowengerd, 1997; Wang et al., 2010). Neural 

network classification has the characteristics of large-scale handling and of distributing 

information storage (Xiang et al., 2010).  

 

However, the technique also has disadvantages, such as being time consuming, 

having operation flows that are difficult to understand, and having a parameter that  is 

adjusted empirically instead of using a contingent (Wang et al., 2010; Paola & 

Schowengerd, 1997; Xiang et al., 2010). Because GIS is based on the yield survey and 

original maps, it is effective at assisting neural network classification and also can 

improve the classification accuracy by geographical orientation.  

 

(iii) Rule-based (Decision-Tree Learning) Classification 

 

A decision tree is a classification procedure that repeatedly partitions a dataset into 

smaller subsets based on a test defined at each branch (or node) of the tree. The tree is 

composed of a starting node (root), a set of internal nodes (splits), and a set of terminal 

nodes (leaves). Except for the root, each node has one parent node and, except for the 

leaves, each node has two or more descendant nodes (Friedl & Brodley, 1997). The 



38 

 

observations are sequentially divided as they pass through the tree, and each observation 

is finally assigned a class label according to the leaf node that it reaches (Bremen et al., 

1984, Quinlan, 1993).  

 

Recent studies have demonstrated that the decision tree is one of the most popular 

machine learning approaches and that it is accurate and efficient in land cover 

classification based on remotely sensed data (Defries et al., 1998; Friedl & Brodley, 

1997; Friedl et al., 1999; Hansen et al., 1996; Swain & Hauska, 1977). The decision-

tree learning algorithm can create classification rules directly from the training data 

without human intervention.  

 

In addition, unlike many other statistical analysis approaches, such as maximum 

likelihood classification, the decision tree does not depend on assumptions about value 

distribution or the independence of variables (Quinlan, 1993). Several studies 

(Fatoyinbo et al., 2008; Islam et al., 2008; Liu et al., 2008; Shafri & Ramli, 2009) have 

attempted to apply the decision-tree learning technique, integrated with high-resolution 

satellite data, to mangrove research. The results of the previous studies showed that 

decision-tree techniques can produce superior mangrove classification results compared 

to conventional classification techniques.  

 

However, no study has yet applied the decision-tree learning technique intergrated 

with low-cost satellite data. Therefore, this study applies decision-tree learning 

integrated with low-cost satellite data to mangrove classification in the Sabah area. A 

summary of previous studies on the uses of low-cost and high-cost satellite data 

integrated with conventional and advanced methods in mangrove studies is presented in 

Table 2.7. 
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Table 2.7 Summary of applications of low-cost and high-cost satellite data integrated 

with conventional and advanced methods 

Satellite data Year 

study 

  

Applications (No. of study) 

Methods 

Mapping Change-

detection & 

Monitoring 

Conventional Advance 

Spatial/ 

Temporal 

distributions  

Species 

discrimination 

Vegetation 

index, visual 

interpretation, 

supervised & 

unsupervised 

Machine-

learning, 

neural 

network 

(NN), Object-

based 

Medium-

resolution 

(low-cost) 

Landsat 

MSS 

1974- 

2000 

(<10) None (<10) √ None 

Landsat 

TM 

1993- 

2012 

(>30) (<10) (>30) √ None 

Landsat 

ETM+ 

2000- 

2013 

(<10) (<10) (<10) √ None 

Landsat 

OLI_ 

TIRS 

2013-

present 

None None None None None 

MODIS 2000-

2013 

(>20) None (>20) √ None 

 

High-

resolution 

(high-

cost) 

SPOT 1-4 1990- 

2012 

(>20) (<10) (>20) √ Object-based 

Quickbird 2001- 

2012 

(<10) (<10) (<10) √ Object-based 

IKONOS 2000- 

2012 

(<10) (<10) (<10) √ Object-based 

& NN 

Note: (√) represent applications of the methods 

 

2.8  Benefits and Limitations of Low-cost and High-Cost Satellite Data in 

Mangrove Studies 

 

Numerous studies of remote sensing-based mangrove mapping and monitoring have 

been published over the last two decades. However, most of these studies have used 

low-cost satellite data such as Landsat and MODIS data. Therefore, this study focuses 

on the benefits and limitations of low-cost and high-cost satellite data in mangrove 

studies. Table 2.8 shows the benefits and limitations in mangrove studies of all these 

data types. 
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Table 2.8 Benefits and limitations of low-cost and high-cost satellite data types in 

mangrove studies 

Satellite Data 

Characteristics  

High-resolution Data  

(Arial photography, SPOT, 

IKONOS & Quickbird) 

Medium-Resolution Data                                

(Landsat, MODIS) 

Benefits  Limitations Benefits Limitations 

Spectral 

resolution 

Red-NIR 

spectral 

information with 

red-edge slope 

None at all or 

very low (R, 

G, B, NIR) 

Several 

multispectral bands  

(R, G, B, NIR mid-

NIR & thermal 

bands) 

Skilled, trained 

personnel are required 

Spatial 

resolution 

 

Very high           

(centimetre to 

meter) 

 

Only a small 

area is covered 

 

Ideal for mapping 

on a large regional 

scale 

Too coarse for local 

observations requiring 

in-depth species 

differentiation  

Temporal 

resolution 

Always available 

on demand 

 

Complex 

acquisition of 

equipment  

 

Frequent mapping 

(e.g. Rainy season 

and dry season 

within 1 year) 

 

Repetition rate may 

be too low to record 

the impact of extreme 

events (e.g. Floods)&  

very weather 

dependent (clouds) 

Costs Low costs for 

small areas 

 

Increasing 

costs with 

increasing 

spatial 

coverage 

Depending on 

sensor, freely 

available (e.g. 

Landsat, MODIS), 

costly (e.g. SPOT) 

but all are cost 

efficient compared 

with field surveys  

Software for image 

processing needed 

(common software, 

such as Erdas, ENVI, 

and ArcGIS, have 

high license fees) 

 

Long-term 

monitoring 

Available only 

for short-term 

monitoring 

 

- Data availability 

over three decades 

 

Depending on the 

future duration of the 

systems and 

subsequent 

comparable sensors 

Purpose  

 

Local maps of 

mangrove 

ecosystems, 

parameterization, 

change detection 

Only 

local-scale 

studies 

 

Inventory and status 

maps; change 

detection, 

assessment of 

impact damages & 

deforestation 

 

For some species-

oriented botany-

focused studies, 

resolution may 

already be too coarse 

 

 

Many benefits of Landsat and MODIS data have been reviewed. The Landsat 

and MODIS data have benefits on the multispectral bands compared with the high-

resolutions satellite data. The availability of this benefit have promoted the usefulness 

of Landsat and MODIS for vegetation studies especially for the mangrove. In addition, 

the  large-scale coverage of Landsat series has promoted the usefulness for studying the 
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mangrove in large area. The details multispectral bands and satellite data characteristics 

of Landsat and MODIS data are presented in the appendix of this dissertation. 

 

The availability of long-term satellite data has promoted the use of Landsat, and 

MODIS data for long-term mangrove monitoring. Furthermore, free access to Landsat 

and MODIS data has contributed to the capability of these satellite data. The USGS 

(2013) announced on April 21, 2008, that the agency will provide all Landsat and 

MODIS data archives for free, and it is possible to download these data from several 

websites (Table 2.9). The websites provide thousands of free Landsat and MODIS 

satellite data for any study area of interest.  

 

Table 2.9 Free-access websites providing Landsat series and MODIS data 

 

 

The Landsat data that are provided have standard processing algorithms and 

terrain correction applied, making them very easy to use. There are three types of 

Landsat data level corrections: standard terrain correction (Level 1T), systematic terrain 

correction (Level 1GT), and systematic correction (Level 1G) (USGS, 2013). The 

selection of the data type depends on the study to which the data are to be applied. 

However, all of these types of Landsat data are very compatible for mapping, 

Landsat series (TM, ETM+& OLI_TIRS) MODIS 

Websites Provided Websites Provided 

Global Visualization Viewer 

(http://glovis.usgs.gov/)

The Land Processes Distributed Active Archive 

Center (LP DAAC) (https://lpdaac.usgs.gov/)

 EarthExplorer (http://earthexplorerusgs.gov/)
Global Land Cover Facility 

(http://glcf.umd.edu/)

Landsat.org. (http://www.landsat.org) Reverb (http://reverb.echo.nasa.gov/reverb)

Global Land Cover Facility 

(http://glcf.umd.edu/)

Data Pool 

(https://lpdaac.usgs.gov/datapool/datapool.asp)

Satellites Data 



42 

 

monitoring, and detecting change in mangrove ecosystems (Churches et al., 2014; 

Fatoyinbo et al., 2008; Liu et al., 2008). 

 

There are several types of MODIS land data products that can be useful for 

mangrove studies, such as land cover type (MCD 12C1), leaf area index (MCD15A2), 

surface reflectance bands (MD09A1), gross and net primary production (MOD 17A), 

and vegetation indices (MQ13) (Vo et al., 2013). The MODIS vegetation index (MQ13) 

product is particular for vegetation genealogy research. It consists of the normalized 

vegetation index (NDVI) and the enhanced vegetation index (EVI) (USGS, 2013).  

 

 There are several limitations and challenges of using low-cost satellite data. The  

too-coarse spatial resolution of Landsat data is required in deep-species differentiation 

and parameterization (Kuenzer et al., 2011), and the high-resolution spatial data of 

aerial photography is compatible for only studies of a small area (Kairo et al., 2001; 

Kuenzer et al., 2011; Sulong et al., 2002; Tarmizi et al., 1998). These limitations could 

present a challenge for mapping the diverse mangrove species in Malaysia.  

 

Therefore, a combination application of satellite data, such as aerial photography, 

Landsat, and MODIS data, could be an option for mangrove mapping in tropical 

countries, especially Malaysia. According to Kuenzer et al. (2011), the selection of 

satellite data in mangrove studies depends on the particular circumstances of the user’s 

study. Furthermore, recent advanced approaches of mangrove classification can be 

applied to these low-cost satellite data.  

 

 Data with cloud cover are the utmost limitation in using temporal low-cost 

satellite data (Kuenzer et al., 2011; Nezry et al., 1993). The limited review of the 

sources of free satellite data access could be one reason for insufficient cloud cover-free 

data (Kuenzer et al., 2011). As discussed above, several websites provide thousands of 

free satellite data, which could options for selecting the best low-cost satellite data. 
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Chapter 3 

 

Classification Protocol for Mangrove Forest Land Cover in Sabah 

using Landsat Data Series 

   

 

3.1 Introduction 

 

Sabah has the largest mangrove forest area in Malaysia, constituting 58% (341,000 

hectares) of the country’s total area in 1990. Facing the Sulu and Sulawesi seas, Sabah’s 

mangroves are largely along the east coast. However, according to the Sabah Forestry 

Department (2012), the area of mangrove forest had decreased to 320,000 hectares in 

2010. An increase of population simultaneous with expansion of agricultural land, 

aquaculture activities, industrial areas, and urban development have caused a significant 

proportion of Sabah’s mangrove forest area to be destroyed (Jakobsen et al., 2007; 

Polpanisch, 2008; Sabah Forestry Department, 2010).  

 

According to a report by the Sabah Forestry Department (2010), the total of Sabah 

mangrove cover has decreased by about 6% (20,460 hectares) due to shrimp pond 

farming, agriculture, and urbanization since the 1990s. Uncontrolled exploitation of 

Sabah’s mangrove forest has led to degradation of the coastal environment, such as by 

coastal erosion and the loss of wildlife habitat (Barua et al., 2010; Sabah Forestry 

Department, 2010). Coastal erosion has affected the areas of Tuaran and Papar, where 

the largest area of mangrove forest has been degraded. In order to cope with this 

problem, further extensive monitoring of mangrove forest land cover should be 

conducted continuously. 

 

The same types of application of remote sensing technology for producing and 

monitoring land cover that are used in any research field have been used widely in 

mangrove studies. Remote sensing technology has been used in mangrove studies since 

1974, with remotely sensed data from the Landsat satellite. The Landsat satellites have 
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provided multispectral data of the earth environment since the early 1970s. These data 

have been used in a variety of studies, such as studies on water management, land 

surface change detection, pollution monitoring, and classifying various types of 

vegetation, including mangroves (Blasco et al., 1998; Giri et al., 2007; Green et al., 

1998; Karthisen & Birgham, 2001). Due to its inaccessibility for conducting a field 

survey, the indispensable tool of remote sensing has been used extensively to assess and 

monitor mangrove forest (Lee & Yeh, 2009). 

 

The Landsat data series (MSS, TM, ETM+, and OLI/TIRS) are free data series 

provided by the National Aeronautics and Space Administration (NASA) and the U.S. 

Geological Survey (USGS). These Landsat data have been used extensively for 

classifying, mapping, and monitoring mangrove forest land cover. The Operation Land 

Imager Thermal Infrared Sensor (OLI/TIRS) onboard Landsat 8 has provided new data 

that was released by NASA in 2013. However, applications of OLI/TIRS data in 

mangrove study remain limited. Furthermore, several issues regarding previous Landsat 

data series (MSS, TM, and ETM+) may discourage their use in contemporary mangrove 

mapping and monitoring studies (Wijedasa et al., 2012).  

 

One of these issues is the failure of the hardware Scan Line Corrector (SLC-off) 

of Landsat 7 ETM+ in 2003. This technical problem produced a data gap in Landsat 

ETM+ that has affected 22% of data (USGS, 2004). The anomaly of the Landsat 7 

ETM+ SLC-off remained significant and had an obvious negative impact on the 

usability of the data for some applications. A study by Singh and Sharma (2010) 

indicated that there were 14% significant differences in land cover classification 

between SLC-off and SLC-off gap-filled data of Landsat ETM+. 

 

Another issue is the unavailability of a standard protocol for Landsat data 

acquisitions and analysis processing (Kuenzer et al., 2011; Mohammady et al., 2013). 

Due to limitations on obtaining high-quality data free of cloud cover, several websites 

have been established by many international organizations. The different websites have 

promoted different qualities and types of remotely sensed data. However, few previous 

studies have presented detailed protocols on how to access the free data using various 
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sources of available websites. This issue has limited the usage of Landsat satellite data. 

In addition, few studies have presented the processing procedures for the Landsat 

ETM+ SLC-off data. However, many users prefer these data over costlier alternatives. 

According to Wijedasa et al. (2012), Landsat data, especially ETM+ SLC-off data, still 

have appreciable utility for classification and monitoring of tropical forests.  

 

Thus, a standard method for the selection of appropriate data and processing 

protocols of the Landsat satellite series, especially to recover the missing data of ETM+ 

SLC-off, is proposed. The classification protocol of mangrove study is also explored in 

detail to optimize this application of the Landsat data. The application of Landsat 8 data 

to mangrove research will provide a new perspective on the application of Landsat data 

series. These approaches are used to maximize the application of the Landsat data series 

for classifying mangrove forest in Sabah, Malaysia.  

 

3.2 Objectives 

 

The main objective of this chapter is to develop a classification protocol for the 

mangrove forest in Sabah using the Landsat data series. The specific objectives of this 

study follow:  

 

1. To present a detailed protocol for data selection and processing procedures of 

Landsat data series (TM, ETM+, and OLI_TIRS).  

2. To assess the quality of Landsat data series (TM, ETM+, and OLI/TIRS). 

3. To determine the potential of Landsat data series (TM, ETM+, and OLI/TIRS) 

for classifying the mangrove forest in Sabah 
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3.3 Location of Study Area 

 

The study area is located in the Mengkabong mangrove forest (west coast of Sabah), 

which is 40 km from Kota Kinabalu city. The total study area extends from 6º8ʹ24″ N to 

6º11ʹ24″ N latitude and from 116º08ʹ6″ E to 116º12ʹ54″ E longitude (Google Earth, 

2012) (Figure 3.1). The Mengkabong mangrove forest is dominated by Rhizophora 

apiculata, which is a healthy and dense mangrove species (Sabah Forestry Department, 

2010). This area has been used extensively by local villagers for fishing, and some 

mangrove wood collection for firewood and fishing poles has been carried out. 

Increased development pressure in this area has led to the depletion of mangrove forest 

and changes in the coastal environment.  

 

 

 

Figure 3.1 Map of study area 

 

0 170 340 510 68085
Kilometers

0   5   10   15km
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3.4 Materials and Methods 

 

3.4.1 Materials of Satellite Images and Reference Data 

 

(i) Acquisition and Selection of Landsat Data Series  

 

Landsat data series (TM, ETM+, and OLI/TRS) were used in this study and were 

downloaded free of charge from the Earth Explorer US Geological Survey (USGS) 

website (http://earthexplorer.usgs.gov/). The USGS website provides search data 

criteria tools, such as the World Reference System (WRS), data range, data type, and 

dataset selection to help access the needed Landsat data series.  

 

For example, by using the WRS tool, an image of the Mengkabong area was 

acquired at the path and row of 118 and 056, respectively. The multi-temporal Landsat 

data range used in this study covered the years of 1990 to 2010, with a five-year interval 

period (i.e., 1990, 1995, 2000, 2005, 2010), along with the year 2013 as a new Landsat 

series of OLI_TIRS data.  

 

The purpose of selecting the five-year interval data was to detect the mangrove 

land cover change for that period and the use of the 2013 data was to identify the 

potential of Landsat OLI_TIRS for mangrove study. The final Landsat dataset archived 

covered all of the scene bands and metadata of each Landsat series and metadata file 

containing information from the Landsat data series was used.  

 

The details of data accessing protocols using the USGS website for this study area 

are shown in Figure 3.2. The sample of Landsat data set archived and metadata are 

shown in the Appendix I (A, B & C). The simplify of Landsat satellite data acquisition 

protocol are presented in this study.   

 

 

 

 

http://earthexplorer.usgs.gov/
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Figure 3.2 Access protocols of Landsat data series using the Earth Explorer USGS 

website 

 

The data characteristics that were selected for this study were only multispectral 

bands with same spatial resolution (30 m), data with less cloud cover, and data 

accurately co-registered with Level 1 Terrain correction (L1T). The details 

characteristics of multispectral bands of Landsat data series are shown in the Appendix 

I (D) of this dissertation. Panchromatic and thermal bands were not selected for analysis 

to avoid the complexities of dealing with data at different spatial resolution. 

 

Due to the failure of the Scan Line Corrector (SLC) in the ETM+ sensor, there 

were line errors in the year 2005 and year 2010 Landsat ETM+ SLC-off data. Therefore, 

supplementary data for both years were needed to correct the scan-line error in the 

image. The sample of Landsat ETM+ SLC-off showed details of the gap-filling analysis, 

as described in section 3.4.2.1 (iv). The specifications of multi-temporal Landsat data 

that were used in this study are summarized in Table 3.1. 

 

 

 

 

 

 

 

Website: 

http://earthexplorer.usgs.gov/ 

 Data criteria search of study 

area 

WRS path &row: 

Path: 118 Rows: 056 

 

Data range: 

(1990-2013) 
Data type: 

Level 1T 

Data set selections: 

 (TM, ETM+SLC-off & OLI_TIRS) 

 

Landsat data set archived: 

(L1T data set: Bands: 1,2,3,4,5,6,7,8,9,10,11&Metadata) 

 

http://earthexplorer.usgs.gov/
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Table 3.1 Specifications of multi-temporal Landsat data series 

 
Note: (*)  represents supplementary data 

 

 

(ii) Field Data and Reference Data 

 

The reference data included mainly field data, topographic data, and vegetation maps 

that were used to validate the results of this study. The field survey was conducted in 

the study area in November 2011 and September 2013. The identified sample location 

was measured using GPS. A detailed topographic map and vegetation map at the scale 

of 1:50,000 were obtained from the Sabah Survey and Mapping Department and the 

Sabah Forestry Department (SFD), respectively. Secondary data of mangrove 

distributions in Sabah were obtained from the Sabah Forestry Department (SFD). 

 

3.4.2 Methodology  

 

All multi-temporal Landsat series (TM, ETM+, and OLI_TIRS) were analyzed for the 

data analysis. The analysis protocols involved (1) pre-processing, (2) statistical analyses, 

(3) classification, (4) validation, and (5) accuracy assessment. The Environment for 

Visualizing Images (ENVI) 4.7, 5.1 software and MS Excel 2010 were used to analyze 

the data. The ENVI software is an image processing system designed for multispectral 

and hyperspectral data analysis and information extraction.  

 

Landsat series Year Date acquired

Date of 

supplementary 

data for 

interpolation

Cloud cover 

(%)

Multisepectral 

bands

 2 - 7

5.25

13.46

6.18 & 32.15*

9.00 & 15.86*

 1-5, 7

11.57

20

None

None

None

06.03.2010

07.12.2000

13.08.2010*

02.10.2005*

 L4 TM 19.06.1990

01.02.1995

 L5 TM

23.04.2013

20.02.2005

L8 OLI_TIRS

2010

 L7 ETM+ SLC-

off

1990

1995

2000

2013

2005
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3.4.2.1 Pre-processing Analysis  

 

All multi-temporal Landsat data were analyzed for the pre-processing analysis. The 

analyses included radiometric calibration, the creation of multispectral data, subsetting 

analysis, gap-filling analysis, and cloud masking. The purpose of the preprocessing 

analysis was to normalize the data, to allow intercomparison between data, to correct 

the atmospheric effects, and to reduce noise. The protocols of the pre-processing 

analysis that were used in this study are explained below. 

 

(i) Radiometric Calibration Analysis 

 

The multispectral bands of TM, ETM+ SLC-off, and OLI_TIRS data were processed 

for the calibration analysis using ENVI software. Due to the limitations of the image 

processing tools in ENVI 4.7, the multispectral bands of OLI_TIRS were analyzed 

using the latest version of the software, ENVI 5.1. The sun elevation and acquisition 

date parameters from the metadata were used in this analysis.  

 

The multispectral bands of the Landsat series were calibrated by converting the 

digital numbers (DN) (0–255) to absolute reflectance values (0.1–1.0). Therefore, the 

true reflectance value and the physical characteristics of the earth’s surface could be 

determined and retrieved (Thomas et al., 2008). The reflectance value in ENVI software 

was calculated using Equation 3.1: 

 

  

              (3.1) 

where  = unitless planetary reflectance 

L = spectral radiance  

d = Earth–sun distance in astronomical units 

ESUN = mean solar exoatmospheric irradiance  

 s = solar zenith angle (sun elevation angle in metadata) 

 

 =  * L d
2 

/ ESUN * COS 
S
 , 
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(ii) Creating Multispectral Data from L1T Data  

 

Then, the multispectral data were created by combining the single bands (1–5, 7) of the 

L1T datasets (Figure 3.3). The data were created based on the same spatial resolution 

(30 m) and the wavelength of the bands. However, the multispectral data of OLI_TIRS 

were created by combining bands 2–7, which have the same 30 m spatial resolution. 

The purpose of creating the multispectral data was to produce a true color composite 

image for visual interpretation. Therefore, the image can be used for detecting certain 

objects in further analysis. This analysis was performed using ENVI 4.7 software. The 

multispectral data of all Landsat data used in this study are shown in the Appendix I 

(C). 

 

 

 

Figure 3.3 Multispectral data with true-color composite (combination of RGB bands) 

 

(iii) Subsetting Data Analysis 

 

The subsetting analysis was performed on all the full scene of the multi-temporal 

Landsat series. The purpose of this analysis was to select only the data of interest within 

the study area. The subsetting of data was performed using ENVI software. The study 

area was selected as the subset using the map coordinate system by referring to the 

topographic map and Google Earth (Figure 3.4). 

 

Band 1
Band 2

Band 3
Band 4

Band 5

Band 7
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Figure 3.4 Subsetting of multispectral data using map coordinates 

 

The total pixels of full image of Landsat series is 55,381,200. Then, after the subset 

analysis the total pixels of interested area is 55,352. Using this technique, we considered 

that all the multi-temporal data were accurately subset to the study area with the same 

total pixels of rows and columns. Figure 3.5 shows the true color composite (RGB) of 

the multispectral subset of all multi-temporal data used in this study. Then, all the 

subset data were used for the further analyses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Scene

N5 55`30", E116 26`42"

N6 18`36", E116 01`12"

 Column=6,940

 Rows=7,980

Subset Scene

 Rows =296

 Column =187

N6 11`24", E116 08`6"

N6 8`24", E116 12`54"
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Subset Image 

1. L4 TM 19.06.1990  2. L5 TM 01.02.1995 
 

 

 

3. L5 TM 07.12.2000 4. L7 ETM+ SLC-off 20.02.2005 

 

 

 

 

 

 

 

 

 

 

 

5.L7 ETM+SLC-off 02.10.2005* 6. L7 ETM+SLC-off 06.03.2010 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7. L7 ETM+SLC-off 13.08.2010* 8. L8 OLI_TIRS 23.08.2013 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note: (*)  represents supplementary data 

 

Figure 3.5 True-color composite (RGB) of multispectral subset data 
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(iv) Gap-filling Analysis of Landsat ETM+ SLC-off Data 

 

The gap-filling analyses were processed for only the multispectral subset of ETM+ 

SLC-off data. As explained before, all Landsat ETM+ SLC-off data have a scan line 

error in the scene due to a sensor malfunction (Figure 3.6). Therefore, gap-filling 

analysis was needed to correct line errors (gaps) in the data.  

 

 
 

 

 

Figure 3.6 Scan line errors (gaps) in multispectral ETM+ SLC-off data  

 

The gap-filling analysis used two forms of original data from ETM+ SLC-off. 

One was for the main data and the other was for the supplementary data. The main data 

are the data to be filled, and the supplementary data are the data used to fill. A local 

linear histogram method was used to fill the gaps in the SLC-off data (USGS, 2004). 

The criteria of the main and supplementary data were selected based on the suggestion 

from the USGS, which is less cloud cover and the same spatial resolution (Table 3.2).  

 

 

 

 

15 30 450 65
Meter

Original ETM+ SLC-off data  

(Full scene) 

Original ETM+ SLC-off data  

(Subset scene) 
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Table 3.2 Specifications of  ETM+ SLC-off data for gap-filling analysis 

Data 

Specifications 

Main data 

( Data to be filled) 

Supplementary Data 

(Data to be fill in) 

Date  20.02.2005 02.10.2005 

Cloud cover (%) 6.18 32.15 

 

 

 

 

 

 

 

 

 

 

 

 

Date  06.03.2010 13.08.2010 

Cloud cover (%) 9.00 15.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gap-filling analysis was performed using Microsoft Excel 2010 and the Frame & 

Fill tool in ENVI 4.7 software. The output of the gap-filing analysis produced the final 

data of the SLC-off gap-filled data. The protocol for the gap-filling analysis included 

several steps, which are described below. 

 

(a) Extraction Windows Pixel of the Main and Supplementary Data 

 

An n × n window pixel of the main and the supplementary SLC-off data was extracted 

into MS Excel 2010 (Figure 3.7). This technique was used to scan the gap value in both 
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data. The 0 values represent the gap pixels of SLC-off data. Then, the gap pixels in the 

lines and rows of the main and supplementary data could be defined clearly. Once a gap 

was identified, the histogram analysis was attempted to test the quality and normality 

and determine a linear transformation between the two data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Illustration of pixel value extraction of ETM+ SLC-off data in MS Excel  

 

(b) Testing the Quality and Normality of ETM+ SLC-off Data 

 

The histogram analysis was conducted on the main and supplementary data using MS 

Excel 2010. The purpose of the analysis was to analyze the quality of the brightness and 

the normality of the selected two data. An example of the histogram analysis of the 

main and supplementary data is presented in Figure 3.8. The figure shows the 

histogram of band 3 (red band) for both data, which indicates that there is a significant 

difference in brightness between the main and supplementary data. The data with high 

brightness value contain less cloud cover (Zhu & Woodcock, 2014). Thus, the main 

data that were selected in this study are good data for the gap-filling analysis. Such an 

analysis may be useful for testing the quality of the selected main and supplementary 

data . 

0.097 0.097 0.098 0.099 0.010 0.011 0.012 0.010 0.010 

0.098 0.099 0.097 0.010 0.011 0.011 0.010 0.011 0.011 

0.097 0.099 0 0 0 0 0 0.010 0.010 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0.096 0.098 0 0 0 0 0 0.099 0.098 

0.095 0.011 0.010 0.010 0.011 0.099 0.099 0.098 0.090 
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Figure 3.8 Histogram analyses of band 3 for the main and supplementary ETM+ SLC-

off data 

 

(c) Calculating the Gain and Bias of Target Pixels 

 

Finally, the local linear histogram method was applied to predict the value of the main 

data pixels (USGS, 2004). A linear transformation between the main and supplementary 

data was performed by calculating the gain and the bias of the data. The gain and bias 

were calculated using the mean and standard deviation of the input and target data 

(Equations 3.2 and 3.3), respectively. 

 

                  (3.2) 

       

    (3.3) 

 

 

where 𝜇𝑃 and 𝜇𝐹 are the mean value of the non-gap pixels in the main and 

supplementary data, and 𝜎𝑝 and 𝜎𝐹 are the standard deviation of the non-gap pixels in 

the main and supplementary data, respectively. The result of the values was used to fill 

the missing pixels in the main data.  

 

Qualitative and quantitative analyses were used to evaluate the algorithm’s 

performance. Using qualitative analysis, visual interpretation was applied to check the 

gain = 
𝜎𝑝

𝜎𝐹
 

 

bias = 𝜇𝑝 -𝜇𝐹* gain , 
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individual bands and the color composite of the main data. The purpose of this analysis 

was to determine of the remaining gaps (Chen et al., 2011). For the quantitative 

evaluation, the data were readied for classification analysis. Figure 3.9 shows the 

workflow of the gap-filling analysis of ETM+ SLC-off data used in this study. 

 

 

 

 

Figure 3.9 Workflow of gap-filling analysis of ETM+ SLC-off data  
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(v) Cloud-masking Analysis 

 

Cloud-masking analysis was performed on all subset Landsat data using the ENVI 4.7 

software. The purpose of this analysis was to confine and remove the remaining cloud 

cover area in the image. The remaining cloud cover was identified using the image 

interpretation, Google Earth tools and multi-temporal Landsat image comparisons. 

Firstly, the image was interpreted by true color image using band combination red, blue 

and green (RGB). As such, the cloud area and non-cloud area could be identified by 

color.  For the areas in white were initially assumed to be cloud area. Next, the clear 

image from Google Earth was used to verify the white color features using overlay tool. 

The comparison of white area in the Google Earth and Landsat images verify the 

features either to be cloud or non-cloud area. In addition, further clarification has been 

done by comparing with other multi-temporal Landsat images.  

 

Then, could masking technique was applied to identify white area in the images. 

Using the cloud-masking technique, the image consisted of two of values 1 and 0. The 

pixel areas covered with clouds represented in uniform area of 0 values. In addition, 

total pixels of cloud area were extracted using MS Excel 2010. For example, in the 2010 

data, the numbers of pixels with 0 values were 150. Therefore, the remaining cloud  area 

of interest is 0.27%. Then, the masked pixels were removed using region of interest 

(ROIs) tools. Detail procedures are shown in the appendix of dissertation. Figure 3.10 

shows a visual comparison of the Landsat image before and after the cloud masking and 

ROIs tool analysis. 

 

 

Note: Red circle with white area in (i) shows a cloud cover area of 2010 Landsat data 

Figure 3.10 Visual comparisons between before and after the cloud-masking analysis of 

Landsat ETM+ SLC-off gap-filled data for 2010 

(i) Before cloud-masking and ROIs (ii) After cloud-masking and ROIs 
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3.4.2.2 Statistical Analysis 

  

The multispectral subset of the Landsat data series (TM, ETM+ SLC-off, SLC-off gap-

filled, and OLI_TIRS) was analyzed for statistical analysis using MS Excel 2010. The 

purpose of this analysis was to assess the quality of the Landsat data that were used in 

this study before proceeding to the classification analysis. According to Maselli (2002), 

it is useful to initially assess the quality of satellite data by performing statistical 

analysis. Thus, the data were analyzed using univariate descriptive statistics and 

histogram analysis.  

 

Univariate descriptive statistics can measure unusual anomalies in satellite data, 

whereas histogram analysis can show the frequency of occurrence of data brightness 

values (Maselli, 2002). Therefore, both analyses are useful for checking the quality of 

the Landsat data series after pre-processing analysis. First, analyses were performed to 

analyze the Landsat ETM+ SLC-off and SLC-off gap-filled data. These analyses 

analyzed the quality of the ETM+ SLC-off data before and after the gap-filling analysis. 

Then, analyses were performed on the TM and OLI_TIRS data, respectively.  

 

3.4.2.3 Classification Analyses 

 

The multispectral subset data of the multi-temporal Landsat series (TM, ETM+ SLC-off, 

SLC-off gap-filled, and OLI_TIRS) were then analyzed for classification analysis. Both 

unsupervised and supervised classification techniques were applied in this study. The 

unsupervised classification technique classified the land cover classes randomly, 

without knowing the properties of the pixels, using the software. The K-Means 

unsupervised classification in the ENVI 4.7 software was applied in this study.  

 

The supervised classification technique classified the land cover classes by 

forming groupings based on the properties of the pixels. Several supervised 

classification techniques including visual interpretation, features extraction, spectral 

profile, maximum likelihood, and normalized difference vegetation index (NDVI) were 

applied in this study. The classification analysis was performed on the data using ENVI 
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4.7, 5.1, and MS Excel 2010. The protocols of the unsupervised and supervised 

classification analyses are explained in the details below. 

 

(i) Unsupervised Classification 

 

a) K-Means 

 

First, all of the multi-temporal Landsat data series were classified using K-Means 

unsupervised classification. In this technique, the ENVI software program automatically 

groups the pixels in the image into separate clusters, depending on their spectral features. 

Each cluster is then assigned a land cover type by the analyst (Liew, 2001). 

 

(ii) Supervised Classification 

 

a) Visual Interpretation and Features Extraction Technique  

 

In the supervised classification, the analysis was started with the visual interpretation 

technique. The technique identifies and extracts ground features based on their tone, 

color, and spectral characteristics of the data. To interpret the data, a true-color image 

(natural color) was produced by combining of the visible bands (red, green, and blue). 

Then, the data could be interpreted clearly. Syed et al. (2001) suggested that this 

technique is useful as a first step in land cover classification protocols.  

 

The elements of tone and texture were used to identify different land cover classes. 

Tone refers to the relative brightness or color of objects in satellite data, and it can be 

classified into three conditions: light, medium, or dark. Texture is the frequency of tonal 

change in the photographic image and can be classified as coarse, medium, or fine 

(Sulong et al., 2002). Green color normally represents areas of vegetation, and different 

tones of greenness indicate different levels of vegetation types (Sulong et al., 2002). 

The purpose of this analysis was to qualitatively classify the land cover classes into 

vegetation and non-vegetation areas.  
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b) Spectral Profile  

 

Then, the spectral profile classification technique was used on the data. The technique 

quantitatively classified land cover features into vegetation and non-vegetation areas. 

The basic features of vegetation, soil, and water are shown via different shapes and 

values of reflectance spectral profile (Fig. 3.11). The features were collected using the 

collecting endmember spectra tool and were identified using the spectral library in the 

ENVI 4.7 software.  

 

 

Figure 3.11 Spectral profiles of vegetation, soil, and water  

 

The vegetation profile has low reflectance in the blue and red regions (0.45–0.60 

µm) of the spectrum due to absorption by chlorophyll for photosynthesis. It has a peak 

in the green region (0.60–0.70 µm), in which it rises to the green color of vegetation. In 

the near-infrared (NIR) region, the reflectance value is much higher than in the visible 

band due to the cellular structures in the leaves. Therefore, the vegetation can be 

identified by high NIR and low visible band reflectance. The shape of this reflectance 

spectrum can be used for identification of vegetation types (USGS, 2004). Various 

shades of vegetation occur based on the types, leaf structure, moisture content, and 

health of the plants (Ozesmi et al., 2002).  

 

Bodies of water are generally highly reflective in the invisible spectrum. In the 

near-infrared and mid-infrared regions, increasing light absorption makes water darker. 
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However, clearer water has lower reflectance than turbid water. This characteristic 

depends on water depth and wavelength. Soil reflectance in satellite data is influenced 

by mineral composition, soil moisture, organic matter content, and soil texture (surface). 

Increasing soil reflectance occurs from the visible to the short-infrared bands (1.4 µm 

and 1.9 µm) and is related to the amount of soil moisture (USGS, 2004).  

 

In the Landsat data, the visible spectrums of band 1 (0.45–0.52 µm), band 2 

(0.45–0.60 µm), and band 3 (0.63–0.69 µm) were used to extract the water spectral 

signature features in the study area. Then, a combination of band 3 (0.63–0.69 µm), 

band 4 (0.76–0.90 µm), and band 5 (1.55–1.75 µm) was used to extract vegetation 

spectral reflectance. The band 3 region has a tendency for strong chlorophyll absorption, 

band 4 operates in the best spectral region for distinguishing varieties of vegetation, and 

band 5 is sensitive to the amount of water in the plants. Based on this concept, we were 

able to extract a variety of spectral reflectances for vegetation in the study area. 

 

c) Normalize Difference Vegetation Index (NDVI)  

 

Instead of the aforementioned classification techniques, the normalized difference 

vegetation index (NDVI) was applied to the data to classify vegetation and non-

vegetation areas quantitatively. This technique was applied to all of the multi-temporal 

subset data. In addition, the technique was also applied to the SCL-off and SLC-off gap-

filled data of Landsat ETM+. The purpose of this analysis was to compare the 

classification results between both data and determined the percentage of gap in the 

SLC-off data. The NDVI is a simple numerical indicator that can be used to analyze 

remote sensing measurements whether the target object being observed contains or does 

not contain live green vegetation. The NDVI was calculated based on the equation: 

 

NDVI =
(𝑁𝐼𝑅+𝑅𝑒𝑑)

(𝑁𝐼𝑅−𝑅𝑒𝑑)
  .                 (3.4) 

 

In the equation, Red and NIR refer to the spectral reflectance measurement 

acquired in the red and near-infrared wavelength, respectively. The wavelength range of 
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the NIR band is (750–1300 nm), whereas that of the red band is (600–700 nm). In this 

study, we used the spectral reflectances of bands 3 and 4 of the TM and ETM+ and 

those of bands 4 and 5 of OLI_TIRS, which are closely related to the wavelengths of the 

red and NIR bands, respectively. The range of NDVI values is from -1 to 1. 

 

A very low value of NDVI (0.1 and below) corresponds to barren areas of rock or 

soil or snow. Moderate values (0.25–0.3) represent shrub and grassland areas, and high-

value indices (0.5–1) indicate temperate and tropical rainforest. Bare soil is represented 

by NDVI values close to 0, and bodies of water are represented by negative NDVI 

values (Chouhan & Rao, 2011; Karaburun, 2010; Ramachandra, 2004; Xie et al., 2010). 

Other materials, such as man-made materials, are represented by values ranging from 

0.1 to 0.2. The NDVI values vary due to the absorption of red light by plant chlorophyll 

and the reflection of infrared radiation from water-filled leaf cells.  

 

The NDVI analysis was performed using different NDVI threshold values (Table 

3.3). Several threshold values were developed by using the range of NDVI values (-1 to 

1) to classify the land cover classes in the study area. The analysis was performed using 

the conditional formatting in MS Excel 2010. Then, the spectral profile technique was 

re-applied to confirm the spectral reflectance of each class. The mean spectral signature 

of each class was examined to assess the relevancy of the classification. After 

completing the classification procedure, the results were assessed for accuracy.  
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Table 3.3 Classes of NDVI land cover 

 

 

d) Maximum Likelihood   

 

The supervised classification maximum likelihood technique was performed on 

the data. The maximum likelihood classification technique assumes that the statistics for 

each class in each band are normally distributed and calculates the probability of a given 

pixel that belongs to a specific class (Richard, 1999). The analysis was performed using 

the ENVI software. However, the numbers of classes were identified according to the 

visual interpretations, spectral profile analysis, and region of interest (ROI) techniques 

that were utilized before. The ROI was applied to extract the statistics for the 

classification.  

 

3.4.2.4 Validations   

  

Validations were performed on the classification results of the satellite data using the 

field survey data, topographic map, vegetation map, and Google Earth. 

 

(i) Field Survey  

 

Field surveying was conducted to validate the classification analysis performed by using 

the satellite data and remote sensing techniques. The surveys were conducted in 

November 2011 and September 2013. The first survey was conducted from November 

No.

(i)          Min value  0

(ii)            0 0.1

(iii)        0.1 0.25

(iv)      0.25 0.35

(v)        0.35 0.5

(vi)      0.5 Max value

 ≤ NDVI <

 ≤ NDVI <

 ≤ NDVI <

 ≤ NDVI <

Threshold value 

Class 5

 ≤ NDVI < Class 6

 ≤ NDVI <

Classes

Class 2

Class 3

Class 4

Class 1
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4–December 25, 2011 (52 days). In the first field survey, a site visit was conducted to 

survey the real condition of the study area.  

 

During the site visit, the preliminary classification results of the satellite data 

were used for validatation of the land cover classes. Fifteen points were selected to 

“ground-truth” the preliminary classification results (Figure 3.12). The coordinates of 

each point were recorded using GPS (Garmin GPSMAP 60CSX).  At each point, a 

quadrate within a 30 m × 30 m area, six transects were placed parallel to each other and 

5 m apart.  

 

In addition, a field photo was acquired at each point using a digital camera 

(Canon Power Shoot SX710 HS). The second field survey was conducted from 

September 13–30, 2013 (18 days). The second field survey was conducted in order to 

validate the classification result of Landsat OLI_TIRS 2013 (new satellite data). The 

same field survey procedures used in the first sampling were performed in this survey.  

 

The quadrate survey, transects, and photo transect were re-applied in the second 

field survey. Unconfirmed classification results such as shrimp pond area, built-up area, 

and grassland were confirmed using the field survey data. During the second field 

survey, we also visited and joined the mangrove replanting project conducted by the 

Kota Kinabalu Wetland Centre. The replanting project was conducted in degraded 

mangrove areas, such as in-active shrimp pond areas. The details of the field survey 

activities and photographs are shown in Appendix IV (A & B).  
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Figure 3.12 Ground-truth points and field photographs of selected points 

 

 

(ii) Topographic and Vegetation Maps  

 

A detailed topographic map and vegetation map at the scale of 1:50,000 (published in 

1990 and 2009) were obtained from the Sabah Survey and Mapping Department and the 

Sabah Forestry Department (SFD), respectively. Both of these data were used to 

validate and confirm the land cover classes in the classification map of satellite data. A 

sample of the topographic map of the study area is shown in Appendix IV (C). 

 

(iii) Google Earth  

 

Google Earth validation was applied during the conducting of the classification analysis 

in order to confirm roughly any unclear land cover classes. The details of the 

classification protocols used in this study are presented in Figure 3.13.  
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Figure 3.13 Classification protocols of mangrove forest land cover in Sabah using Landsat data series 
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3.4.2.5 Accuracy Assessment  

 

The land cover classification maps from the satellite data were further subjected to 

accuracy assessment. The analysis was performed using ENVI 4.7 software. The 

purpose of the analysis was to demonstrate the accuracy of a classification result by 

comparing the classification result with ground-truth information. In this study, the 

confusion matrix method integrated with ground-truth data that were obtained from the 

field survey, a topographic map, Google Earth and region of interest (ROIs) tools were 

used for the accuracy analysis.  

 

The confusion matrix is calculated by comparing the location and class of each 

ground-truth pixel with the corresponding location and class in the classification image. 

Each column of the confusion matrix represents a ground-truth class and, the values in 

the column correspond to the classification image’s labeling of the ground-truth pixels.  

 

The confusion matrix was performed with the NDVI and maximum likelihood 

classification results. Then, the total accuracy of each classification can be derived from 

the confusion matrix table by counting how many pixels were classified the same in the 

satellite data and on the ground and dividing this by the total number of pixels. In 

addition, the kappa coefficient also measured the agreement between classification and 

ground-truth pixels. The kappa (k) coefficient was calculated based on the equation: 

 

𝑘 =  
𝑁 ∑ 𝑚𝑖,𝑖

𝑛
𝑖=1 −  ∑ (𝐺𝑖

𝑛
𝑖=1 𝐶𝑖)

𝑁2 −  ∑ (𝐺𝑖
𝑛
𝑖=1 𝐶𝑖)

 

Where,  

i is the class number  

N is the total number of classified pixel that are being compared to ground truth 

mi,i  is the number of pixels belonging to the ground truth class i  

Ci is the total number of classified pixels belonging to class i 

Gi  is the total number of ground truth pixels belonging to class i 
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3.5 Results and Discussion  

 

The first section of this part of the dissertation (Section 3.5.1) discusses the quality 

assessment of the processed Landsat series that were produced using the developed 

protocol of this study. The discussion focuses on the results of the correction of the 

scan-line error in the ETM+ SLC-off data. Then, the following section (Section 3.5.2), 

discusses the classification result of the Mengkabong mangrove from the multi-

temporal Landsat series used. 

 

3.5.1 Quality Assessment of Processed Landsat Data Series (TM, ETM+, and 

OLI_TIRS) 

 

An assessment of the quality of the processed Landsat data series can be defined clearly 

based on the values of univariate descriptive statistics (min, max, mean, and standard 

deviation) (Masselli, 2002). The quality of the Landsat ETM+ SLC-off data before and 

after the gap-filling analysis showed a significant difference in Min values. Table 3.4 

presents the Min values of all bands of Landsat ETM+ SLC-off before and after the 

gap-filling analysis. 

 

Table 3.4 Min value of Landsat data ETM+ SLC-off and ETM+ SLC-off gap-filled data 

 

 

Band

Date Blue Green Red NIR SWIR1 SWIR2

20.02.2005  ETM+ SLC-off Original (main) 0.00 0.00 0.00 0.00 0.00 0.00

02.10.2005    ETM+ SLC-off Original (supplementary) 0.00 0.00 0.00 0.00 0.00 0.00

20.02.2005  ETM+ SLC-off Final (gap-filled) 0.07 0.05 0.04 0.02 0.02 0.03

13.08.2010  ETM+ SLC-off Original (main) 0.00 0.00 0.00 0.00 0.00 0.00

06.03.2010  ETM+ SLC-off Original (supplementary) 0.00 0.00 0.00 0.00 0.00 0.00

13.08.2010  ETM+ SLC-off Final (gap-filled) 0.07 0.03 0.02 0.03 0.03 0.02

Min value
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The values before and after the analysis were recorded at (0.00) and (0.05–0.09), 

respectively. The 0.00 value in the original ETM+ SLC-off data represents the gap-data 

value. This result could confirm the efficiency of the gap-filling method that was 

applied in this study. A study by Singh and Sherman (2010) suggested that the original 

data of ETM+ SLC-off need to be analyzed by gap-filling analysis before proceeding to 

classification analysis. The selection of an appropriate gap-filling analysis should 

produce a good spatial result of ETM+ SLC-off data (Singh & Sherman, 2010).  

 

Figure 3.14 shows images of the main and supplementary data before the gap 

filling and the final data after the gap-filling analysis. The final data show that the gaps 

in the main data of ETM+ SLC-off were filled very well. Despite the SLC failure in 

Landsat 7, ETM+ is very applicable for many applications (Biro et al., 2013; Chander et 

al., 2010; Roy et al., 2010), especially in natural resources. 

 

Therefore, it is very important to apply and evaluate different methods to fill in 

the gaps of these data (Zhang et al., 2013). The strengths of the gap-fill algorithm are 

that it is able to improve the spatial continuity of the filled results and that it is easy to 

use (Mohammady et al., 2013; Pringle et al., 2009; USGS, 2004).  
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ETM+ SLC-off  

 Before gap-filling After gap-filling 

(Main data)                                   (Supplementary data) gap-filled (Final) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.14 Comparison quality color composite of ETM+ SLC-off data before and 

after the gap-filling process 

 

For further quantitative evaluation, the Landsat ETM+ SLC-off gap-filled data 

with the classification analyses were compared to the other Landsat data series. In 

addition, according to Maselli (2002), it may be useful to initially assess the quality of 

satellite data by performing a statistical analysis. The Min values of all Landsat data 

series (TM, ETM+, and OLI_TIRS) are presented in the Table 3.5. Based on these 

results, the Min values of all data (TM, ETM+ SLC-off gap-filled, and OLI_TIRS) were 

not very different. This result reconfirms that the ETM+ SLC-off gap-filling produced 

good ETM+ SLC-off data. 

 

 

 

 

Date: 20.02.2005 Date: 02.10.2005 Date: 20.02.2005 

Date: 06.03.2010 Date: 13.08.2010 Date: 13.08.2010 
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Table 3.5 Min value of all Landsat data series (TM, ETM+, and OLI_TIRS) 

 
 

3.5.2 Classification of Mengkabong Mangrove Forest Land Cover using Multi-

temporal Landsat Data Series  

 

This study utilized  ground-truth data to evaluate the classified mangrove forest 

obtained from the Landsat data series (TM, ETM+ SLC-off, and OLI_TIRS). Field 

validation, the topographic map, and visual assessment through Google Earth  were 

used as references to check the accuracy of the classified data. The classification results 

revealed six land cover classes in the Mengkabong area. The classes were open water 

area, bare soil, grassland, secondary forest, built-up area, and mangrove area. The 

details of the classification results are explained in the following.  

 

(i)  Visual Interpretation Classification 

 

The visual interpretation technique was able to classify six land cover classes in the 

Landsat satellite data. This technique extracted the ground features in the satellite data 

based on tone, color, and spectral characteristics. Initially, this technique classified the 

Mengkabong land cover into two classes, vegetation area and non-vegetation area. Then, 

the differences of green color tone (dark green, medium green, and light green) and 

different textures represented the three different types of vegetation in the study area. 

The non-vegetation class areas were represented by color difference, such as dark blue, 

Band

Date Blue Green Red NIR SWIR1 SWIR2

19.061.990  TM 0.07 0.05 0.03 0.02 0.02 0.02

01.02.1995  TM 0.07 0.05 0.03 0.02 0.02 0.02

07.12.2000  TM 0.09 0.07 0.04 0.02 0.03 0.03

20.02.2005  ETM+ SLC-off gap-filled 0.07 0.05 0.04 0.02 0.03 0.03

13.08.2010  ETM+ SLC-off gap-filled 0.07 0.05 0.02 0.03 0.00 0.02

23.04.2013  OLI_TIRS 0.07 0.05 0.04 0.02 0.01 0.01

Min value
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dark brown, and light yellow. Table 3.6 shows the land cover class results acquired by 

using the visual interpretation technique. 

 

The result of this study is supported by the findings of previous studies. A study 

by Sulong et al. (2002) confirmed that the green color normally represents vegetated 

areas and that the different tones of greenness show different levels of vegetation types. 

Dark-blue color and fine texture normally represent water area, and dark-brown color 

and coarse texture normally represent different types of soil area. Light-yellow color 

normally represents degraded area or built-up area (USGS, 2004). However, the detailed 

feature extractions of the land cover classes were identified and confirmed based on the 

spectral profile technique. 

 

Table 3.6 Land cover classes by visual interpretation technique  

Vegetation 

Area  

Data characteristics of 

vegetation area 

Non-Vegetation 

Area 

Data characteristics of 

non-vegetation area 

Vegetation 1 
Dark green & coarse 

texture 
Non-Vegetation 1 Dark blue & fine texture  

Vegetation 2 
Medium green & coarse 

texture 
Non-Vegetation 2 

Dark brown & coarse 

texture  

Vegetation 3 
Light green & medium 

texture 
Non-Vegetation 3 

Light yellow & coarse 

texture  

 

(ii)  Spectral Profile Classification 

 

The spectral profile technique is useful for identifying specific features in satellite data. 

Figure 3.15 shows the spectral profile classification result of the Mengkabong area.  

The different spectral profiles of the vegetation cover in this study area presented three 

different classes of vegetation type. The different spectral profiles of vegetation were 

defined clearly based on the different reflectance values in band 3 and band 4. The band 

3 region is sensitive to strong chlorophyll absorption, and the band 4 region shows 

different cellular structures. 
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Figure 3.15 Spectral profile of Mengkabong land cover classess 

 

The mangrove and secondary forest showed high reflectance value in band 4 with 

values of 0.26 and 0.21, respectively, while the grassland showed a low reflectance 

value of only 0.16. This may be an effect of the water moisture contents in the 

vegetation. The mangrove has high water moisture content compared to the other 

classes of vegetation. According to Rahman et al. (2013), the different water contents in 

the vegetation are revealed in the different spectral profiles of the vegetation covers.

  

 

The non-vegetation classes such as water, bare soil, and built-up areas also 

showed clearly different spectral profiles. Water area showed a high reflectance value of 

0.09 in band 1 (blue band). According to the USGS (2004), bodies of water generally 

have high reflectance in the visible spectrum and low reflectance in the near-infrared 

spectrum. Bare soil and built-up areas could be defined clearly based on the differences 

in their reflectance values in the visible and near-infrared bands. The different spectral 

profiles of both classes were supported by previous studies (USGS, 2004). The field 

photographs shown in Figure 3.16 clearly show the correlation between the spectral 

profile in the satellite data and the same coordinate of the point field survey 
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Figure 3.16 Spectral profile features of each class integrated with satellite data and field 

photographs with selected points of field survey 
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 (iii)  Normalized Difference Vegetation Index (NDVI) Classification 

 

Figure 3.17 shows the result of the NDVI classification in the Mengkabong area  

quantitatively. Six land cover classes were classified significantly with an accuracy of 

89.2%.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Mengkabong land cover classes for NDVI classification 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1990 1995 2000 2005 2010 2013

T
o

ta
l 

p
ix

el
 (

%
) 

Year 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1990 1995 2000 2005 2010 2013

T
o

ta
l 

p
ix

el
 (

%
) 

Year 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1990 1995 2000 2005 2010 2013

T
o

ta
l 

p
ix

el
s 

(%
) 

Year 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1990 1995 2000 2005 2010 2013

T
o

ta
l 

p
ix

el
s 

(%
) 

Year 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1990 1995 2000 2005 2010 2013

T
o

ta
l 

p
ix

el
s 

(%
) 

Year 

Water 
Mangrove 

Built-up area Secondary 

forest 

Soil 
Grassland 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1990 1995 2000 2005 2010 2013

T
o

ta
l 

p
ix

el
 (

%
) 

Year 

Mangrove 



78 
 

The water area showed the highest total pixel distribution, almost 35%, compared 

to the other classes. The mangrove area showed the second highest total pixel 

distribution in 1990 and 2013, with 23% and 20%, respectively. However, it showed a 

significant decrease from 2000 to 2005 of 15% to 12%. This may be an effect of 

deforestation activities in the Mengkabong area. The result of this study is supported by 

the report of the Sabah Forestry Department released in 2010. According to this report, 

the decreasing mangrove forest in this area was affected by aquaculture and house 

settlement activities. Aquaculture activities, such as shrimp pond farming, had been 

conducted extensively since the year 2000. 

 

The NDVI classification technique classified the Mengkabong area based on the 

differences of NDVI value. A negative NDVI value (<0) represented water areas, 

whereas a value from 0 to 0.1 represented bare soil area. A value from 0.1–0.24 

represented built-up areas. This NDVI value threshold of non-vegetation areas is 

supported by the results of previous studies (Chouhan & Rao, 2004; Karaburun, 2010; 

Ramachandra & Kumar, 2004; Xie et al., 2010).  

 

The vegetation areas of grassland, secondary forest, and mangrove were classified 

using the values (0.25 ≤ NDVI < 0.35), (0.35 ≤ NDVI < 0.5), and (0.5 ≤ NDVI < 1.0), 

respectively. The grassland in this study area was classified based on its sparse 

vegetation or medium vegetation value (Chouhan & Rao, 2004), whereas the secondary 

forest and mangrove area were classified based on the density of the vegetation value 

(Chouhan & Rao, 2004; Karaburun, 2010; Ramachandra & Kumar, 2004).  

 

The mangrove in the Mengkabong area showed high NDVI values from 0.5 to 

0.85. This result is also supported by previous studies. A study by John and David 

(1999) found that the standard of high NDVI value is 0.4 to 1 and that it corresponds to 

the density of vegetated area. According to the Sabah Forestry Department (2010), the 

Mengkabong mangrove forest is dominated by Rhizophora apiculata, which is a healthy 

and dense mangrove species. The NDVI threshold for vegetated area in this study is 

almost similar to the results of previously conducted studies (Karaburun, 2010; 

Ramachandra, 2004; Xie et al., 2010).  
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The NDVI classification result is useful for determining the production of green 

vegetation as well as for detecting vegetation changes. The results of the NDVI 

classification were supported by the topographic map and by Google Earth, which 

showed significant improvement. Furthermore, the use of OLI_TIRS data with a 

combination of multispectral bands (2–7) produced good land cover classes. The NDVI 

classification result of the OLI_TIRS data showed almost the same percentages of land 

cover classifications as the ETM+ and TM data result.  

 

The selection of same spectral wavelength as the TM and ETM+ data produced a 

significant classification result. OLI_TIRS is new data that has the additional band 

numbers of 1, 8, 9, 10, and 11, which is a bit different in band order compared to ETM+ 

and TM data (USGS, 2013). However, the selection of the same spectral wavelength as 

used for TM and ETM+ is suggested to be the best option for using OLI_TIRS data for 

mangrove forest land cover classification. In addition, the results of the NDVI 

classification of the Landsat ETM+ SLC-off and the SLC-off gap-filled data showed a 

significant difference between both data (Figure 3.18).  

 

 

Figure 3.18 NDVI land cover classes of ETM+ SLC-off and ETM+SLC-off gap filled 

data 
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The result showed that the percentages of land cover areas in the SLC-off and 

SLC-off gap-filled data were very comparable. The gap values in the SLC-off data were 

identified clearly by MS Excel 2010. About 15% of the gap data of all SLC-off data 

were missing. The results of the NDVI classification in this study provide a quantitative 

evaluation of the potential of both data for classifying in the Mengkabong area. The 

results of this study are supported by the previous study of Singh and Sherman (2010), 

which indicated that there are significant differences in land cover classification 

between SLC-off and SLC-off gap-filled data.  

 

Table 3.7 shows the total area of Mengkabong land cover classes according to the 

NDVI classification. Based on the result, the mangrove area decreased significantly 

from 1990 to 2005, from 1145. 16 ha to 827.73 ha. The mangrove area also decreased 

significantly from 2000 to 2005, from 945.63 ha to 827.73 ha. As discussed above, the 

decrease of mangrove area in the Mengkabong area was affected by deforestation 

activities such shrimp pond farming and house construction. Furthermore, the increase 

of water area from the year 2000 to the year 2005, from 1611.81 ha to 1638.09 ha, may 

be an effect of the increased opening of shrimp pond areas.  

 

Table 3.7 NDVI classification of Landsat data series of Mengkabong mangrove forest 

area

 

Water Mangrove 
Built-up 

area

Secondary 

Forest 
Soil Grassland 

1990 1589.94 1145.16 921.33 840.87 346.41 137.97

1995 1556.10 1042.11 1045.53 818.82 266.13 252.99

2000 1611.81 945.63 1159.11 762.12 198.81 304.20

2005 1638.09 827.73 1170.45 626.40 293.85 380.16

2010 1550.34 999.72 1194.21 647.64 247.23 342.54

2013 1530.90 1131.93 1048.41 639.09 270.45 360.90

Multi-Temporal 

Landsat Data 

Land cover classes (ha)
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However, the mangrove area was significantly larger in 2013 at 1131.93 ha. The 

increased mangrove area may be an effect of mangrove replanting and restoration 

projects. Such a project has been conducted extensively by the Sabah Forestry 

Department and the Kota Kinabalu Sabah Wetland Centre since 2010. Table 3.8 shows 

the error matrices of the accuracy assessment of the NDVI classification for the 13 years 

of data and their corresponding kappa values.  

 

Table 3.8 Error matrix of NDVI classification for 23 years of data  

 

Classified Data 

Reference Data Total 

Accuracy 

(%) 

Kappa 

Coefficient  
Non-Mangrove Mangrove 

TM 

1990 

Non-Mangrove 218 32 81 0.62 

Mangrove 63 187 

TM 

1995 

Non-Mangrove 215 35 84.4 0.69 

Mangrove 43 207 

TM 

2000 

Non-Mangrove 224 26 87.2 0.74 

Mangrove 38 212 

ETM+ 

2005 

Non-Mangrove 228 22 89.2 0.78 

Mangrove 32 218 

ETM+ 

2010 

Non-Mangrove 230 20 88.8 0.77 

Mangrove 36 214 

OLI-

TIRS 

2013 

Non-Mangrove 238 12 87.6 0.75 

Mangrove 50 200 

Note: Total accuracy and kappa coefficient calculations can be referred to the accuracy 

assessment analysis  in the Section 3.4.2.5  

 

(iv) Maximum Likelihood Classification 

  

Similar to the NDVI and spectral profile classification results, the maximum likelihood 

method also produced six land cover classes in the Mengkabong area. The six land 

cover classes were open water, bare soil, grassland, secondary forest, built-up, and 

mangrove areas. In the maximum likelihood classification, the land covers were 

classified based on the normally distributed statistics of each class in each band and 

calculated by the probability of a given pixel belonging to a specific class (Richard, 

1999). Initially, the numbers of classes were identified using the visual interpretation 
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technique, spectral profile analysis, and the region of interest (ROI). The ROI was 

applied to extract the statistics for each class of land cover. This classification protocol 

was promoted to obtain a high accuracy of classification results in the Mengkabong area, 

almost 90% accuracy in this study.  

 

Table 3.9 shows the total area of Mengkabong land cover classes from the 

maximum likelihood classification. The mangrove land cover area also showed 

significant change from 1990 to 2005, decreasing from 1145.16 ha to 872.82 ha. As 

discussed in the previous sections, aquaculture activities such as shrimp pond farming 

led to the decrease of mangrove forest in the Mengkabong area. In addition, an increase 

of water pixels from 2000 to 2005, 1611.81 ha to 1638.45 ha, supported the conversion 

of mangrove area to shrimp pond farming. However, mangrove forest cover increased 

by almost 19% from 2010 to 2013. Within these four years, the mangrove forest area in 

Mengkabong increased continuously due to mangrove replanting project activity. 

 

Table 3.9 Total area of land cover classes by maximum likelihood classification 

 

 

According to the SFD (2012), this project was implemented due to the 

decreasing mangrove area around Sabah. The data at five-year intervals clearly showed 

Water Mangrove 
Built-up 

area

Secondary 

Forest 
Soil Grassland 

1990 1584.45 1145.16 921.42 846.90 346.50 137.25

1995 1555.74 1042.20 1037.34 826.20 267.30 252.9

2000 1611.81 945.72 1142.19 780.12 198.72 303.12

2005 1638.45 872.82 1186.83 627.21 275.85 380.52

2010 1549.80 997.20 1327.41 518.40 246.33 342.54

2013 1536.84 1185.12 1048.50 499.14 270.54 441.54

Multi-Temporal 

Landsat Data 

Land cover classes (ha)
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that the land cover in the Mengkabong area had changed (Figure 3.19). The multi-

temporal Landsat data series used in this study were useful for detecting the land cover 

changes, especially in the mangrove forest area. The studies by Zhang et al. (2003) and 

Green et al. (1999) also suggested the usefulness of multi-temporal Landsat data for 

mangrove studies.  

 

 

 

Figure 3.19 Land cover classifications in Mengkabong area from 1990–2013  

1990

2000 2010

2013

1995

Land Cover Types

Open water

Bare Soil

Built-up 

Mangrove 

0 170 340 510 68085
Kilometers

0   15   30km

Secondary 

forest 

Grassland



84 
 

 Table 3.10 shows the classification accuracy of the maximum likelihood 

classification for the 13 years of data. The error matrix result shows the high accuracy 

(>80%) of all the data used for mangrove classification using the maximum likehood 

method with low-cost satellite data.  

 

Table 3.10 Error matrix of maximum likelihood classification for 23 years of data 

 

Classified Data 

Reference Data Total 

Accuracy 

(%) 

Kappa 

Coefficient 
Non-Mangrove Mangrove 

TM 

1990 

Non-Mangrove 220 30 79.6 0.59 

Mangrove 72 178 

TM 

1995 

Non-Mangrove 218 32 80 0.60 

Mangrove 68 182 

TM 

2000 

Non-Mangrove 224  26 77.6 0.55 

Mangrove 86 164 

ETM+ 

2005 

Non-Mangrove 216 34 80.4 0.61 

Mangrove 64 186 

ETM+ 

2010 

Non-Mangrove 228 22 89.2 0.78 

Mangrove 32 218 

OLI-

TIRS 

2013 

Non-Mangrove 208  42 80.4 0.61 

Mangrove 56 194 

Note: Total accuracy and kappa coefficient calculations can be referred to the accuracy 

assessment analysis  in the Section 3.4.2.5  

 

3.6 Summary 

 

This study successfully developed and applied processed Landsat data series (TM, 

ETM+, and OLI_TIRS) using the proposed standard protocol. The processed Landsat 

data series have great potential for classifying the mangrove forest land cover in the 

Mengkabong area. The gap-filling processing used in this study produced good results 

for ETM+ gap-filled data. The NDVI and maximum likelihood classification techniques 

that were applied to all the processed Landsat data series (TM, ETM+, and OLI_TIRS) 

showed a good result of land cover classification. However, there are still several 

limitations and challenges in the interpretation of mangrove when using any of these 

conventional methods. Thus, recent advanced classification techniques should be 
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applied to the processed Landsat data series for further validation. These 

recommendations are applied in the next chapter of this thesis.  
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Chapter 4 

 

 Machine Learning Approach in Mengkabong Mangrove Forest Land 

Cover Classification   

 

4.1 Introduction 

 

Machine learning techniques have been used widely in remote sensing applications 

related to wetlands research (Colstoun et al., 2003; Horssen et al., 2002; Huang & 

Jensen, 1997). Recent research has demonstrated that decision-tree learning, one of the 

most popular machine learning approaches, may be accurate and efficient for land cover 

classification based on remotely sensed data (Li et al., 2010).  

  

A decision-tree learning algorithm is able to create classification rules directly 

from the training data without human intervention. In addition, unlike many other 

statistical analysis approaches, such as maximum likelihood classification, the decision-

tree technique does not depend on assumptions of value distribution or the 

independence of variables (Quinlan, 1993). This is important for incorporating ancillary 

GIS data because these data usually have various value distributions and may be highly 

correlated (Jensen, 2005).  

 

Rule sets may be applied to the classification of multi-temporal images after they 

have been acquired from the decision-tree learning. Using identical rule sets can ensure 

that the classification results are comparable between different temporal images, which 

should be more advantageous than using traditional methods for monitoring the changes 

of mangrove forest from time series of remote sensing data (Colstoun et al., 2003; 

Horssen et al., 2002; Li et al., 2010).  

 

The Mengkabong mangrove forest is a major mangrove forest area in the Tuaran 

District. The forest is dominated by the species Rhizophora apiculata, which is a 

healthy and dense mangrove (Sabah Forestry Department, 2010). The Mengkabong 



87 
 

lagoon plays an important role in Tuaran’s coastal ecology and in the socioeconomic 

development of the local people. The entire area is used extensively by local villagers 

for fishing, and some mangrove wood collection is carried out for firewood and fishing 

poles.  

 

Increasing development pressure in this area has led to the depletion of mangrove 

forest and changes in the coastal environment. Conversion to aquaculture area and land 

reclamation for housing have been major factors affecting the depletion of Mengkabong 

mangrove forest area. According to the Sabah Fisheries Department (2012), shrimp 

pond activity has been conducted in the Mengkabong area since the early 2000s. This 

aquaculture activity has been conducted extensively by a private aquaculture company 

and local people. Figure 4.1 depicts the conditions of mangrove forest and the 

degradation activities in Mengkabong. 

 

With this impetus, this chapter determines the ability of the decision-tree learning 

method to classify mangrove forest land cover and to detect changes of mangrove forest 

land cover in the Mengkabong area from multi-temporal Landsat data series (TM, 

ETM+, and OLI_TIRS). The rule set applied in this study was derived from data from 

2013 to 1990, 1995, 2000, and 2005, in order to detect changes of mangrove forest over 

the periods. We anticipate that the decision-tree method should be able to improve the 

performance of mangrove forest monitoring via multi-temporal Landsat data and 

ancillary GIS data. 

 

 

Source : Field survey photographs, 2013 

Figure 4.1 Condition of mangrove and degradation activities in the Mengkabong area  
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4.2 Objectives 

 

The main objective of this study is to determine the potential of the machine learning 

method for classifying and detecting changes of mangrove forest land cover in the 

Mengkabong area using multi-temporal Landsat data series. The specific objectives of 

this study follow:  

 

1. To determine the potential of the decision-tree learning method for classifying 

mangrove forest land cover in the Mengkabong area.  

2. To detect changes of Mengkabong mangrove forest land cover using the multi-

temporal Landsat data series integrated with the decision-tree learning method. 

 

4.3 Materials and Methods  

 

4.3.1 Materials of Satellite Images and Reference Data  

 

 (i)  Acquisition and Selection of Landsat Data Series 

 

The Landsat data series (TM, ETM+, and OLI/TRS) used in this study were 

downloaded free from the Earth Explorer US Geological Survey (USGS) website 

(http://earthexplorer.usgs.gov/). Details of the data acquisition and the data selection 

protocols were presented in the previous chapter (Chapter 3) of this study. The multi-

temporal Landsat data series (TM, ETM+, and OLI_TIRS) used in this study included 

the years 1990, 1995, 2000, 2005, 2010, and 2013.  

 

Due to the failure of the Scan Line Corrector (SLC) in the ETM+ sensor, there 

were lines of error in the Landsat ETM+ data of the years 2005 and 2010. Therefore, 

supplementary data for both of these years were needed to produce a corrected image 

using gap-filling analysis. The details of the gap-filling analysis protocols were 

presented in Chapter 3 of this research. Table 4.1 shows the data specifications that 

were used in this study. Figure 4.2 shows a true color composite of Landsat images of 

the study area. 

http://earthexplorer.usgs.gov/
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Table 4.1 Specifications of multi-temporal Landsat data series used in this study 

 

Note: (*) represents supplementary data 

 

Figure 4.2 True-color composite (RGB) of Landsat series images (TM, ETM+, and 

OLI_TIRS) of the study area 

Landsat series Year Date acquired

Date of 

supplementary 

data for 

interpolation

Cloud cover 

(%)

Multisepectral 

bands

 2 - 7

5.25

13.46

6.18 & 32.15*

9.00 & 15.86*

 1-5, 7

11.57

20

None

None

None

06.03.2010

07.12.2000

13.08.2010*

02.10.2005*

 L4 TM 19.06.1990

01.02.1995

 L5 TM

23.04.2013

20.02.2005

L8 OLI_TIRS

2010

 L7 ETM+ SLC-

off

1990

1995

2000

2013

2005

116.8 E 116.12 

1990

6.11 N

6.8 N

1995

116.8 E 116.12 

6.11 N

6.8 N

2000

116.8 E 116.12 

6.11 N

6.8 N

2005

116.8 E 116.12 

6.11 N

6.8 N

2010

6.11 N

6.8 N

116.8 E 116.12 

2013

6.11 N

6.8 N

116.8 E 116.12 
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 (ii) Field Data and Reference Data  

 

The reference data used to validate the results of this study included mainly field data, 

topography data, and vegetation maps. The field survey protocol was explained in detail 

in the Chapter 3 of this study. A detailed topographic map and vegetation map at the 

scale of 1:50,000 were obtained from the Sabah Survey and Mapping Department and 

the Sabah Forestry Department (SFD), respectively. Another reference data were the 

GIS ancillary data that contained digital elevation model and distance to the coastline 

data. These data were used to classify forest land cover into specific elevation categories. 

 

4.3.2 Methodology 

  

This study integrated multi-temporal Landsat data series with the decision-tree learning 

classification method. In this process, all multi-temporal Landsat data were analyzed for 

the data analysis. The analysis conducted involved (1) pre-processing, (2) generating the 

decision-tree learning classification, (3) M-statistics, and (4) accuracy assessment. The 

Environment for Visualizing Images (ENVI) 4.7 and 5.1 software and MS Excel 2010 

were used to analyze the data.  

 

4.3.2.1 Data Pre-processing 

 

The Landsat data selected in this study were analyzed for pre-processing analysis. The 

pre-processing analysis consisted of radiometric calibration, creating multispectral data, 

subsetting the data, gap-filling analysis, cloud masking, and statistical analysis. The 

standard protocols for the pre-processing data analysis are those described in the 

previous chapter (Chapter 3) of this research. The purpose of the pre-processing 

analysis was to normalize the data, correct atmospheric effects, reduce noise, and allow 

intercomparison between data. Subsequently, the processed Landsat data were analyzed 

via the decision-tree learning classification method.  
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4.3.2.2 Applying the Decision-Tree Learning Method 

 

The decision-tree method is a non-parametric classification method that repeatedly 

partitions a dataset into smaller subsets based on the test defined at each node of the tree 

(Liu et al., 2008). According to Friedly & Brodley (1997), the decision-tree learning 

technique provides the flexibility of classification process that the statistical distribution 

of the data is not important. Another benefit of decision-tree classification is that several 

data sources, other than the remote sensing inputs, can be utilized to enhance the 

classification process (Horssen et al., 2002; Li et al., 2010). Decision-tree learning is 

illustrated in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Sample of the decision-tree learning method 

 

At each node of the tree, one or more criteria can be defined that produce a 

binary result (or two branches). Repeatedly, new criteria can be developed for each 

decision branch that transform the branch into a new node and yields two more branches 

from it. In this way, the process can be continued until the desired level of classification 

is attained. The initial nodes of the classification tree are generally targeted to 
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distinguish the general classes, but proceeding further can yield more specific classes 

and increase the  complexity of the tree.  

 

  In this study, a dataset was comprised from the multi-temporal Landsat data and 

topographic variables. Because the majority of our study area was forest area, we 

focused mainly on using the spectral patterns of key features. The spectral patterns of 

these features in the multi-temporal Landsat data were extracted using tasselled cap 

transformation (TCT), normalized vegetation index (NDVI), band ratios and reflectance 

bands (bands 4, 5 and 7). The extracted features then were selected for the attributes 

rules (initial nodes) for the decision-tree learning classification method. The details of 

the feature extraction are explained in the following paragraphs.  

  

(i) Feature Extraction and Determining the Attributes 

 

(a) Tasselled Cap Transformation (TCT) 

 

The TCT index extracted the greenness, brightness, and wetness features from the 

related six bands (1–5, 7) and (2–7) of TM, ETM+, and OLI_TIRS, respectively. This 

technique is useful for enhancing the spectral information content of Landsat data (MSS, 

TM, ETM+, OLI_TIRS) (Ali Baig et al., 2014; Crist & Cicone, 1984; Healey et al., 

2005; Huang et al., 2010;) and was optimized for data viewing for vegetation studies 

(Cohen et al., 1995; Zhan et al., 2002). The features were extracted using following 

expression: 

 

tas. cap𝑖 = (coeff1 ∗ band 1)+ (coeff2 ∗ band 2) +(coeff3 ∗ band 3) + (coeff4 ∗

band 4)+ (coeff5 ∗ band 5) + (coeff7 ∗ band 7),                        (4.1) 

 

where tas. capi is the calculated tasselled cap index for brightness, greenness, or wetness 

depending on the coefficients used and the bands are the top of atmosphere (TOA) 

reflectance (Grant & Carter, 2011). All Landsat data used in this study were previously 
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converted to TOA reflectance value during the pre-processing analysis. Therefore, the 

TCT index was processed directly using ENVI 4.7 software.  

 

The TCT coefficients used for the TM, ETM+, and the OLI_TIS data are from the 

studies by Huang et al. (2002) and Ali Baig et al. (2014), respectively (Tables 4.2 and 

4.3). The six bands of the TM, ETM+, and OLI_TIRS data were the basic attributes 

used for the decision-tree learning classification. Figure 4.4 shows the images of 

brightness, greenness, and moisture of the Landsat data that were extracted using the 

TCT index. 

 

Table 4.2 Tasseled cap coefficient for Landsat TM and ETM+ at satellite reflectance  

 

 

Table 4.3 Tasseled cap coefficient for Landsat OLI_TIRS at satellite reflectance 

 

 

 

 

 

 

Index Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596

Greenness -0.3344 -0.3544 -0.4556 0.6966 -0.0242 -0.263

Moisture 0.2626 0.2141 0.0926 0.0656 -0.7629 -0.5388

Fourth 0.0805 -0.0498 0.195 -0.1327 0.5752 -0.7775

Fifth -0.7252 -0.0202 0.6683 0.0631 -0.1494 -0.0274

Six 0.4000 -0.8172 0.3832 0.0602 -0.0602 0.0985

Index Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Brightness 0.3029 0.2786 0.4733 0.4733 0.5599 0.508

Greenness -0.2941 -0.243 -0.5424 -0.5424 0.7276 0.0713

Moisture 0.1511 0.1973 0.3283 0.3283 0.3407 -0.7117

Fourth -0.8239 0.0849 0.4396 0.4396 -0.058 0.2013

Fifth -0.3294 0.0557 0.0557 0.1056 0.1855 -0.4349

Six 0.1079 -0.9023 -0.9023 0.4119 0.0575 -0.0259
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Figure 4.4 Tasseled cap transformation indeces of brightness, greenness, and moisture 

of the Landsat data  

 

(b) Normalized Difference Vegetation Index (NDVI) 

 

The normalized difference vegetation index (NDVI) was also included as one of the 

major attributes for representing vegetation conditions. The NDVI is a simple numerical 

indicator that can be used to analyze remote sensing measurements whether the target 

object being observed contains live green vegetation or not.  

 

Brightness Greenness Moisture

2005 

ETM+SLC-off

2010 
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Data 
TCT Index 
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2000 TM
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The NDVI was calculated from the following equation: 

 

NDVI =
(𝑁𝐼𝑅+𝑅𝑒𝑑)

(𝑁𝐼𝑅−𝑅𝑒𝑑)
 ,               (4.2) 

 

where Red and NIR refer to the spectral reflectance measurement acquired in the red and 

near-infrared wavelength, respectively. In this study, we used the spectral reflectance of 

bands 3 and 4 of the Landsat data of TM and ETM+ and those of bands 4 and 5 of 

OLI_TIRS, which are closely related to the wavelengths of the red and NIR bands, 

respectively. Figure 4.5 shows the NDVI of the Mengkabong area that were extracted 

using the Landsat data. The spectral patterns of key features were then extracted using 

the help endmember extraction tool available in the ENVI software to distinguish 

among the various vegetation.  
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      Figure 4.5 NDVI extracted using bands 3 and 4 of the Landsat data series 

 

 (c) Band Ratio 

 

Band ratio indices were used to enhance the spectral differences between bands and to 

reduce the effects of topography. The band ratios 5/4 and 3/5 (Green et al., 1998) are 

Data NDVI extracted of Landsat bands 

1990 TM

1995 TM

2000 TM

2005 ETM+SLC-off

2010 ETM+SLC-off
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always used in mangrove discrimination studies. Therefore, both of these band ratios 

were selected in this study to improve the difference between mangrove and non-

mangrove areas. 

 

(d) Band 4  

 

Band 4 of the Landsat data were frequently applied to monitor vegetation moisture 

content and vegetation densities. Based on the spectral profile classification result in the 

Chapter 3 of this study, band 4 very useful to distinguish the mangrove forest from 

other vegetation. Mangrove has high reflectance value in band 4 compared with others 

vegetation classes due to high moisture contents in the leaves. Therefore, band 4 was 

selected as an attribute rule for mangrove discriminating in this study.  

 

(e) Bands 5 and 7 

 

Bands 5 and 7 of the Landsat data also were frequently applied to monitor vegetation 

moisture content. The spectral profiles of bands 5 and 7 show a lower reflectance value 

within mangrove forest compared with other classes (Alsaaideh et al., 2011). This 

makes bands 5 and 7 very useful for distinguishing mangrove forest from other 

vegetation. 

 

 (ii) Generating Decision-Tree Learning 

 

The decision-tree learning classification method was conducted using ENVI 5.1 

software. The attributes rules comprised spectral attributes values of Landsat bands (4, 5 

and 7, greenness, moisture, and NDVI), elevation attributes (DEM), and distance 

attributes (distance to coastline) (Table 4.4).  
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Table 4.4 Attributes used for the decision-tree learning method 

 

 

 The field survey conducted for this study found that mangrove forests were not 

distributed at elevations higher than 6 m. Therefore, the digital elevation model (DEM) 

was used to exclude non-mangrove pixels that have similar spectral attributes with 

mangrove pixels but were above the limiting elevation line. In addition, mangrove in 

this study area were unlikely to be found beyond 1 km from the coastline.  

 

 The class label has two possible values. Mangrove forest is represented by C1, 

and non-mangrove forest is by represented C2. The classification results were overlain 

to detect mangrove changes and were calculated statistically. Figure 4.6 shows the 

decision-tree learning classification procedure applied in this study.  

 

 

 

 

 

 

 

 

 

 

 

Attributes Acqusition Method Value Range

1. Spectral Attributes                

(Landsat data bands: 1-5,7),TCT 

index (Greeness & Moisture),NDVI

TCT method ,band ratio 

& NDVI
 NDVI (-1 to 1)

2. Elevation attributes (DEM)
Sample of DEM Image in 

ARC/INFO Grid
0-500 integer 

3. Distance attributes (Distance to 

the Coastline)

EucuDistance of 

ARC/INFO Grid
Distance 0-20 km
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Figure 4.6 Decision-tree learning classification method 
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NDVI>0.02 
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C2: Non-Mangrove
B4: Band 4
B5: Band 5
B7: Band 7
*Distance to coastline
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4.3.2.3 M-statistic 

 

The M-statistic was adopted for identifying the accuracy of the features selection. It 

quantitatively assesses the separability of two classes in terms of mean distance and 

standard deviation (Zhang et al., 2011). A greater separability is preferable. This also 

means that the feature is useful for object recognition. The formula for normalizing 

mean distance follows: 

  𝑀 =
|𝜇1−𝜇2|

𝜎1+𝜎2

   ,                                      (4.3) 

  

where M is the normalized mean distance and µ1 and µ2 are the means for classification 

feature of two samples with two different types of objects. 𝜎1,𝜎2  refer to the standard 

deviations of the classification feature of two samples with different types of objects.  

 

4.3.2.4 Assessment of Classification 

 

The classified land cover maps derived from the satellite data were used further for 

accuracy assessment. The confusion matrix method, integrated with ground-truth data 

from the field survey, topographic map data, and Google Earth, was used for the 

accuracy analysis. The accuracy assessment procedures were explained in detail in 

Chapter 3. Figure 4.7 shows a flowchart of the overall decision-tree learning 

classification using the multi-temporal Landsat series (1990–2013) data. 
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Figure 4.7 Decision-tree learning method classification protocols 
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4.4 Results and Discussion 

 

4.4.1 Decision-Tree Learning Classification of Mengkabong Mangrove Land 

Cover  

 

This study demonstrates the potential of the decision-tree learning method for 

classifying land covers in the Mengkabong area. Seven land cover types were classified: 

mangrove, open water, built-up, water–mixed vegetation, secondary forest, grassland, 

and bare soil. Table 4.5 shows the resulting M-statistic values for separability among 

the land covers classes. Only the M-statistic values of moisture, greenness and Band 4 

were large, thus the separability between terrestrial vegetation, mangrove, and water–

vegetation mixed pixels was better. 

 

The mangroves class in all the data recorded the largest M-statistic value of 

moisture, with a highest value of 3.26 in 1990 and 3.22 in 2013. Mangrove forests are 

known to be hydrophytic, a term which means that the plants grow in water or in very 

wet soil. Therefore, the background of the environment reflects the moisture of the 

mangrove canopy (Ajithkumar et al., 2008). Furthermore, moisture is an indicator of 

water bodies and moisture content in the vegetation canopy (Crist et al., 1986).  

 

The mangrove vegetation shows the largest M-statistics value of Band 4 in all 

the data (1990-2013). The highest value was recorded in the years 1990, 1995 and 2013 

and its show of high of mangrove distributions in that year. The Band 4 is useful to 

discriminate mangrove with others vegetation plants. Result of spectral profile 

classification in the Chapter 3 of this study also shows that mangrove has high 

reflectance value in the Band 4 due to high of moisture content in the mangrove leaves. 

The results of this study also supported from the previous studies by USGS (2004) and 

Rahman et al. (2013). 

 

Because the mangrove environment is a mixture with water areas, the water–

vegetation mixed pixel class was identified. The greenness of the TCT index measures 

the contrast between the near-infrared and visible bands, and the large M-statistic value 



103 
 

in greenness index could be useful for separating the water–vegetation mixed pixel class. 

The highest value of M-statistic of greenness, a value of 2.23, was recorded in the 2013 

data. This means the water–vegetation mixed pixel distribution was highest in 2013.  

 

Table 4.5 M-statistics value between mangrove area and non-mangrove area 

 

Data 
Classification 

Features

Terresterial 

Vegetation area 

Mangrove 

area

Water-

Vegetation 

mixed pixel

Built-up 

Area
Water

Greenness 0.83 0.93 1.93 2.14 4.72

Moisture 2.59 3.26 0.47 1.26 0.18

Brightness 1.15 1.05 0.94 4.16 4.56

NDVI 1.56 1.52 1.28 2.90 4.39

Band 5/Band 4 2.27 2.32 0.67 0.03 1.56

Band 3/Band 5 1.62 1.72 0.91 4.91 0.70

Band 4 2.22 2.69 1.69 0.26 0.05

Band 5 1.45 1.60 0.52 1.24 0.84

Band 7 1.22 1.20 0.46 1.08 0.72

Greennees 0.63 0.98 1.95 2.12 4.71

Moisture 2.47 3.22 0.43 1.25 0.17

Brightness 1.12 1.06 0.92 4.12 4.53

NDVI 1.48 1.48 1.24 2.98 4.37

Band 5/Band 4 2.29 2.23 0.63 0.07 1.54

Band 3/Band 5 1.58 1.67 0.93 4.98 0.71

Band 4 2.18 2.60 1.48 0.23 0.04

Band 5 1.32 1.54 0.51 1.23 0.83

Band 7 1.18 1.16 0.47 1.03 0.73

Greennees 0.62 0.86 1.98 2.10 4.77

Moisture 2.36 3.18 0.41 1.23 0.15

Brightness 1.18 1.22 0.95 4.11 4.51

NDVI 1.38 1.38 1.21 2.97 4.35

Band 5/Band 4 2.26 2.21 0.61 0.06 1.51

Band 3/Band 5 1.48 1.58 0.95 4.99 0.73

Band 4 2.12 2.48 1.34 0.21 0.05

Band 5 1.28 1.47 0.48 1.22 0.81

Band 7 1.15 1.17 0.43 1.01 0.75

Greennees 0.64 0.78 2.18 2.08 4.79

Moisture 2.28 3.13 0.42 1.21 0.13

Brightness 1.2 1.28 0.93 4.13 4.53

NDVI 1.36 1.35 1.23 2.95 4.35

Band 5/Band 4 2.28 2.18 0.63 0.07 1.53

Band 3/Band 5 1.46 1.48 0.97 5.01 0.69

Band 4 2.1 2.36 1.26 0.18 0.03

Band 5 1.25 1.39 0.49 1.21 0.79

Band 7 1.13 1.13 0.41 1.00 0.73

Greennees 0.72 0.75 2.21 2.11 4.81

Moisture 2.73 3.18 0.43 1.23 0.11

Brightness 1.24 1.25 0.91 4.11 4.51

NDVI 1.37 1.33 1.21 2.97 4.31

Band 5/Band 4 2.22 2.11 0.67 0.06 1.51

Band 3/Band 5 1.35 1.35 0.95 5.05 0.71

Band 4 1.98 2.28 1.2 0.16 0.02

Band 5 1.10 1.37 0.47 1.23 0.73

Band 7 1.08 1.11 0.39 1.11 0.79

Greennees 0.71 0.78 2.23 2.13 4.97

Moisture 2.75 3.22 0.41 1.21 0.13

Brightness 1.21 1.27 0.89 4.1 4.63

NDVI 1.35 1.31 1.2 2.93 4.42

Band 5/Band 4 2.18 2.18 0.65 0.05 1.57

Band 3/Band 5 1.25 1.28 0.93 5.07 0.69

Band 4 1.95 2.54 1.18 0.14 0.03

Band 5 1.08 1.33 0.43 1.21 0.77

Band 7 1.05 1.12 0.37 0.08 0.81

20022005 ETM+

13082010 ETM+

23042013 OLI_TIRS

19061990 TM

01021995 TM

07122000 TM
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According to Crist (1986), greenness is responsible for enhancing the absorption 

in the visible spectra caused by plant pigments, including chlorophyll, and the high 

reflectance in the infrared region due to the internal structure of the leaves. Many 

previous studies supported the usefulness of greenness and moisture in mangrove 

recognition (Baker et al., 2006; Crist et al., 1986; Razali & Nuruddin, 2012; Zhang et al. 

2013). Therefore, the greenness and moisture that were extracted using the TCT were 

chosen during the mangrove identification. 

 

However, the M-statistic values were very small when using the original 

reflectance values of band 5 and band 7 for the mangrove identification. The highest M-

statistic value for band 5 of only 1.60 was recorded in 1990. It may have resulted from 

the high biomass of mangrove forest in 1990, when there were no deforestation 

activities. These results may support the report by the Sabah Forestry Department (SFD) 

released in 2010.  

 

Other non-mangrove areas, such as a built-up area, could be identified using the 

band ratio index. This ratio is useful for the determination of barren land and built-up 

areas (Quinn, 2001). The large values of M-statistic for band ratio 3/5 of 4.91–5.07 in 

1990 to 2013, respectively, could be useful for differentiating built-up areas from other 

classes. Barren-land and built-up areas appear in a light tone compared to forest, water 

body, and crop plant areas, which appear in a dark tone.  

 

Figure 4.8 shows the band ratio images of mangrove and built-up areas in this 

study. Based on the field survey and other reference data such as the vegetation map and 

Google Earth, the built-up area in the study area was actually referred to shrimp pond 

development. Mangrove areas have been reclaimed for shrimp pond farming since 2000 

(SFD, 2010). 
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Figure 4.8 Landsat images of 1990 and 2000 (bands 7, 4, and 2 as R, G, and B). (A) 

Mangroves forest area (mostly in green color). (B) Band ratio of mangrove forest area 

(dark tone). (C) Built-up area (light red color). (D) Band ratio of built-up area (light 

tone). 

 

The use of spectral reflectance as a key feature was able to confirm the different 

land cover classes in the Mengkabong area, which produced significant differences in 

spectral profile characteristics. Figures 4.9 and 4.10 show the spectral characteristics of 

the mangrove and the non-mangrove land covers in this study area using the Landsat 

data attributes.  

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Spectral characteristics of mangrove and non-mangrove land cover types 

using Landsat data series (TM, ETM+, and OLI_TIRS) 
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Figure 4.10  Spectral characteristics of mangrove and non-mangrove land cover types 

using NDVI value 

 

Previous studies by Froidefond et al. (2002), Morel et al. (2012), and Rahman et 

al. (2013) confirmed that the spectral profile of remote sensing data can be useful for 

identifying the specific features of land cover types. In addition, the use of NDVI 

attributes was useful for differentiating different classes of vegetation and non-

vegetation areas (Karaburun, 2010; Ramachandra & Kumar, 2004; Xie et al., 2010).  

 

The mangrove and secondary forest have high NDVI values of 0.08 and 0.06, 

respectively. The result of this study confirmed that the Mengkabong area is dominated 

by a very high density of mangrove species such as Rhizophora apiculata. A study by 

John and David (1999) suggested that the standard of high NDVI values, from 0.4 to 1, 

corresponds to the density of vegetated area. Negative NDVI values represent water, 

built-up areas, and bare soil areas.  

 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

N
D

V
I 



107 
 

The decision-tree classification in this study demonstrated that the selection of 

good attributes for mangrove classification promoted high accuracies of the result. The 

use of DEM and GIS data promoted the effectiveness of delineating the spatial 

distributions and temporal changes of the mangrove forest. Liu et al. (2008) suggested 

that a combination of Landsat data containing multi-temporal images and GIS data, 

such as DEM and distance to the coast data, is useful for delineating mangrove forest 

both spatially and temporally. 

 

4.4.2  Results of Change Detection  

  

The details of the detected changes of mangrove forest and other types of land 

cover in the study area are presented in the Table 4.6. The total area of Mengkabong is 

4981.68 ha. According to the results of this study, mangrove forests were distributed 

extensively in the Mengkabong area in 1990, when they had an area of 1145.16 ha 

(almost 25% of the total area). However, there was a significant decrease from 1990 to 

2000 (1145.16 ha to 945.72 ha) and a slight increase from 2010 to 2013 (997.20 ha to 

1185.12 ha). Generally, the total area of mangrove forest declined (a reduction of 40 ha 

from 1990 to 2013) and fragmentation was obvious.   
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Table 4. 6 Changes in mangrove forest and other land cover types from 1990 to 2013 

 

  

 

Land Cover 

1990 1995 2000 2005 2010 2013 

ha % ha % ha % ha % ha % ha % 

Open water 1531.26 30.74 1555.20 31.22 1593.81 31.99 1616.67 32.45 1549.80 31.11 1536.84 30.85 

Mangroves 1145.16 22.99 1024.20 20.56 945.72 18.98 872.82 17.52 997.20 20.02 1185.12 23.79 

Secondary forest 846.90 17.00 826.20 16.58 780.12 15.66 627.21 12.59 518.40 10.41 499.14 10.02 

Built-up  921.42 18.50 1037.34 20.82 1142.19 22.93 1186.83 23.82 1309.05 26.28 1048.50 21.05 

Bare soil 342.00 6.87 253.17 5.08 198.72 3.99 266.85 5.36 246.33 4.94 270.54 5.43 

Grassland 132.75 2.66 238.77 4.79 277.38 5.57 371.52 7.46 324.18 6.51 407.16 8.17 

Water-Veg. 62.19 1.25 46.80 0.94 43.74 0.88 39.78 0.80 36.72 0.74 34.38 0.69 
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Figure 4.11 clearly shows the changes in percentage of mangrove forest and other land 

cover types from 1990 to 2013. The field investigation showed that most of the 

mangrove forest in the Mengkabong area has been lost. Most of the mangrove areas 

have been converted to shrimp ponds and housing settlements. As discussed in the 

previous chapter (Chapter 3), shrimp pond activity in this area has occurred since 2000 

(Department of Fisheries Sabah, 2012).  

 

Thus, the results of this study may support the report by the Department of 

Fisheries Sabah. Only certain areas are well protected. Other land cover areas show 

similar trends over the study period, and the changes in these land cover areas were 

linear. Specifically, built-up areas expanded continuously, while secondary forest and 

water–vegetation mixed areas shrank continuously. The open water and bare soil areas 

showed an increasing–decreasing pattern.  

 

 

Figure 4.11 Changes in mangrove forest and other land cover types from 1990 to 2013 
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4.4.3 Assessment of Classification 

 

The error matrices for the six years and their corresponding kappa values are listed in 

Table 4.7. The result of the classification assessment of the decision-tree learning 

method with GIS ancillary data shows that the highest kappa coefficient and the total 

accuracy of mangrove identification were 0.82 and 90.8%, respectively.  

 

Table 4.7 Error matrices of decision-tree learning classification for 1990, 1995, 2000, 

2005, 2010, and 2013 

 

Classified Data 

Reference Data Total 

Accuracy 

(%) 

Kappa 

Coefficient 

Non-Mangrove Mangrove 

TM 

1990 

Non-Mangrove 234 16 84 0.68 

Mangrove 64     186 

TM 

1995 

Non-Mangrove 221 29 82 0.64 

Mangrove   61 189 

TM 

2000 

Non-Mangrove 226           24 87.2 0.74 

Mangrove 40 210 

ETM+ 

2005 

Non-Mangrove 230 18 89.6 0.79 

Mangrove 32 218 

ETM+ 

2010 

Non-Mangrove 238 12       90.8 0.82 

Mangrove 34 216 

OLI-

TIRS 

2013 

Non-Mangrove 218 24       89.2 0.78 

Mangrove 22 228 

Note: Total accuracy and kappa coefficient calculations can be referred to the accuracy 

assessment analysis  in the Section 3.4.2.5  

 

4.5 Summary 

 

In summary, this study successfully classified mangrove and non-mangrove areas in the 

Mengkabong area by integrating the decision-tree learning method with multi-temporal 

Landsat series and GIS ancillary data. The selection of good attributes, from the spectral 

features of Landsat data and from topographic data (DEM and distance to coastline) 

from the GIS database, for the mangrove classification promoted the high accuracy of 

result of 90.8%.  
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Chapter 5 

 

Detection of Regional-scale Conversion of Sabah’s Mangrove to 

Aquaculture Using Change-point Analysis of MODIS Time-series Data 

  

 

5.1 Introduction  

 

Mangrove forests occur in coastal environments at tropical and subtropical latitudes and 

are among the most productive terrestrial ecosystems in the world (Kuenzer et al., 2011; 

Myint et al., 2008). These forests play an important role in providing ecological and 

societal goods and services to local communities (Giri et al., 2008; Wang et al., 2004; 

Zhang et al., 2003) by stabilizing shorelines and reducing the destructive impacts of 

natural disasters, such as tsunamis and cyclones (Giri et al., 2008; Zhang et al., 2007), 

serving as a breeding and nursing ground for marine and pelagic species (Giri et al., 

2008), and providing food, medicine, and fuel, as well as building materials, and 

opportunities for aquaculture (Myint et al., 2008; Thu & Populus, 2007).  

 

According to Clough (1992), the clay soil with high salinity levels in mangrove 

areas is very suitable for aquaculture systems, especially for shrimp pond cultures. 

Furthermore, FAO (1987) stated that clayey soil stabilizes the bed of the pond and 

absorbs large quantities of nutrients, which increases the productivity of the pond. Thus, 

such clayey soil is an important factor contributing to the productivity of shrimp pond 

farming, which is frequently found in coastal mangrove forest.  

  

Shrimp farming areas in mangrove areas have been expanding rapidly, 

especially in Asian countries (Giri et al., 2008; Primavera et al., 2007). FAO (2007) 

found that the high economic return of shrimp farming has caused it to be promoted as a 

way to increase its national economic potential to serve as a source of income for local 

communities, especially in developing countries such as Malaysia, Vietnam, and 
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Myanmar. In Malaysia, shrimp farming is conducted by using the pond system and is 

generally established along mangrove coastal areas (Abdullah et al., 2013).  

 

According to Othman (2008), the total area of shrimp pond farming in Malaysia 

has increased from 2,600 ha in 1995 to 7,500 ha in 2007. The major brackish-water 

shrimp species for commercial purposes are banana shrimp (Penaeus vanamei) and tiger 

shrimp (Penaues monodon) (Abdullah et al., 2013). The highest concentrations of 

shrimp pond farming operations were found in Sabah, Perak, Penang, Johor, and 

Selangor.  

 

Due to the high demand for tiger and banana shrimps, both species are cultured 

extensively and commercially in Sabah’s mangrove area. Sabah is also the largest 

producer of tiger shrimp in Malaysia (Ng et al., 2010). For example, more than 20,000 

metric tonnes of production of tiger species were harvested in 2010 (DFS, 2011). 

However, the high concentrations of shrimp pond farming have led to a decrease of 

thousands of hectares of mangrove area in Malaysia (Consumer Association of Penang, 

2010).  

 

Sabah has the largest distribution of mangrove forest in Malaysia. However, 

Jakobsen et al. (2007) reported that more than 10,000 ha of mangrove area has been 

converted to shrimp pond farming. Some of these aquaculture activities have been 

conducted illegally without permission from the Sabah Forestry Department and the 

Department of Fisheries Sabah. A majority of the illegal shrimp pond farming areas are 

operated by local communities for only short periods of time. The high cost of shrimp 

pond maintenance and limited support facilities have been factors resulting in the 

increase of inactive shrimp pond farming areas (Department of Fisheries Sabah, 2010).  

 

As a result, the destruction of mangrove forest will bring a certain level of direct 

and indirect economic loss to the coastal community, and the total cost of recovering the 

forest also will be high. According to the Sabah Forestry Department (SFD) (2010), 

about RM 5 million was expended for the mangrove replanting project in Sabah from 

2006 to 2010. This project was implemented because the mangrove forests in Sabah 
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were decreasing at an alarming rate and also to protect the coastal areas from erosion. 

Furthermore, continuous monitoring should be conducted to manage the restoration of 

mangrove areas and also to identify potential sites for the mangrove replanting project. 

 

 Many remote sensing studies to monitor mangroves have been carried out in the 

last two decades (Seto & Frangkias, 2007). A review of recent advancements in remote 

sensing data and techniques for large-scale monitoring of mangrove is given by 

Hueman (2011). Traditional pixel-based classifications of aerial and remote sensing 

imagery and the more recent application of radar or LIDAR data combined with texture-

based analyses have demonstrated increased potential for the application of remote 

sensing for mangrove mapping and change detection.  

 

 However, another recent review by Kuenzer et al. (2011) provided an overview 

of the limitations of the currently used remote sensing methods. Most aerial 

photography and high satellite imagery suffers from high cost, scarcity of data, small 

coverage area, and lack of automation. Hyperspectral data are also very expensive and 

not yet available for large area coverage. Radar and LIDAR data have restricted data 

access due to their low availability and the complexity involved in the process and also 

have low spatial and temporal resolution.  

 

 To overcome these limitations, Moderate Resolution Imaging Spectroradiometer 

(MODIS) time-series data at 250 m pixel size were used in this study. MODIS data, 

which are available at no cost, have potential for detecting anthropogenic-driven land 

cover changes that usually occur at this spatial resolution. Vegetation indices (VIs) of 

MODIS data can be used to identify vegetation density in coastal ecosystems and can 

also cover a large area (Hansen et al., 2002). 

 

Temporal pattern analysis using MODIS enhanced vegetation index (EVI) 

datasets has significant advantages for both capturing the actual timing of change events 

and monitoring vegetation growth. Wardlow et al. (2007) suggested that MODIS EVI 

time-series data have potential for offering new opportunities for detailed, large-area 

vegetation mapping, with large geographic coverage and low cost. For example, 
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Setiawan & Yoshino (2012) found that change in land use type can be recognized 

through change in the pattern of the long-term vegetation dynamics of MODIS EVI 

time-series data. Thus, the aim of this study is to determine the potential of low-cost 

satellite MODIS data for detecting and monitoring the deforestation of the mangrove 

area. A method is developed to track the conversion of mangrove land cover for a 14-

year period (2000–2013) using statistical change detection.  

 

5.2 Objectives 

 

The main objective of this study is to demonstrate the potential of MODIS time-series 

data and an applicable method for detecting the deforestation of mangrove forest in 

Mengkabong, Sabah. To achieve this objective, the following specific objectives of this 

study were established:  

 

1. To delineate patterns of mangrove and aquaculture from the MODIS satellite 

imagery time series.  

2. To develop applicable methods for tracking more than 10 years of Mengkabong 

mangrove land cover change using MODIS vegetation index time series. 

3. To examine the possibilities of applying remote sensing for monitoring 

aquaculture development and land use change in the study area. 

 

5.3 Materials and Methods 

 

5.3.1 Study Area 

 

The study area is located in Mengkabong, Sabah. The total study area extends from 

6º8ʹ24″ N to 6º11ʹ24″ N latitude and from 116º08ʹ6″ E to 116º12ʹ54″ E longitude 

(Google Earth, 2012) (Fig. 5.1). Prior to the 1990s, the study area was almost entirely 

covered with Rhizophora apiculata, which is a healthy and dense mangrove species 

(Sabah Forestry Department, 2010).  
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Figure 5.1 Location of study area. The red line shows the mangrove area and the yellow 

line shows the aquaculture area 

 

However, in the early 2000s, more mangrove areas were cleared for shrimp pond 

farming activities. The activities have been expanding gradually, resulting in increases 

in the number of pond areas (Department of Fisheries Sabah, 2014). Figure 5.2 shows 

the conditions of mangrove coverage and shrimp pond systems in the study area. A 

study by Polpanish et al. (2009) reported that the total number of shrimp pond areas in 

Mengkabong increased from 6 to 19 from 1998 to 2008.  

 

The average total area of each pond is 2.5 ha. An increased demand for tiger 

shrimp (Penaues monodon) has been a factor in the increase of shrimp pond areas in 

Mengkabong. The shrimp pond area is the largest of the aquaculture operations in the 

Tuaran District area. Therefore, this area was selected for detection of land cover 

changes and aquaculture development in the mangrove area of Sabah over the past 10 

years.  
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area

Aquaculture area

0 170 340 510 68085
Kilometers

0     15      50km
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Figure 5.2 Example of mangrove coverage and schematic sketch of an integrated 

shrimp–mangrove pond farming system in Mengkabong area. (a) Dense and healthy 

mangroves species (Rhizophora apiculata sp.). (b) Degraded mangrove area. (c) 

Inactive shrimp pond with mangrove seedlings of the replanting project (d) Active 

shrimp pond in mangrove area. (Source: Field survey photographs, 2013)  

 

5.3.2 Acquisition of Remote Sensing Data  

 

Time-series MODIS EVI data were selected and downloaded from the Oak Ridge 

National Laboratory (ORNL) Distributed Active Archive Center (DAAC) website. The 

data were acquired for the period from January 2000 until December 2013 (14 years) 

with a 16-day (half-monthly) interval. Quarterly temporal periods (e.g., January–March, 

April–June, July–September, and October–December) were used for the analysis. 

January was chosen as the starting point of our 3-month periods to conform to the 

b

c d

a
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calendar year. A total of 56 data segments of EVI time series at quarterly temporal 

intervals were used in this study. 

 

Other data, such as land surface reflectance (MODIS MOD 09Q1) and MODIS 

land–water mask (MODIS MOD 44W), were also included in this study. The MODIS 

land–water mask data were used to cut out the boundaries of the EVI data. Both of these 

data also were acquired from the ORNAL DAAC website. Figure 5.3 shows the 

protocols of the MODIS data acquisitions using the ORNL DAAC website. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Access protocols of MODIS data using the ORNL DACC website 

 

 The ORNL website has MODIS global subset tools that provide several time 

series of MODIS data for a specific area worldwide. This site is intuitive and it provides 

step-by-step instructions for downloading the data. Another advantage of this site is that 

the data can be downloaded as Geo-tiff files in latitude–longitude format, which can be 
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http://daac.ornl.gov/modis.global 
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opened easily by any image processing software program. Table 5.1 shows the data 

characteristics used in this study. 

 

Table 5.1 MODIS data characteristics used in this study  

 

 

5.3.3 Data Pre-processing  

 

All of the downloaded MODIS-EVI time-series datasets (2000–2013) were pre-

processed to reduce noise and normalize the data. The EVI time-series data also contain 

errors caused by disturbances such as atmospheric variability and aerosol scattering, 

along with some residual errors (Lu et al., 2004; Xiao et al., 2003). These errors would 

degrade the quality of the data and confuse the temporal sequence analysis. Wavelet 

transformation for noise reduction analysis (Setiawan et al., 2011) was applied to the 

MODIS-EVI time-series datasets to filter noise from the data. Thus, the purpose of the 

pre-processing analysis is to correct, smoothen, and normalize the data. Figure 5.4 

shows the MODIS data preparation and pre-processing protocols that were used in this 

study. 
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Figure 5.4 Data preparation and pre-processing analysis of the MODIS data 

 

5.3.4 Change-point Analysis  

 

Next, the MODIS EVI time-series datasets were proceeded to the change detection 

using change-point analysis. Change-point analysis is used in this study to detect 

whether a pixel was deforested and when the deforestation occurred. Taylor (2000) 

stated that change-point analysis is a powerful tool for determining whether a change 

has taken place and that it is capable of detecting subtle changes missed by control 

charts. Furthermore, this technique is simple to use and interpret, especially for large 

datasets and/or when multiple changes have occurred. 

 

The EVI datasets for the years of 2000–2013 captured the temporal signatures of 

greenness of each pixel in the Mengkabong area. Examples of two scenarios (mangrove 

and shrimp pond) in the EVI temporal profile are shown in Figure 5.2(a). If the pixels 
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of land cover do not change significantly during the period of study, the EVI temporal 

profile will show no significant changes. However, there may be some temporal 

variation in the EVI signal of any pixel due to shedding of old leaves, growth of new 

leaves, or random noise signals (Rahman, 2013). In contrast, if a mangrove pixel was 

fully or partially converted to shrimp pond area, the profile would then show a 

significant drop in EVI values and would remain low after the changes (Figure 5.2(b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  Identification of temporal change in EVI temporal profile using change-

point analysis. (a) Example of EVI time series for two scenarios: unchanged mangrove 

area (top) and unchanged shrimp pond area (bottom). (b) Conversion of mangrove area 

to shrimp pond area. The vertical dotted line shows the occurrence of a change and the 

estimated time when the change occurred. The dashed circle shows outlier data. 

 

Thus, the aims of the change-point analysis were to determine significant 

changes in the mean distribution across the time series and to identify when the changes 

occurred. Cumulative sum (CUSUM) and bootstrapping were used in this change-point 

analysis (Taylor, 2000). The analysis was performed using Microsoft Excel 2010. In 

this study, the CUSUM of the difference between each EVI value of a pixel and the 

long-term mean of EVI values of that pixel was used to determine the timing and 
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magnitude of the changes in terms of mean EVI value. The CUSUM time series of the 

EVI data was calculated as follows:  

 

𝑆𝑖 =  𝑆𝑖−1 +  (𝑋𝑖 − �̅�),     ( Eq. 1) 

 

where Xi represents the consecutive 56 quarterly values of any pixel (i = 1, 2...56),  

represents the average of 56 quarterly values of EVI data, and Si represents the CUSUM 

of the time series.  

 

In the absence of significant changes in the EVI time series, the CUSUM curve 

shows a relatively horizontal random path along the x-axis. If a change takes place, the 

CUSUM shows peaks (either positive or negative) that correspond to the mean of the 

changes. In this case, the difference between the maximum (Smax) and minimum (Smin) 

values of the CUSUM is the magnitude of the changes (Sdiff). A total of 1,000 synthetic 

datasets were generated from the observed time series by random sampling without 

replacement. Sdiff was calculated for each dataset as follows: 

 

𝑆𝑑𝑖𝑓𝑓 =  𝑆𝑚𝑎𝑥 −  𝑆𝑚𝑖𝑛  ,        (Eq. 2)   

where  

𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑆𝑖  , 𝑖 = 0 … . .56 

𝑆𝑚𝑖𝑛 = 𝑚𝑖𝑛 𝑆𝑖  , 𝑖 = 0 … . .56 . 

  

Once Sdiff  was calculated, bootstrap analysis of the 56 datasets, denoted as X
0
1, X

0
2 

…. X
0

56, was performed. Bootstrap analysis is a numerical sampling technique in which 

the data sampled are resampled with replacement (John, 2011). The bootstrap CUSUM, 

denoted as S
0

1, S
0
2 …. S

0
56, were calculated as in Equation 1. The maximum, minimum, 

and difference of the bootstrap CUSUM, denoted as S
0

min, S
0

max, and S
0

diff, respectively, 

were calculated as in Equation 2. Then, it was determined whether or not the difference 

bootstrap, S
0

diff,  was less than the original difference, Sdiff . The level of confidence that 

change occurred as a percentage was determined as follows: 
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      Confidence level = 100 
X

𝑁
 %                               (Eq. 3) 

Once a change was detected, the estimation of the changes occurred could be 

made using the following equation: 

 

  MSE (m) = ∑ (𝐸𝑖
𝑚
𝑖=1 − �̅�1)2+∑ (𝐸𝑖

56
𝑖=𝑚+1 − �̅�2)2 , (Eq.4) 

where MSE (m) is the mean square error estimator. Points 1 to m estimate the last point 

before the change occurred, and points m+1 to 56 estimate the first point after the 

change of two different means (E1 and E2). Once the occurrence of a significant change 

was established for any pixel, the forest fraction of that pixel was determined separately 

using the mean EVI values before and after the change point. For the pixels that showed 

no significant change across the study period, the entire EVI time series (all 56 values) 

was used to calculate the forest fraction. The procedure for the data analysis used in this 

study is shown in Figure 5.6. 

 

5.3.5 Validation  

 

Significant change patterns were validated based on the reference data derived from the 

field survey, Landsat data series images (TM, ETM+, and OLI_TIRS), high-resolution 

images from Google Earth, and other secondary data. The secondary data of aquaculture 

activities and status of mangrove area were obtained from the Department of Sabah 

Fisheries and the Sabah Forestry Department. 
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Figure 5.6: Flow diagram of the change-point analysis used in this study     
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5.4 Results and Discussion 

 

5.4.1  Change Detection  

 

The results of the change-point analysis showed significant changes in the EVI 

time series of Mengkabong’s mangrove areas at the 95% confidence level. The 

significant drop in EVI values in the negative values shows that the mangrove areas 

were partially deforested and converted to shrimp pond areas. Several significant 

changes of EVI values (drop in the negative values) were detected from the MODIS 

pixels in the years 2000–2001, 2004–2006, 2007–2008, and 2009–2013 (Figure 5.7). 

The negative values (-0.1 to -0.3) of EVI in 2000–2001 demonstrate that the biomass of 

mangrove area decreased, with the area converted to shrimp pond farming.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Several significant changes of EVI value from a single MODIS pixel that 

was assigned as the actual change of  mangrove area to shrimp pond area 

-0.10

-0.05

0.00

0.05

0.10

0.15

00 01 02 03 04 05 06 07 08 09 10 11 12 13

E
V

I 
v
a
lu

e 

-0.10

-0.05

0.00

0.05

0.10

0.15

00 01 02 03 04 05 06 07 08 09 10 11 12 13

E
V

I 
v
a
lu

e 

(a) Changes in period 2000-2001 

-0.10

-0.05

0.00

0.05

0.10

0.15

00 01 02 03 04 05 06 07 08 09 10 11 12 13

-0.10

-0.05

0.00

0.05

0.10

0.15

00 01 02 03 04 05 06 07 08 09 10 11 12 13

(b) Changes in period 2004-2006 

(c) Changes in period 2007-2008 (d) Changes in period 2009-2013 



125 
 

The results of this study are supported by the findings of SFD (2010), whereby 

more than 15 ha of mangrove areas were converted to shrimp ponds with an average 

pond size of 2.5 ha in 2000, which was followed by an expanded loss of mangrove to 20 

ha in 2001. Eckert et al. (2015) confirmed that a decrease of EVI values in the negative 

values shows that the vegetation area was deforested. In addition, a decrease of EVI 

values indicates a decrease of biomass of vegetation regions (Huete et al., 2002). The 

shrimp pond farming activity that began in Mengkabong in the early 2000s may have 

caused the start of the decrease of the mangrove area EVI values. 

 

Another significant decrease of EVI values, with a range from -0.2 to -0.8, was 

detected in 2004 to 2006. This decrease was then followed by decreases in 2007–2008 

(-0.1 to -0.5) and 2009–2013 (-0.01 to -0.03). These decreases may be due to an 

increase of shrimp pond areas. Secondary data analysis of the total shrimp pond area in 

Mengkabong from 2000 to 2013 (Figure 5.8) supports the results of this study. The 

trend of shrimp pond areas in Mengkabong correlates with the decreased pattern of EVI 

values in the MODIS time-series data. The number of shrimp ponds in Mengkabong 

increased to more 40, with a total area of almost 90 ha, from 2000 to 2013 (DFS, 2013). 

The drastic increase of shrimp pond areas led to the deforestation of mangrove forests in 

the study area. 

 

 

Figure 5.8 Total area of shrimp pond in Mengkabong 
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The temporal mangrove distributions in Mengkabong for each quarter of the 

study period are presented in Figure 5.9. Based on this figure, mangrove areas 

decreased significantly from October–December 2005 to October–December 2007, 

revealing the extent and temporal trend of the extensive mangrove-to-shrimp pond 

conversion in Mengkabong. However, mangrove areas started to increase in January–

December 2008, then slowly decreased in January–March 2009. In April–June 2009, 

mangrove areas increased again until October–December 2010. Then, they decreased 

slowly from July–September 2011 until October–December 2012. 

 

 

 

Figure 5.9 Temporal distribution of Mengkabong mangrove area for each quarter of 

each year 

 

 The increases mentioned above may be related to the mangrove replanting and 

restoration project in Mengkabong. The project, costing approximately RM 5 mil, was 

implemented in Sabah by the SFD from the end of 2006 to 2010. This project was 

implemented because of the decreasing mangrove forests in Sabah and to protect the 

coastal areas from erosion. However, the unsuccessful project faced several problems, 

including the red tide phenomenon, strong currents, and disturbances by the barnacle 
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population and livestock, causing high mortality of the mangrove seedlings (SFD, 2010). 

The low level of public awareness about the importance of mangrove restoration was 

also a reason for the failure of the project.  

 

The increase of mangrove areas in October–December 2013, with almost 1,200 

ha, was due to an extensive mangrove replantation project that was conducted by the 

Kota Kinabalu Wetland (KKW) Centre and SFD. Many international non-government 

organizations were involved, and these organizations contributed funds and expertise 

that helped make the project successful. Under the project, 25,000 mangrove seedlings 

were replanted in the mangrove areas (SFD, 2013). 

 

5.5 Summary 

 

In this study, the combination of MODIS EVI time series and change detection was 

used to generate a virtual reconstruction through 14 years (2000–2013) of the 

conversion of mangrove areas to shrimp ponds in Mengkabong using a spatial 

resolution of 250 m and a temporal resolution of 3 months. The significant decreases in 

MODIS EVI time-series negative values in 2000–2001, 2004–2006, 2007–2008, and 

2009–2013 confirmed that the mangrove areas in Mengkabong were partially deforested 

and converted to shrimp pond areas. The temporal patterns of the mangrove 

distributions for each quarter of each year clearly showed the timing of the deforestation 

of Mengkabong’s mangrove areas. With the continuation of satellite data acquisition by 

MODIS, it will be useful to monitor and verify changes of Sabah’s mangrove forests in 

the future. 
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Chapter 6 

 

Satellite Monitoring Procedures for Mangrove Change Detection and 

Conservation Management Plan in Sabah  

  

 

6.1 Introduction  

 

Satellite remote sensing monitoring has been found to be a valuable tool for application 

in forest management, including management of mangroves. The advantages of this 

application tool are not only in monitoring, but also for carrying out relevant 

observations that can reveal the impact of deforestation on global climate. Mangrove 

change detection using satellite data is a powerful tool to visualize, measure, and better 

understand trends of mangrove ecosystems (Binh et al., 2005; Seto et al., 2007; Thu & 

Populus, 2004; Wang et al., 2003). It enables the evaluation of subtle changes over a 

long period of time (as trends), as well as the identification of sudden changes due to 

natural or anthropogenic impacts (e.g., tsunami destruction or conversion to shrimp 

farms) (Giri et al., 2008; Ramachandran et al., 2000; Sirikulchayon et al., 2008; Thu & 

Populus, 2004).  

 

The multi-temporal remotely sensed Landsat series (TM, ETM+, and OLI_TIRS) 

and MODIS data have been suggested to be more applicable to the identification of 

mangrove deforestation area, mapping the growth of mangrove forest area, and tracing 

the major changes in mangrove land cover (Blasco et al., 1998; Giri et al., 2007; Green 

et al., 1998; Karthisen & Birgham, 2001; Kuenzer et al., 2011). The application of these 

remotely sensed data in mangrove studies has shown many advantages, such as high 

cost-effectiveness, large-scale monitoring, time savings, and long-term data access 

(Aschbacher et al., 1995; Blasco et al., 1998; Green et al., 1998; Hernanderz et al., 

2005; Manson et al., 2003; Mironga, 2004; Mumby et al., 1999; Lee & Yeh, 2009; 

Wang et al., 2003). In addition, both of these remotely sensed datasets are freely 
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available from the National Aeronautics and Space Administration (NASA) and the U.S. 

Geological Survey (USGS).  

 

Application of Landsat series and MODIS remotely sensed data in mangrove 

studies has been performed extensively since the 1970s and the 2000s, respectively. 

Among these data, Landsat TM and ETM+ have been used widely in the mangrove 

studies. The improvement by several additions of infrared bands and the spatial 

resolution of 30 meters of TM and ETM+ have promoted the application of both these 

data for mangrove monitoring (Green et al., 1998). In addition, the new development of 

the Landsat series OLI_TIRS data in the year 2013 has made available the new 

advantages of these remotely sensed data.  

 

Many previous studies have successfully measured, visualized, and monitored the 

changes of mangrove forest using multi-temporal Landsat series and MODIS data (Giri 

et al., 2007; Sirikulchayon et al., 2008; Sulong et al., 2002; Thu & Populus, 2004). One 

of the special characteristics of MODIS data for providing a large spatial coverage is the 

ability to observe an entire region or a whole country at the same time with almost the 

same atmospheric conditions, which simplifies data processing and analysis (Doung, 

2004; Rahman et al., 2013; Vo et al., 2013).  

 

Furthermore, MODIS data are available in short revisit time (1 to 2 days). Thus, 

these data offer the possibility of creating a cloud-free composite, which is essential for 

the establishment of a multi-temporal dataset, a very important need for environment 

monitoring. Therefore, the availability of continuously acquired MODIS data has 

promoted the application of these data for mangrove monitoring and mapping (Rahman 

et al., 2013; Vo et al., 2013).  

 

In Sabah, satellite monitoring of mangrove forests is not yet well applied, even 

though there have been massive mangrove deforestations. Increases in population 

occurring simultaneously with the expansion of agricultural land, aquaculture activities, 

industrial activities, and urban development have caused a significant proportion of 

Sabah’s mangrove forest area to be destroyed (Jakobsen et al., 2007; Polpanish, 2008; 
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Sabah Forestry Department, 2012). Although, the mangrove replanting project has been 

conducted to manage the degraded areas, limited continuous monitoring contributes to 

the lack of success of this project. According to the Sabah Forestry Department (SFD) 

(2010), about RM 5 million was expended on the mangrove replanting project in Sabah 

from 2006 to 2010. However, the expenditure might increase due to the high cost of 

maintenance of this project. Thus, applying the satellite remote sensing technology for 

mangrove change detection and monitoring will promote the effectiveness of the 

management plan for mangrove conservation in Sabah. 

  

6.2 Objectives  

 

The main objective of this study is to develop schematic procedures of the satellite 

remote sensing application for change detection and monitoring for mangrove forest 

management in Sabah. To achieve this objective, the following specific were 

established: 

 

 1. To simplify procedures for Landsat and MODIS remotely sensed data 

application for a mangrove change detection and monitoring program in Sabah. 

 2. To assess the potential of the cost-effectiveness of the remotely sensed for 

mangrove studies in Sabah.  

 

6.3 Materials and Methods 

  

Eight major steps of the change detection and monitoring process for mangrove studies 

in Sabah using remotely sensed data were developed, as described in the following.  
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Figure 6.1 Eight major steps of remote sensing-based land cover change detection and 

monitoring procedures for mangrove studies in Sabah 
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the location, and the size of the study area (Jensen, 2005). These issues directly affect 

the selections of remotely sensed data and the selection of change detection algorithms. 

Detailed descriptions of the nature of the problem in this study follow. 

 

(i) Mangrove Deforestation Problem in Sabah 

 

Recently, deforestation of mangrove forest in Sabah has been occurring at an alarming 

rate. The continuous pressures from socioeconomic activities such as aquaculture and 

urbanization and the large-scale commercial exploitation of mangrove resources have 

caused partial destruction of the mangrove in Sabah. The mangrove areas at risk include 

Kota Kinabalu, Tuaran, and the problem is increasing extensively in Tawau, Sandakan, 

and Semporna, where the demand for land for both commercial uses and housing 

development is high (Sabah Forestry Department, 2012). Figure 6.2 shows the current 

condition of mangrove areas in Sabah. However, due to limited study time, only the 

Tuaran area was selected in this research. The background of the Tuaran study site was 

explained in detail in Chapters 3, 4, and 5 of this research.  

 

 

 

Figure 6.2 Current conditions of mangrove forest in Sabah 
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6.3.2 Preparation and Selection of Remotely Sensed Data  

 

Many remotely sensed data generated from both airborne and spaceborne sensors with 

different spatial, radiometric, spectral, and temporal resolutions are available. In order 

to select suitable datasets for a specific study, it is important to understand the strengths 

and weaknesses of the various types of sensor data. In addition, cost-effective, large-

scale, and long-term temporal remotely sensed data are recommended for mangrove 

study in the Sabah area. Thus, Landsat data series (TM, ETM+, and OLI_TIRS) and 

MODIS data were proposed for the data selections. The protocols of both the satellite 

remotely sensed data acquisition and the selections that were made in this study are 

described in the following. 

 

(i) Acquisition and Selection of Landsat Data Series 

 

The Landsat data series (TM, ETM+, and OLI/TRS) were downloaded freely from 

many websites, including the following sites: 

 

1) Earth Explorer US Geological Survey (USGS) (http://earthexplorer.usgs.gov/) 

2) Global Visualization Viewer (http://glovis.usgs.gov/) 

3) Landsat Org (http://www.Landsat.org) 

4) Global Land Facility (http://glcf.umd.edu.) 

 

All of these websites provide thousands of free satellite imagery of the Landsat 

series for any interest of any study area. The United States Geological Survey (USGS) 

announced on April 21, 2008, that it will provide all Landsat data archives for free. 

Landsat has been providing standard processing algorithms for data and applied terrain 

correction, making it very easy to use. There are three types of Landsat data-level 

corrections: standard terrain correction (Level 1T), systematic terrain correction (Level 

1GT), and systematic correction (Level 1G) (USGS, 2013). The selection of the data 

types depends on the particular study.  

 

http://earthexplorer.usgs.gov/
http://glovis.usgs.gov/
http://www.landsat.org/
http://glcf.umd.edu/
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However, all of these types of Landsat data are very compatible for mapping, 

change detection, and monitoring of the mangrove ecosystem (Churches et al., 2014; 

Fatoyinbo et al., 2008; Liu et al., 2008). In addition, the quality level of the remotely 

sensed data, such as less cloud cover and being accurately co-registered, was controlled 

by the choices from the mentioned websites. Only multispectral bands were thought be 

suitable for selection for the analysis. Panchromatic and thermal bands were not used 

during the analysis to avoid the complexities involved with dealing with data at 

different spatial resolutions. The details of the Landsat data accessing protocols are 

described in Chapter 3 of this research. 

 

(ii) Acquisition and Selection of MODIS Data 

 

MODIS satellite data were downloaded freely from the following several websites:  

1) The Land Processes Distributed Active Archive Centre (LP DAAC) 

(http://lpdaac.usgs.gov/) 

2) Reverb (http://riverb.echo.nasa.gov/riverb) 

3) Data Pool (http://lpdaac.usgs.datapool.datapool.asp) 

4) Oak Ridge National Laboratory (ORNL) DAAC  

(http://daac.ornal.gov/modis.global) 

 

All of these websites also provide thousands of free satellite imagery of MODIS 

data for any interest of any study area. MODIS data include a lot of remotely sensed 

data with specific code products. Vegetation indices such as NDVI and EVI of MODIS 

data are commonly used to measure reliable spatial and temporal photosynthetic activity 

and canopy structure variety of vegetation (Hansen et al., 2002; Morton et al., 2006; 

Wessel et al., 2004; Zhan et al., 2002).  

 

Therefore, NDVI and EVI are useful for mangrove studies. The vegetation indices 

of MODIS data (NDVI and EVI) are embedded in the MODIS MOD 13Q1 product. All 

of these data can be derived at 8-day, 16-day, and monthly intervals for accurate 

seasonal and interannual monitoring of earth's vegetation both spatially and temporally.  

 

Global Land Facility 

http://glcf.umd.edu/ 

 

 

 

http://lpdaac.usgs.gov/
http://riverb.echo.nasa.gov/riverb
http://lpdaac.usgs.datapool.datapool.asp/
http://daac.ornal.gov/modis.global
http://glcf.umd.edu/
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For each site from which MODIS subset data were downloaded, all of the data were 

saved as a text file in various formats (ASCII format, comma separated, no header) with 

a log file listing all the unique downloads and their download status. The data saved in 

this format can be easily reread into any image processing software, such as ENVI 

software. The details of the MODIS data accessing protocols were described in Chapter 

5 of this research. 

 

6.3.3 Remotely Sensed Data Processing (Pre-processing and Processing)  

 

All of the remotely sensed data (Landsat and MODIS) downloaded from the websites 

were proceeded to the data processing. In the remotely sensed data processing, several 

steps of pre-processing and image processing were suggested in the previous chapter of 

this research as being useful for application to mangrove study in Sabah. For the 

Landsat data, the details of the processing procedures that were developed in the 

previous chapter (Chapter 3) are suggested to be the standard protocol for the remotely 

sensed data processing. The gap-filling analysis developed in the pre-processing 

analysis is useful for correcting the scan-line error in the ETM+ SLC-off data. This 

analysis has the potential to produce good spatial data of ETM+ SLC-off data for use in 

further analysis. As discussed in the previous chapter, there are significant differences in 

land cover classification results before and after the gap-filling process of ETM+ SLC-

off data. 

 

 In addition, the details of the processing procedures that were developed in 

Chapter 5 of this research are suggested to be the standard protocol for MODIS data. 

The MODIS data also contain disturbance caused by some errors such as atmospheric 

variability (Huete & Liu, 1994), aerosol scattering (Xiao et al., 2003), and residual 

errors (Lu et al., 2007). Thus, noise reduction analysis on the observed data is required 

before the analysis of temporal dynamics can be determined. Within this context, a 

variety of methods has been proposed to process the time series of the satellite image 

data. Time series smoothing and the residual error method were applied in the previous 

chapter (Chapter 5). 

 

Global Land Facility 

http://glcf.umd.edu/ 

 

 

 

http://glcf.umd.edu/
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The remotely sensed data processing in this research was performed using image 

processing software, such as the Environment for Visualizing Images (ENVI) software 

and MS Excel 2010. The ENVI software is an image processing system designed for 

multispectral and hyperspectral data analysis and information extraction.  

 

6.3.4 Classification Analysis 

 

Classification analysis is used to classify the remotely sensed data information that is 

needed. In this study, the mangrove forest was the main target of the classification 

analysis. There are many classification techniques (conventional and advanced) that 

have been suggested for use in mangrove studies. However, only classification 

techniques such as spectral profile, normalized difference vegetation index (NDVI), 

maximum likelihood, and decision-tree learning classification integrated with Landsat 

data series were applied to classify the Mengkabong mangrove in the Tuaran area. 

 

In addition, decision-tree learning is one of the recent advanced classification 

techniques that can be both accurate and efficient for land cover classification (Defries 

et al., 1998; Friedl & Brodley, 1997; Friedl et al., 1999; Hansen et al., 1996; Swain & 

Hauska, 1977). All of these techniques were analyzed using image processing, such as 

by ENVI software and MS Excel 2010.  

 

6.3.5 Classification Accuracy Assessment 

 

Integrating remotely sensed data with reference data, such as field data, topography, and  

vegetation, improves the accuracy of the classification. The topographic and vegetation 

maps used in this study were obtained from the Survey and Mapping Department and 

the Forestry Department, respectively. After obtaining suitable reference data, the 

classification results were analyzed for accuracy assessment.  

 

Classification accuracy refers to the degree of correspondence between the 

classification of remote sensing data and the reference information (Congalton, 1991). 

Confusion matrices and cross-tabulation of the mapped class were useful for computing 
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the accuracy of the mangrove classification statistically (Campbell, 2011; Congalton, 

1991; Foody, 2002). The details of the mangrove classification using the Landsat data 

series procedures were described in Chapters 3 and 4 of this research.   

 

6.3.6 Selection of Change Detection Algorithms 

 

There are many change detection methods that can be applied to study land cover 

change, such as algebraic, transformation, classification, advanced model, geographic 

information system, and visual analysis approaches (Lu et al., 2004). In this study, the 

classification, visual analysis, and transformation methods were applied to detect the 

mangrove change in the Tuaran area. First, the classification and visual analysis 

methods integrated with the Landsat data series were applied to detect the mangrove 

change in the Tuaran area. The areas of the mangrove land cover classes were 

calculated and the land cover change was analyzed statistically.  

 

Then, the enhanced vegetation index (EVI) of the MODIS time-series data 

integrated with the change-point method was applied to detect the mangrove change in 

Tuaran. The change-point method is useful for analyzing the changes of MODIS EVI 

time series (Rahman et al., 2013). From a statistical point of view, a change point is a 

point in a time series where the distribution of the mean of the observed data changes 

significantly (Chen & Gupta, 2000). Change-point analysis can answer the two key 

questions of whether there are significant distributions of mean across the time series 

and when does change occur (Taylor, 2000). The change detection algorithms that were 

applied in this study were described in detail in Chapters 3, 4, and 5 of this research.  

 

6.3.7 Evaluation of Change Detection Results 

  

Next, change detection analysis was applied to evaluate the accuracy of the result. 

The standard accuracy assessment technique was developed mainly for single-date 

remotely sensed data (Congalton, 1991; Congalton & Green, 2008). However, the error 

matrix-based accuracy assessment method is the most common and valuable method for 

evaluation of change detection results (Congalton & Green, 2008), and this method was 
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applied in the previous chapters (Chapters 3 and 4) of this study. Then, the results of the 

mangrove land cover change were presented in either maps or graphs. The details of the 

Landsat and MODIS data processing that were used in this research are presented in 

Figures 6.3a and 6.3b, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3(a) Mangrove classification and change detection protocols for Landsat data 

series 
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 Figure 6.3(b) Mangrove change detection protocols for MODIS (VI) time-series data. 

 

6.3.8 Monitoring Program   

  

Since the schematic procedures for mangrove change detection were developed, the 

monitoring program using remote sensing technology has been applied extensively. In 

addition, the integration of cost-effectiveness, large scale, long-term temporal remotely 

sensed data, and better accuracy, such as by using Landsat series and MODIS, promotes 

the many advantages of applying remote sensing tools for mangrove forest monitoring, 

especially in Sabah. Therefore, mangrove monitoring using remote sensing tools has 

been implemented in the mangrove conservation management plan. 
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6.4 Results and Discussion 

 

The availability of the developed protocols for application of remotely sensed data and 

the other results of this study have promoted the mangrove monitoring program in the 

Tuaran area. 

 

6.4.1 The Nature Change Detection Problem 

 

The Tuaran area is located within the region of 6º8ʹ24″ N to 6º11ʹ24″ N latitude and 

116º08ʹ6″ E to 116º12ʹ54″ E longitude (Google Earth, 2012) (Fig. 6.4). Prior to the 

1990s, the Tuaran area was almost entirely covered with Rhizophora apiculata, a 

healthy and dense mangrove species (Sabah Forestry Department, 2010). The total 

mangrove area in the 1990s was 1260 ha. However, this area experienced a 15% 

decrease from 1990 to 2000.  

 

 

 

 

Figure 6.4 Location of study area 
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The main factor affecting the reduction of Tuaran mangrove was shrimp pond 

farming activity. This activity began in the early 2000s, after which more than 15 ha of 

mangrove area were converted to shrimp ponds with an average area of 2.5 ha for each 

pond. These activities have been continuing gradually, resulting in increases in the 

number of pond areas. The increased demand for tiger shrimp (Penaues monodon) has 

been a factor in the increase of shrimp pond areas in Tuaran. The drastic increase of 

shrimp pond areas led to deforestation of the mangrove forests in the study area. Figure 

6.5 shows the shrimp pond farming in the Tuaran mangrove forest, which was acquired 

during the field survey in November 2011 and September 2013. 

 

 

Figure 6.5 Shrimp pond in the Tuaran mangrove area 

(Source: Field survey photographs) 

 

6.4.2 Selection of Remotely Sensed Data 

 

The available free data access websites and acquisition developed protocols promotes 

the selection process for good satellite data of Landsat series and MODIS in this study. 

The used of both data provided an advantages of the cost-effective, large-scale, and 

long-term temporal of remotely sensed data for the mangrove study in Tuaran. In 

addition, the Landsat has been providing standard processing algorithms data and 

terrain correction applied, making it very easy to use. The used of temporal pattern 

MODIS enhanced vegetation index (EVI) datasets has significant advantages for both 

capturing the actual timing of change events and monitoring of mangrove growth. 

 

November 2011 September 2011 
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6.4.3 Remotely Sensed Data Processing (Pre-processing and Processing) 

 

The use of the processed multi-temporal Landsat data series (1990–2013) and the 

MODIS data with the developed protocols improves the potential for producing high 

quality satellite data. The gap-filling analysis developed in the pre-processing analysis 

is useful for correcting the scan-line error in the ETM+ SLC-off data. The selection of 

an appropriate gap-filling analysis process produced a good spatial result in the final 

ETM+ SLC-off data. The result of this analysis was supported the study by Singh & 

Sherman (2010). Figure 6.6 shows the final ETM+ SLC-off data produced by the gap-

filling analysis.  

 

 

ETM+ SLC-off  

 Before gap-filling After gap-filling 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 6.6 Landsat ETM+ SLC-off data before and after gap-filling analysis 

 

 

The cloud masking technique that was applied in this study is useful for 

removing cloud cover in the Landsat images. The protocol of the analysis was explained 

in detail in Chapter 3. Furthermore, the processing procedures that were developed for 

correcting disturbance in the MODIS data produced a smoothed time-series MODIS 

EVI. Therefore, the pre-processing analysis that was applied in this study has the 

potential to produce good results of processed Landsat data for further use, especially 

for mangrove study. 

Date: 06.03.2010 Date: 13.08.2010 Date: 06.03.2010 

Main data Supplementary data Final data 
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6.4.4 Classification Analyses and Accuracy assessment 

 

The use of the classification protocols integrated with conventional (visual 

interpretation, spectral profile, NDVI, and maximum likelihood) and advanced 

(decision-tree learning) remote sensing techniques showed high accuracy of mangrove 

and non-mangrove classification in the Tuaran area. The use of the NDVI classification 

technique in MS Excel and the spectral profile technique should improve the 

effectiveness of mangrove classification in the Tuaran area.  

 

Furthermore, the application of the decision-tree learning technique integrated 

with GIS ancillary data successfully classified mangrove and non-mangrove areas. The 

selection of good attributes from the spectral features of Landsat and from the 

topographic data (DEM and distance to coastline) from the GIS database for mangrove 

classification promoted a highly accurate result (90.8% accuracy).  

 

6.4.5 Selection of Change Detection Algorithm 

 

The use of change-point analysis integrated with enhanced vegetation index (EVI) 

MODIS time-series data revealed the history of the destruction of mangrove forest and 

the aquaculture activities in the Tuaran area. The significant decrease in MODIS EVI 

time-series negative values confirmed that Tuaran’s mangrove areas were partially 

deforested and converted to shrimp pond areas. Temporal patterns of mangrove 

distribution for each quarter of each year clearly showed the timing of deforestation of 

Mengkabong’s mangrove areas.  

 

Figure 6.7 shows the temporal distributions of Mengkabong mangrove area for 

each quarter of each year. This result confirmed that the shrimp pond farming started in 

2000. The result of increasing mangrove area in 2010 to 2013 was supported by the 

replanting project that was conducted by the Sabah Forestry Department in early 2010. 

In 2010, the Sabah Forestry Department did its first transplantation project but it was 

unsuccessful (decrease of area from 2011-2012) because of livestock disturbance and 

red tide.  
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The increase of mangrove area in year 2013 might have been caused by the 

second mangrove seedling transplantation done by Sabah Forestry Department. 

According to Sabah Forestry Department (2013), more than 25,000 mangrove seedlings 

(6-8 months old; 40-50 cm height) were successfully transplanted in the area. Figure 

6.8 shows the mangrove in the replanting areas. The details of mangrove replanting area 

are shown in the appendix of this dissertation. With the continuation of satellite data 

acquisition by MODIS, it will be useful to continue to monitor and verify the changes of 

Sabah’s mangrove forests in the future. 

 

 

6.7 Temporal distribution of Mengkabong mangrove area for each quarter of each year 

      

    (Source: Field survey photograph, 2013) 

     Figure 6.8 Mangroves in replanting area 

800

850

900

950

1000

1050

1100

1150

1200

00 01 02 03 04 05 06 07 08 09 10 11 12 13

M
an

g
ro

v
e 

ar
ea

 (
h
a)

 

Year 

Jan-Mar April-Jun July-Sept Oct-Dec



145 
 

6.4.6 Evaluation of Change Detection Result 

 

The details of the change detection of the Tuaran mangrove area are presented in the 

Table 6.1. According to the results of this study, Tuaran mangrove forests were 

distributed extensively in the Mengkabong area in 1990 (1145.16 ha). However, there 

was a significant decrease from 1990 to 2000 (1145.16 ha to 945.72 ha) and a slight 

increase from 2010 to 2013 (9972.20 ha to 1185.12 ha). Generally, the total area of 

mangrove forest has been declining (a reduction of 40 ha from 1990 to 2013) and 

fragmentation is obvious. The change of mangrove forest in the Tuaran area was 

affected by shrimp pond activities, as dicussed in the previous chapter of this study. 

Furthermore, the integration of remotely sensed data with secondary data acquired from 

various departments, such as the Sabah Forestry Department, Sabah Fisheries 

Department, and Survey and Mapping department, supported the results of this study.  

 

Table 6.1 Total Tuaran mangrove area from 1990–2013 

 

 

 

 

 

 

 

 

 

 

6.4.7 Monitoring Program  

  

The mangrove monitoring program using remote sensing technology has been applied 

frequently in the Tuaran mangrove forest. The availability of schematic procedures 

promotes the use of the monitoring program for mangrove replanting and rehabilitation 

projects in the Tuaran area. The combination of cost-effectiveness, large scale, long-

term temporal availability, and improved accuracy of the Landsat series and MODIS 

Multi-temporal Landsat data Mangrove area (ha) 

1990 1145.16 

1995 1024.20 

2000 945.72 

2005 872.82 

2010 997.20 

2013 1185.12 
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data promotes the application of these remote sensing tools for mangrove forest 

monitoring, especially in Sabah.  

 

6.5 Summary 

 

In summary, remote sensing technology offers considerable advantages in mangrove 

studies and has become a useful tool for monitoring the changes of the mangrove 

ecosystem in Sabah. In addition, the availability of schematic procedures for applying 

the remotely sensed data of the Landsat series and MODIS data to mangrove change 

detection should encourage the potential use of these data for mangrove monitoring in 

Sabah in the future. 
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Chapter 7 

 

Evaluation of Developed Protocols for Monitoring Protected Mangrove 

Forest in Sabah 

 

7.1 Introduction  

 

Uncontrolled exploitation of protected mangrove forest in Sabah was an impetus for  

conducting this study. As discussed in Chapter 1, the aim of this study was to develop 

and apply new remote sensing techniques using low-cost satellite data to monitor 

changes of protected mangrove in Sabah.  

 

This study was carried out after considering the limitations of the the remote 

sensing technology currently used for mangrove study. The high cost of high-resolution 

remotely sensed data with small area coverage, limitations in applying medium-

resolution data integrated with recent advanced remote sensing techniques, and lack of 

availability of free data acesss protocols with data processing were identified as 

limitations of the technology often currently used in mangrove studies.  

 

Therefore, the model studies of Chapters 3, 4, 5, and 6 for mangrove study in 

Sabah developed techniques using low-cost remotely sensed data. The Landsat series 

and MODIS data are proposed as potential low-cost remotely sensed data that can be 

used for mangrove monitoring in Sabah.  

 

The results of the model studies show the potential of the remotely sensed data 

used and the protocols developed for classifying and detecting changes of protected 

mangrove in Sabah. Thus, this chapter provides an evaluation of the effectiveness of the 

developed protocols by evaluating the selection of satellite data characteristics, 

calculating the estimated cost, estimating the time required, and considering the 

required degree of expertise. 
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7.2 Objectives 

 

The main objective of this study is to evaluate the effectiveness of the developed 

protocol for monitoring mangrove forest in Sabah. Specific objectives of this study 

follows: 

 

1. To evaluate the selection of data characteristics of  low-cost remotely sensed 

data for mangrove study in Sabah. 

2. To compare the cost-effectiveness between medium-resolution and high-

resolution data.  

3. To evaluate the time and degree of expertise required for use of the 

developed the protocols.  

 

7.3 Materials and Methods 

 

7.3.1 Evaluation of Satellite Data Characteristics 

 

The characteristics of low-cost (Landsat, MODIS) and high-cost (e.g., QuickBird, 

SPOT-5) satellite data such as spatial resolution, spectral information, temporal 

frequency data, discrimination level, free data access, and coverage area were variously 

selected to evaluate the effectiveness of data used for mangrove monitoring in Sabah.  

 

7.3.2 Cost Analysis of Low-cost Satellite Data 

 

The cost was determined based on the types of satellite data, software needs, and 

processing components. For the cost comparison with high-cost satellite data, the price 

list of satellite data was obtained from the Malaysia Remote Sensing Agency. The price 

list included the basic processing components for the satellite data. Furthermore, the 

price list of software was obtained from the Environmental Sytems Reseach Institute 

(ESRI) Malaysia. 
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7.3.3 Time Requirement 

 

The time requirement was evaluated by the time used for the data processing and 

validation. For the data processing components, time was noted for downloading, 

interpretation,  and  analysis.  

 

7.3.4 Degree of Expertise 

 

The degree of expertise was evaluated based on the work required to complete the  

developed protocols of the satellite data preparation, data analysis,  and survey work. 

 

7.3.5 Accuracy of Method 

 

The accuracy of the method was evaluated based on the classification and change 

detection results for the mangrove forest in the study area with the satellite data used. 

Secondary data such as the mangrove distributions in Sabah were acquired from the 

Sabah Forestry Department and were used to validate the results of this study. 

 

7.4 Results and Conclusion 

 

7.4.1 Evaluation of Satellite Data Characteristics 

 

Table 7.1 shows comparisons of satellite data characteristics between the low-cost and 

the high-cost remotely sensed data. The data characteristics included spectral 

information, discrimination level, temporal frequency data, coverage area, and free 

access. All of the selected data characteristics illustrate the benefits and advantages of 

using low-cost satellite data for mangrove monitoring.  

 

 Kuenzer et al. (2011) also reported that the selection of satellite data 

characteristics depends on the purpose of the user’s study. As dicussed in the first 

chapter, the main purpose of this study was to develop cost-effective protocols for 
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mangrove monitoring in Sabah. Therefore, the data characteristics of Landsat and 

MODIS data described in this study promote the effectiveness of these data for 

mangrove monitoring in Sabah. 

 

Table 7.1 Comparison of satellite characteristics between low-cost and high-cost 

satellite data 

Satellite Data 

Characteristics 

Low-cost 

(Landsat series & MODIS) 

High-cost 

(Quickbird, IKONOS, 

SPOT-5) 

Spatial resolution To coarse / Low 

(meter) 

Very high 

(centimetre to meter) 

Spectral information Several multispectral bands 

(R, G, B, NIR, mid-NIR & 

thermal band) 

Relatively few spectral bands 

(R, G, B, & NIR) 

Discrimination level (i)Mangrove and non-mangrove 

(ii) Condition status 

 

Down to species level 

Temporal frequency data Available over three decades Limited 

Coverage area Large-area Small-area 

Free-data access Yes No 

 

 

7.4.2 Cost Calculation 

 

Table 7.2 shows the estimated costs of medium-resolution remotely sensed data and 

high-resolution data for the total study area. The Landsat series and MODIS data that 

were used in this were acquired at no cost. Due to the availability of free data 

acquisition protocols for these data, it is easy to download data and select good data 

with less cloud cover. Furthermore, the data covered the large area of the study area 

(>1000 ha). The only cost incurred is for the software packages used, such as ENVI and 

Arc GIS. The estimated costs of software were obtained from the Environmental 

Sytems Reseach Institute (ESRI) Malaysia. However, the software packages that were 

used in this study were financed by Kyoto University.  
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For the data processing components, the basic processing for the satellite data 

used in this study was performed at no cost. The developed protocols for the data 

processing produced good processed satellite data, especially for the Landsat ETM+ 

SLC-off data. Furthermore, the developed protocol of the pre-processing also could be 

useful for removing the small amount of cloud cover in the satellite data. The several 

available websites promotes the selection of good satellite data. 

 

High-resolution data, such as QuickBird, SPOT, and IKONOS data, have high 

cost compared to medium-resolution data. To acquire data such as SPOT data, at least 

200,000 JPY are needed for coverage of the study area. Furthermore, the cost excludes 

the other data processing levels and other materials  needed for the analysis, such as the 

software.  

 

Therefore, the results show that the low-cost remotely sensed data that were used 

in this study are very cost-effective compared to high-cost satellite data. Previous 

studies have also confirmed that the use of Landsat and MODIS data promote the cost-

effectivenes of using remote sensing technology in mangrove studies. 

 

Table  7.2 Cost comparison of low-cost and high-cost satellite data 

No. Item Amount (JPY) (1000 ha) 

Low-cost data High-cost data 

Landsat 

Series 

MODIS Quickbird 

 

SPOT IKONOS 

1. Satellite data  

      with 

Processing level 

(Pre-processing) 

No cost 

 

600,000 200,000 430,000 

2. 

 

 

Softwares : 

Environment 

Visualization Image 

(ENVI)+IDL (Single 

user) 

 

 

204,000 

 

 

 

204,000 

 

 

Arc GIS Desktop 

Basic 

(Single user) 

 

45,000 

 

 

45,000 

 

Microsoft excel No cost 

Total 249,000 849,000 449,000 679,000 
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7.4.3 Time Requirement 

 

The time requirement was evaluated by considering the time used for satellite data 

preparation, such as downloading, processing, interpretation, and validation. In the 

beginning of this study, the time used for data preparation took more than a month, 

excluding the data processing, interpretation, and validation. However, since the method 

has now been developed, the data preparation, interperation, and processing should take 

less than a month. For validation, the collection of reference information such as field 

survey data and secondary data took a long time compared with the interpretation using 

the remote sensing data. However, in this study, field surveying for the validation 

process was conducted only two times. Thus, the time requirement using the developed 

protocol and field surveying method is more effective than the use of only a 

conventional method,  such as field surveying.  

 

7.4.4 Degree of Expertise 

 

To complete the developed protocols of the satellite data preparation, data analysis,  and 

survey work, a certain degree of expertise is needed. However, the expertise required 

for the data preparation is only a minimum level (basic level). For the data analysis and 

surveying work, a reasonable degree of expertise is needed at least for processing the 

data and knowing how to use the image processing software. However, minimal 

training of less than a month could be conducted for the beginner.  

 

7.4.5 Method Accuracy 

 

The result of total mangrove area that was produced using the developed protocol was 

not very different from the secondary data that were acquired from the Sabah Forestry 

Department. For example, in 2000, the total mangrove area from the developed protocol 

was 945 ha and that from the secondary data was 950 ha. Thus, the results show that the 

developed protocol has high accuracy for mangrove study in Sabah. 

 

 



153 
 

7.5 Summary 

 

This chapter evaluated the effectiveness of the developed protocols for monitoring 

protected mangrove in Sabah. The selection of the Landsat and MODIS data 

characteristics and the cost-effectiveness of the methods promote effective use of low-

cost satellite data for mangrove monitoring and change detection studies. 
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Chapter 8 

 

Conclusions and Recommendations 

 

 

8.1 Conclusions  

 

Mangrove forests provide critical ecosystem services, fullfil important socioeconomic 

and environmental functions, and support coastal livelihoods. These forests are also 

among the most vulnerable ecosystems, both to anthropogenic disturbance and climate 

change. Even though mangrove forests in Sabah have large distribution, they are 

declining at an alarming rate due to the conversion to agricultural, shrimp pond farming, 

and urban development areas, along with other types of deforestation. In order to cope 

with these problems, the application of satellite technology for estimating and 

monitoring changes of mangrove forests in Sabah was developed and evaluated in this 

research. The conclusions of the work are explained as follows. 

 

Chapter 2 provided the available literature pertaining to basic information about 

mangroves and satellite technology. The basic information on mangroves was 

introduced in terms of mangrove characteristics, mangrove distribution, mangrove 

importance, and the threats to mangrove. The satellite technology information began 

with research identifying the characteristics of mangrove using remotely sensed data 

and describing the potential of recent and advanced mangrove technologies,  including 

their benefits and limitations.  

 

Chapter 3 highlighted the potential of applying the processed Landsat data series (TM, 

ETM+, and OLI_TIRS) for classifying the mangrove forest land cover in Tuaran, Sabah. 

A standard protocol for Landsat data processing was developed for the mangrove 

classification. The gap-filling processing that was used in this study showed good 

results for producing Landsat ETM+ SLC-off gap-filled data. The application of 

Landsat data series in this study demonstrated the advantages of using low-cost 
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remotely sensed data for mangrove studies. The NDVI and maximum likelihood 

classification techniques that were applied to the processed Landsat data series (TM, 

ETM+, and OLI_TIRS) showed good results of land cover classification. However, 

there remain several limitations and challenges in the interpretation of mangrove by 

using these conventional methods. Thus, recent advanced classification techniques 

should be applied to processed Landsat data series for greater validation. This 

recommendation was applied in Chapter 4 of this thesis. 

 

Chapter 4 examined the potential of recent advanced remote sensing techniques for 

mangrove research. A decision-tree learning method integrated with multi-temporal 

Landsat series (TM, ETM+, and OLI_TIRS) was determined and applied for classifying 

and detecting rapid changes of the Mengkabong mangrove forest area. The results of 

this study showed that the application of the decision-tree learning method in 

combination with a dataset comprised of multi-temporal Landsat series (TM, ETM+, 

and OLI_TIRS) and GIS data can be effective at delineating spatial and temporal 

changes of the mangrove forest. The integration of various sources of remote sensing 

data, such as the sources of remote sensing data such as greenness, vegetation moisture 

content, and reflectance band values improved the classification accuracy of mangrove 

due to the similarity of the spectra of forest and water–vegetation mixed pixels.  

 

Chapter 5 examined the potential of MODIS time series data for detecting and 

identifying the conversion of mangrove area to shrimp pond farming in Mengkabong. A 

simple and robust statistical method of change analysis was developed and applied to 

the MODIS enhanced vegetation index (EVI) time-series data. The findings of this 

study confirmed that the technique developed could be applied to determine the history 

of mangrove deforestation and the development of aquaculturein the Mengkabong area 

for a 14-year period (2000–2013). With the continuation of satellite data acquisition by 

the MODIS sensor, this method should be useful for future monitoring and verification 

of changes of Sabah’s mangroves. 

 

Chapter 6 examined the development of a simplified methodology for application of 

remotely sensed data for mangrove monitoring in Sabah. The cost-effective and long-
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term multi-temporal nature of remotely sensed data such as Landsat series and MODIS 

data were suggested for the specified applications. The schematic procedures started 

with identify the nature change detection problems. Five potential study sites were 

identified around Sabah. These study sites were facing mangrove destruction due to 

human activities such as aquaculture and urbanization. Then, the procedures of remotely 

sensed data preparation, pre-processing, and classification analysis including selection 

of change detection algorithms and evaluation of change detection results were followed. 

Next, monitoring program procedures for the mangrove conservation management plan 

were suggested.  

 

Chapter 7 evaluated the effectiveness of the developed protocol for monitoring 

protected mangrove forest in Malaysia. The selection of the Landsat and MODIS data 

characteristics, the time requirement, and the cost-effectiveness of the methods will 

promote the use of these low-cost satellite data for mangrove monitoring and change 

detection studies. 

 

8.2 Recommendations  

 

The results of this study indicated that the low-cost remotely sensed Landsat series and 

MODIS data have high potential for classifying and monitoring changes in mangrove 

forests in Sabah. The following recommendations are provided for future studies: 

 

1. Satellite monitoring using cost-effective remotely sensed data should be applied 

extensively to mangrove monitoring around Sabah in order to gain a better 

understanding of the trends of mangrove forest change. 

2. It is recommended that this research be used as a baseline study to promote the 

effective use of remotely sensed data for mangrove studies in Sabah. 

3. The integration of satellite technology and field surveying for mangrove 

monitoring in Sabah should be an effective method in the future. 

4. The mangrove management plan in Sabah should be involved in the satellite 

monitoring protocols in order to provide spatiotemporal trends of mangrove 

distribution and deforestation.   
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5. Lastly, it is recommended that the people in Sabah be educated regarding the 

importance of mangrove forest. This effort will raise awareness, making it easier 

to manage these valuable resources in the future. 
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Appendix I (A) Sample of Landsat level 1T data set (1990) 

 

 

 

Band 1 (0.45-0.52µm) Band 2 (0.52-0.61µm)

Band 3 (0.63-0.69µm) Band 4 (0.76-0.90µm)

Band 5 (0.76-0.90µm) Band 6 (10.4-0.12.50µm)

Band 7 (2.08-2.35µm)
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Appendix I (B) Sample of metadata Landsat data set 

 

Data Set Attribute Attribute Value

Landsat Scene Identifier LT41180561990170XXX03

Spacecraft Identifier LANDSAT_4

Day/Night DAY

WRS Path 118

WRS Row 56

WRS Type 2

Date Acquired 19061990

Start Time 1990:170:02:01:54.52494

Stop Time 1990:170:02:02:21.13500

Acquisition Quality 7

Quality Band 1 7

Quality Band 2 7

Quality Band 3 7

Quality Band 4 7

Quality Band 5 7

Quality Band 6 7

Quality Band 7 7

Cloud Cover 20

Cloud Cover Quad Upper Left 0

Cloud Cover Quad Upper Right 10

Cloud Cover Quad Lower Left 0

Cloud Cover Quad Lower Right 10

Sun Elevation 52.92207187

Sun Azimuth 58.09587356

Data Type Level 1 TM L1T

Output Format GEOTIFF

Reflective Lines 6901

Reflective Samples 7721

Thermal Lines 6901

Thermal Samples 7721

Map Projection Level 1 UTM

Datum WGS84

Ellipsoid WGS84

UTM Zone 50

Grid Cell Size Reflective 30

Grid Cell Size Thermal 30

Orientation NORTH_UP

Resampling Option CUBIC_CONVOLUTION

Center Latitude 5°47'43.58"N

Center Longitude 115°50'06.07"E
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Appendix I (C) Sample of multispectral Landsat data series 

 

TM 19.06.1990

TM 07.12.2000 ETM + SLC-off 20.02.2005 

ETM + SLC-off 02.10.2005 ETM + SLC-off 06.03.2010 

ETM + SLC-off 13.08.2010 OLI_TIRS 23.04.2013 

TM 01.02.1995
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Appendix I (D) Multispectral bands of Landsat data series  

 

 

 

 

 

 

 

 

 

 

Thematic  

Mapper  

(TM) 

&  

Enhanced 

Thematic 

Mapper Plus 

(ETM+) 

Landsat 4, 5 and 7 Wavelenght  

(µm) 

Resolutions 

(m) 

Band 1-Blue 0.45-0.52 30m 

Band 2-Green 0.52-0.60 30m 

Band 3-Red 0.63-0.69 30m 

Band 4-NearInfrared 0.76-0.90 30m 

Band 5-Short wave Infrared 1 1.55-1.75 30m 

Band 6-Thermal Infrared 10.40 60m 

Band 7-Short Infrared 2 2.09-2.35 30m 

Band 8-Panchormatic  

           (Landsat 7 only) 

0.52-0.90 15m 

Operation Land 

Imager_Thermal 

Infrared 

(OLI_TIRS) 

Landsat 8 Wavelenght  

(µm) 

Resolutions 

(m) 

Band 1-Coastal aerosol 0.43-0.45 30m 

Band 2-Blue 0.45-0.51 30m 

Band 3-Green 0.53-0.59 30m 

Band 4-Red 0.64-0.67 30m 

Band 5-NearInfrared 0.85-0.88 30m 

Band 6-Short wave Infrared 1 1.57-1.65 30m 

Band 7-Short wave Infrared 2.11-2.29 30m 

Band 8-Panchormatic  0.50-0.68 15m 

Band 9-Cirrus 1.36-1.38 30m 

Band 10-Thermal infrared 1 10.60-11.19 100m 

Band 11-Thermal infrared 2 11.50-12.51 100m 
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Appendix I (E) Spatial resolution and coverage area of satellite images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LANDSAT series 30m

SPOT 20m

IKONOS 1m  

16 days orbital repeated 

Seasonal global coverage 
capability  

26 days orbital repeated 

Seasonal global coverage 
capability  

1 or 2 days orbital repeated 

 Global coverage capability  

Landsat series 

Spatial resolution: 
15m, 30m, 60m  

185 km 

117km 

SPOT 

Spatial resolution: 
10m, 20m 

  

MODIS 

Spatial resolution:  
250m, 500m, 1000m  

2048 km swath width 

11km 

IKONOS 

Spatial resolution: 
1m  

14 days orbital repeated 

Seasonal global coverage 
capability  

Spatial resolution of satellite images 
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Appendix I (F) Cloud-Masking Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Visual interpretation of true color image 
(Initially-area in white assumed to be cloud area) 

 

Area of interest  
(Total pixels: 55, 352) 

 

Comparison with clear image (Google Earth) 

(Verify the white area features either to be cloud 

or non-cloud areas) 

) 

Further verification   
(Comparisons with multi-temporal satellite 

images:1990, 1995, 2000, 2005, 2010 & 2013 -

ensure the presence of clouds in the area could be 

defined clearly)  

 

Cloud-masking and region of interest (ROIs)  
(Confine and mask the cloud cover area – to 

identify the cloud cover  area pixels) 

e.g.: 2010 data  

Masked pixels: 150 

Total cloud cover in area of interest: 

(150/55352)*100 =0.27% 
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Appendix II (A) Histogram band 1of main and supplementary ETM+ SLC-off 

data 
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Appendix II(B) Histogram of band 3 for main and supplementary of ETM+ SLC-

off data 
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Appendix III(A) Field Survey Schedule 

Date of 

Survey 

Activity Remarks 

 

4 Nov-24 

Dec, 2011 

 

(2 months) 

 

 Site visit 

 Mangrove species inventory  

 Ground truthing data collection 

 Secondary data collections 

-  Topography map 

-  Aquaculture activity data 

-  Vegetation  map 

 

 

Department involved:  

1. Kota Kinabalu Wetland    

Centre (KKWC) 

2. Sabah Fisheries   

Department  

3. University Malaysia Sabah 

4. Sabah Forestry Department 

5. Sabah Lands & Survey 

Department 

 

 

13-30 

September, 

2013 

 

(3 weeks) 

 

 

 Ground truthing data collection 

 Mangrove replanting  

 Secondary data collection 

-  Aquaculture acitivity data 

-  

 

Department involved: 

1. Sabah Fisheries Department 

2. University Malaysia Sabah 

3. Sabah Forestry Department 
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Appendix III(B) Pictures of Field Survey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photo 1: Site identification Photo 2: Mangrove sp. inventory 

Photo 3: Shrimp pond in 

mangrove area 

Photo 4: Mangrove seedlings for 

replanting project 

Photo 5: Rhizophora apiculata sp. Photo 6: Mangrove replanting 

activity 
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Appendix III(C) Sample Topographic Map of Study Area 

Restricted Topographic Map (1: 50,000) of Mengkabong area 
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Appendix IV(A) Multi-temporal of Satellite Data with Mangrove Replanting Area 

 

 

Note: Red circle shows the replanting of mangrove area 

 

True color: Bands combination (3,2,1) False Color: Bands combination (7,4,2)

2010 2010

2011 2011

2012 2012

2013 2013
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Appendix IV(B) Field Photo of Mangrove Replanting Area  

 

 

Field photo, 2013

Field photo, 2013


