<table>
<thead>
<tr>
<th>Title</th>
<th>Dose equivalents of antidepressants: Evidence-based recommendations from randomized controlled trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hayasaka, Yu</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-03-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://dx.doi.org/10.14989/doctor.k19618</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>ETD</td>
</tr>
</tbody>
</table>
Research report

Dose equivalents of antidepressants: Evidence-based recommendations from randomized controlled trials

Yu Hayasaka a,*, Marianna Purgato b, Laura R Magni c, Yusuke Ogawa a, Nozomi Takeshima a, Andrea Cipriani b,d, Corrado Barbui b, Stefan Leucht e, Toshi A Furukawa a

a Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
b Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona, Policlinico “G.B.Rossi”, Pizz.le L.A. Scuro, 10, Verona 37134, Italy
c Psychiatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
d Department of Psychiatry, University of Oxford, Oxford, UK
e Department of Psychiatry and Psychotherapy, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany

A R T I C L E I N F O

Article history:
Received 4 February 2015
Received in revised form 10 March 2015
Accepted 12 March 2015
Available online 31 March 2015

Keywords:
Major depression
Antidepressive agents
Dose equivalence
Fluoxetine

A B S T R A C T

Background: Dose equivalence of antidepressants is critically important for clinical practice and for research. There are several methods to define and calculate dose equivalence but for antidepressants, only daily defined dose and consensus methods have been applied to date. The purpose of the present study is to examine dose equivalence of antidepressants by a less arbitrary and more systematic method.

Methods: We used data from all randomized, double-blind, flexible-dose trials comparing fluoxetine or paroxetine as standard drugs with any other active antidepressants as monotherapy in the acute phase treatment of unipolar depression. We calculated the ratio of the mean doses for each study and weighted it by the total sample size to find the weighted mean ratio for each drug, which was then used to define the drug’s dosage equivalent to fluoxetine 40 mg/d.

Results: We included 83 studies (14,131 participants). In the primary analysis, fluoxetine 40 mg/day was equivalent to paroxetine dosage of 34.0 mg/day, agomelatine 53.2 mg/day, amitriptyline, 122.3 mg/day, bupropion 348.5 mg/day, clozapine 116.1 mg/day, desipramine 196.3 mg/day, dothiepin 154.8 mg/day, doxepin 140.1 mg/day, escitalopram 18.0 mg/day, fluvoxamine 143.3 mg/day, imipramine 137.2 mg/day, lofepramine 250.2 mg/day, maprotiline 118.0 mg/day, mianserin, 101.1 mg/day, mirtazapine 50.9 mg/day, moclobemide 575.2 mg/day, nefazodone 553.2 mg/day, nortriptyline 100.9 mg/day, reboxetine 11.5 mg/day, sertraline 98.5 mg/day, trazodone 401.4 mg/day, and venlafaxine 149.4 mg/day. Sensitivity analyses corroborated the results except for doxepin.

Limitations: The number of studies for some drugs was small. The current method assumes dose response relationship of antidepressants.

Conclusions: Our findings can be useful for clinicians when they switch antidepressants and for researchers when they compare various antidepressants in their research.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pharmacotherapy with antidepressants is the mainstay in the treatment of major depressive disorder. Although many types of antidepressants are currently available, evidence-based dose equivalency among them which takes relative efficacy into consideration is unknown.

Dose equivalence is critically important for clinical practice and for research. First, when clinicians change antidepressant, they need to know approximate dose equivalents to facilitate the transition. Second, dose equivalence is also relevant for pharmacoepidemiological studies for fair and accurate comparison of antidepressants to check potential over- or under-prescription. In addition, in trials comparing antidepressants, and in their meta-analyses, setting comparable dosages is necessary to facilitate the interpretation (Hansen et al., 2009).

There are several methods to define and calculate dose equivalence. Patel et al. (2013) conducted a systematic review of available methods that compare dose equivalence of antipsychotics. The representative methods include the following:

i) Original method conducted by Davis (1974). He employed data from double-blind flexible-dose trials comparing chlorpromazine

http://dx.doi.org/10.1016/j.jad.2015.03.021
0165-0327 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
with other antipsychotics, and then calculated the mean dose of each antipsychotic drug that was as effective as the standard comparator chlorpromazine 100 mg/day.

ii) Minimum effective dose method. The lowest dose significantly superior to placebo of equally efficacious drugs based on placebo controlled fixed dose trials was considered to be equivalent (Leucht et al., 2014; Woods, 2003).

iii) Near-effective maximum dose method. The threshold dose from our two recent Cochrane reviews for the consensus methods (Inagaki and Inada, 2006; Inagaki et al., 1999). To our knowledge, dose equivalence is provided only as DDD and by dose equivalence applying the original method by Davis (1974). This study therefore aimed to examine antidepressant dose appropriate studies in which we can draw dose-response curves. In the attractive, is even more severely affected by availability of appropriate standard interventions. Near-effective maximum dose design, while theoretically dose and if the trial was powered enough to detect such differences, we calculated from the dosage recommendations in each drug’s product information. This is the official standard of reference for WHO member states.

iv) Daily defined dose (DDD) (World Health Organization, 2014). DDD is the assumed average maintenance dose per day calculated from the dosage recommendations in each drug’s product information. This is the official standard of reference for WHO member states.

v) Expert consensus methods (Buckley, 2005; Gardner et al., 2010; Kane et al., 2003; Simpson et al., 2006).

Each method has its strengths and limitations, and no gold standard method exists. In the case of antidepressants, to the best of our knowledge, dose equivalence is provided only as DDD and by the consensus methods (Inagaki and Inada, 2006; Inagaki et al., 1999). DDD is often defined as a compromise among available information from various countries and does not provide any information about the efficacy of each drug (World Health Organization, 2014), which was shown as follows:

2. Materials and methods

As standard drugs, we chose fluoxetine or paroxetine as flexible dose monotherapy. We concentrated on the acute phase treatment, defined as 4–16 weeks of treatment, with the preferred endpoint at 8 weeks. When 8-week data were not available, we used outcomes closest to 8 weeks within the 4–16-week range. We excluded trials in which fluoxetine or paroxetine was compared only to placebo or another class of psychopharmacological agents such as anxiolytics, anticonvulsants, antipsychotics or mood stabilizers, and trials in which fluoxetine or paroxetine was used as an augmentation strategy.

2.2. Types of participants

The reviews included participants 18 years or older, with a primary diagnosis of unipolar major depression according to standardized criteria, DSM-III, DSM-III-R, DSM-IV (American Psychiatric Association, 2000), ICD-10 (World Health Organization, 1992), Feighner criteria (Feighner et al., 1972) or Research Diagnostic Criteria (Spitzer et al., 1978). Studies using ICD-9 were excluded because it only lists disease names but do not have diagnostic criteria. We excluded studies that focused on children and adolescents only, or on elderly patients (mean age > 65 years), because their indicated dosages and/or efficacy may be different from the case of adults. We included participants with some subtypes of depression, such as chronic, with catatonic features, with melancholic features, with atypical features, with postpartum onset, and with a seasonal pattern. We included studies in which up to 20% of participants presented with depressive episodes in bipolar affective disorder and participants with a concurrent secondary diagnosis of another psychiatric disorder. We excluded participants with a concurrent primary diagnosis of another psychiatric disorder and participants with a serious concomitant medical illness.

2.3. Interventions

The standard intervention drugs in this study were fluoxetine or paroxetine as flexible dose monotherapy. We concentrated on the acute phase treatment, defined as 4–16 weeks of treatment, with the preferred endpoint at 8 weeks. When 8-week data were not available, we used outcomes closest to 8 weeks within the 4–16-week range. We excluded trials in which fluoxetine or paroxetine was compared only to placebo or another class of psychopharmacological agents such as anxiolytics, anticonvulsants, antipsychotics or mood stabilizers, and trials in which fluoxetine or paroxetine was used as an augmentation strategy.

2.4. Comparators

Comparator drugs included conventional antidepressive agents as follows:

1. Tricyclics (TCAs); Amitriptyline, Clomipramine, Desipramine, Dothiepin/Dosulepin, Doxepin, Imipramine, Lofepramine, Trimalmine, Nomifensine, and Nortriptyline
2. Heterocyclics; Maprotiline, and Mianserin
3. SSRIs; Citalopram, Escitalopram, Fluvoxamine, Paroxetine, and Sertraline
4. SNRIs; Duloxetine, Milnacipran, and Venlafaxine
5. MAOIs or newer ADs; Agomelatine, Mirtazapine, Moclobemide, Phenelzine, and Reboxetine
6. Other conventional antidepressive drugs; Aminapetine, Amidulpride, Bupropion, Pramipexole, Nefazodone, Tianeptine, and Trazadone

No restrictions on dose, frequency or intensity were applied in the first round of the study selection. From this source dataset, we selected all double-blind, flexible-dose studies, and we included studies whose flexible dose range were within or included either the lower or the upper limit of the target dose range of each drug, set a priori as follows:

Fluoxetine: 10–80 mg/day, Paroxetine: 12.5–75 mg/day, Amitriptyline: 25–50 mg/day, Amisulpride: 50–300 mg/day, Amitript-
tyline 75–300 mg/day, Bupropion 150–450 mg/day, Citalopram 20–40 mg/day, Clomipramine 25–250 mg/day, Desipramine 100–300 mg/day. Doxepin 25–300 mg/day. Duloxetine 40–120 mg/day, Escitalopram 10–20 mg/day, Fluvoxamine 50–300 mg/day. Imipramine 75–300 mg/day, Lofepramine 140–210 mg/day, Maprotiline 25–225 mg/day, Milnacipran 12.5–200 mg/day, Mitrazapine 15–45 mg/day, Moclobemide 150–600 mg/day, Nefazodone 200–600 mg/day, Nortriptyline 75–150 mg/day, Phenelzine 45–90 mg/day, Pramipexole 0.375–4.5 mg/day, Reboxetine 8–12 mg/day, Sertraline 50–200 mg/day, Trazodone 150–400 mg/day, Trimipramine 75–300 mg/day, and Venlafaxine 75–375 mg/day.

These target ranges were mainly defined using FDA-approved labelings. However we made some adjustments to these ranges to reflect clinical practice patterns that might not have been considered in the FDA-reviewed studies according to Gartlehner et al. (2011). In case dosing range had multiple patterns by products, we adopted the widest range. For the drugs for which we could not find out dose ranges in FDA-approved labels or Gartlehner et al. (2011), we used databases of UK Medicines and Healthcare Products Regulatory Agency (MHRA) and the European Medicines Agency (EMA). For aminopenit, dothiepin/dosulepin, mianserin, nomifensine and tianeptine we could not find a standard dose range, and we therefore accepted any dose range.

2.5. Search methods

Searches of the Cochrane Depression, Anxiety and Neurosis Group (CCDAN) registers were conducted up to May 2012. CCDAN’s trial registers are collated from routine weekly generic searches of MEDLINE (1950–), EMBASE (1974–) and PsycINFO (1967–), quarterly searches of the Cochrane Central Register of Controlled Trials (CENTRAL) and additional databases. Reports of trials are also sourced from international trials registers of the World Health Organization’s trials portal (ICTRP), ClinicalTrials.gov, drug company home pages, the hand-searching of key journals, conference proceedings and other (non-Cochrane) systematic reviews and meta-analyses. Details of CCDAN’s generic search strategies can be found on the Group’s website (http://ccdan.cochrane.org/specialised-register). (Cf. Magni et al. (2013) and Purgato et al. (2014) for more details). We updated our search using MEDLINE and CENTRAL in January 2015.

2.6. Data extraction and management

At least two independent review authors extracted data from the included studies and also assessed their quality in accordance with the Cochrane Handbook for Systematic Reviews of Interventions (Higgins et al., 2011). When inadequate details of methodological characteristics of trials were provided, the authors were contacted in order to obtain further information.

We extracted the following data from the flexible dose arms in the included studies:

1) Number of participants in each arm.
2) Mean daily dosage actually prescribed and its SD.

We graded each study’s potential source of bias as high, low or unclear in the following domains (Higgins et al., 2011; Wood et al., 2008):

1) Allocation concealment
2) Blinding

Any disagreement was resolved by discussion of the two raters and, where necessary, in consultation with a third author.

2.7. Statistical analysis

We conducted the analyses if, for each antidepressant drug, there was at least one trial comparing it against either of our standard drugs, fluoxetine or paroxetine.

In the primary analysis we included all relevant studies and calculated, for each drug, the weighted ratio of mean doses from direct comparisons. First the ratio of the mean doses for each study was calculated, and then it was weighted by the total sample size to find the weighted mean ratio. We converted paroxetine mean doses of each study into fluoxetine mean dose studies by using the weighted ratio of mean doses from trials directly comparing fluoxetine and paroxetine, i.e. by multiplying the mean doses of paroxetine of each trial by this weighted mean ratio, and then combined the paroxetine trials with the fluoxetine trials. Then the overall weighted mean ratio of each drug were recalculated to define the drug’s dosage equivalent to fluoxetine 40 mg/d.

If a certain antidepressant was compared both to fluoxetine and paroxetine in the same trial, in order to avoid double counting in the synthesis of fluoxetine and paroxetine datasets, we divided the number of participants in the comparator drug arm in half.

We conducted the following four sensitivity analyses to examine the robustness of our primary analysis.

1. We conducted a meta-analysis of the ratio of means (RoM) between a target drug and fluoxetine or paroxetine, when there were two or more trials reporting both the mean and SD for their flexible dose arms (Friedrich et al., 2008, 2012). We used the fixed effect model, as we assume that all the comparisons should be measuring the same underlying, true ratio of means. The results were then recalculated to define the drug’s dosage equivalent to fluoxetine 40 mg/d and its 95% confidence interval (CI). We also calculated I-squared to examine heterogeneity of the ratios across trials.

2. We did the same analysis as the primary but by using only the fluoxetine dataset. As we used both fluoxetine and paroxetine combined dataset in our primary analysis and the validity of the method combining the two datasets was not certain, this sensitivity analysis examined how the results might be different when based on the fluoxetine dataset only without additional paroxetine results.

3. Although in the included studies both the standard and comparator drug have been titrated to be optimally effective thanks to the flexible-dose design, it does not necessarily assure that they are equally efficacious. We therefore ran a third sensitivity analysis by adjusting the ratio of the means in the primary analysis by the relative risk (RR) for response for that particular comparison. The mean of these adjusted ratios, weighted by sample size, were then recalculated to define the drug’s dosage equivalent to fluoxetine 40 mg/d.

4. Dose range set for each drug in each study might affect the result of ratio of mean dose in each study. Therefore, we excluded outlying studies in which the comparator dose range did not include the value calculated from our primary analysis. Then we conducted this fourth sensitivity analysis using the same calculation as our primary analysis.

Finally, we followed and adapted the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system (Balsch et al., 2011), and rated the quality of evidence of our findings, i.e., confidence we can place in the equivalence estimates, from the following three points of view in three grades of high, moderate or low. The grading of high was downgraded if there were significant risks of bias in the included studies (study limitations), if 95% CI were wide from a clinical point of view and/or if there were only a few contributing studies (imprecision), or if I-squared in the
ROM meta-analysis was above 50% and/or if results differed substantively in sensitivity analyses (inconsistency).

3. Results

3.1. Included studies

We found 144 flexible dose trials meeting the inclusion criteria. Of these, mean doses could be extracted from 83 studies (14 131 participants), contributing 61 comparisons for fluoxetine and 24 comparisons for paroxetine. One 3-arm study comparing fluoxetine, paroxetine and sertraline was included. We treated this study as three 2-arm (i.e. fluoxetine vs. paroxetine, fluoxetine vs. sertraline, paroxetine vs. sertraline) studies and divided the sample size of sertraline arm in half where appropriate in order to avoid double-counting the same subjects in the evidence synthesis. Of the 167 arms included, dose ranges set for 153 arms (91.6%) were completely within the range defined above for the selection of studies, and those for 14 (8.4%) overlapped with, but either the upper limit was above or the lower limit was below, these ranges (2 for amitriptyline, 7 for imipramine, 1 for mirtazapine, 1 for nortriptyline, 2 for trazodone, and 1 for venlafaxine). We could extract SD of mean dose in 51 studies. Fig. 1 shows the PRISMA flowchart of study selection and Webappendix 1 shows the characteristics of the included studies. We found no study of aminetpine, amisulpride, citalopram, milnacipran, nomifensine, phenelzine, pramipexole, tianeptine, or trimipramine.

3.2. Primary analysis

In the primary analysis, mean dosage of fluoxetine 40 mg/day was equivalent to paroxetine dosage of 34.0 mg/day. Table 1 shows the equivalent dosages of each drug compared to fluoxetine 40 mg/day in the primary analysis combining both the fluoxetine and paroxetine datasets.

3.3. Sensitivity analyses

Table 1 tabulates the results from the four a priori sensitivity analyses. Sensitivity analysis 1 using RoM meta-analysis provide not only equivalent dosages but also their 95%CI along with measure of heterogeneity. Low to moderate heterogeneity was suggested for agomelatine, desipramine, maprotiline, nefazodone, and sertraline.

In sensitivity analysis 3, RR for response of each individual RCT was not significant except for one study and the pooled RR for each drug was not significant except for sertraline (1.11, 95%CI: 1.03 to 1.20, Webappendix 1). The results, adjusted for these significant differences in efficacy, were concordant with the primary analysis results. Overall the results from the four sensitivity analyses were largely concordant with those from the primary analysis. Doxepin was the only drug for which differences greater than 20% in two or more sensitivity analyses were noted (140.1 mg in the primary analysis but 93.2 mg in Sensitivity analysis 1, 181.3 mg in Sensitivity analysis 3 and 196.3 mg in Sensitivity analysis 4).

3.4. Quality of evidence supporting dose equivalency

Quality of evidence supporting dose equivalency for each drug is also shown in Table 1. High quality of evidence supported dose equivalency for agomelatine, amitriptyline, desipramine, imipramine, maprotiline, moclobemide, nefazodone, paroxetine, sertraline and venlafaxine. The supporting evidence was judged moderate for bupropion, clomipramine, dothiepine, doxepin, fluvoxamine, mirtazapine, reboxetine and trazodone.

4. Discussion

This is the first study to examine dose equivalence of antidepressants based on randomized evidence. We carried out a systematic and comprehensive search for all flexible-dose randomized trials comparing either fluoxetine or paroxetine, the two most extensively studied antidepressants in the literature, against another active antidepressant and integrated their results by calculating the mean ratio of the achieved doses, weighted by numbers of included patients, which was then recalculated back to be equivalent to 40 mg/day of fluoxetine. The results of this primary analysis were largely corroborated by four sensitivity analyses, except for doxepin. The quality of supporting evidence was rated as high or moderate for most of the examined antidepressants, except for escitalopram, lofepramine, mianserin and nortriptyline.

There have been a few attempts at finding dose equivalency of antidepressants. In comparison with Ali (1998) proposal, our results tended to find considerably lower dosages to be equivalent to fluoxetine 40 mg/day except for nortriptyline. In comparison with Fava and Davidson (1996) study, mean dose of fluvoxamine, nefazodone, nortriptyline, paroxetine and sertraline were comparatively close to our results, but similar to Ali’s table, other drugs dosages were much higher than our results. It must be pointed out that these authors did not provide sufficient details about how they calculated the equivalency and it appears that their methods were mostly unsystematic and opinion-based.

Our study followed the method originally used for antipsychotics by Davis (1974), who employed data from double-blind flexible-dose randomized trials of chlorpromazine and calculated the mean dose of each antipsychotic drug that was as effective as the standard comparator chlorpromazine 100 mg/day. Davis’s results have been used by guidelines and textbooks for decades. Recently the same method was applied to atypical antipsychotics (Stefan Leucht et al., 2015). As discussed in the Introduction, there are other proposed methods to calculate dose equivalence and no single method may be considered the gold standard in all circumstances (Patel et al., 2013). Given the clinical and methodological importance of defining dose equivalency, further efforts to examine this issue for antidepressants are warranted. The results from our study and from other methods need be taken into consideration together in discussing dose equivalency of antidepressants in the future.

The present study is not without limitations. First, the number of included studies and participants were relatively small for some
Table 1
Dose equivalent to 40 mg fluoxetine.

<table>
<thead>
<tr>
<th>Drug</th>
<th>N. of included studies (N.s.)</th>
<th>N. of participants (N.p.)</th>
<th>Weighted mean dose (flu40 mg)</th>
<th>Ratio of means [95%CI]</th>
<th>Sensitivity analysis 1<sup>a</sup></th>
<th>Sensitivity analysis 2<sup>b</sup></th>
<th>Sensitivity analysis 3<sup>c</sup></th>
<th>Sensitivity analysis 4<sup>d</sup></th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agomelatine</td>
<td>2</td>
<td>1143</td>
<td>53.2</td>
<td>1.33 [1.29, 1.38]</td>
<td>53.2 [51.6, 55.2]</td>
<td>0</td>
<td>2</td>
<td>1143 53.2</td>
<td>2 1143 53.2 high</td>
</tr>
<tr>
<td>Aminetine</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Amisulpride</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Amnitrptyline</td>
<td>8</td>
<td>653</td>
<td>122.3</td>
<td>3.27 [3.06, 3.49]</td>
<td>130.8 [122.4, 139.6]</td>
<td>85 6 356 99.6</td>
<td>6 552 137.0 5 306 106.4 high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bupropion</td>
<td>2</td>
<td>201</td>
<td>348.5</td>
<td>9.10 [8.10, 10.12]</td>
<td>364.0 [327.6, 404.8]</td>
<td>89 1 123 402.1</td>
<td>1 123 346.2 2 201 348.5 moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citalopram</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Clomipramine</td>
<td>2</td>
<td>1073</td>
<td>116.1</td>
<td>1 1019</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Desipramine</td>
<td>2</td>
<td>104</td>
<td>196.3</td>
<td>4.91 [4.29, 5.62]</td>
<td>196.4 [171.6, 224.8]</td>
<td>0 2 104 196.3</td>
<td>1 58 187.4 2 104 196.3 high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dothepin</td>
<td>2</td>
<td>119</td>
<td>154.8</td>
<td>3.30 [3.06, 3.55]</td>
<td>132.0 [122.4, 142]</td>
<td>99 2 119 154.8</td>
<td>1 60 158.0 1 60 231.7 moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxepin</td>
<td>3</td>
<td>166</td>
<td>140.1</td>
<td>2.33 [2.02, 2.68]</td>
<td>93.2 [80.8, 107.2]</td>
<td>98 3 166 140.1</td>
<td>2 115 181.3 2 115 196.3 moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duloxetine</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>1</td>
<td>325</td>
<td>18.0</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>3</td>
<td>280</td>
<td>143.3</td>
<td>3.98 [3.66, 4.33]</td>
<td>159.2 [146.4, 173.2]</td>
<td>96 1 100 119.2</td>
<td>1 120 232.6 2 220 159.6 moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipramine</td>
<td>12</td>
<td>1725</td>
<td>137.2</td>
<td>8.1043</td>
<td>2.99 [2.88, 3.10]</td>
<td>119.6 [115.2, 124.0]</td>
<td>90 7 882 121.5 90 1000 129.1 11 166 139.5 high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lofepramine</td>
<td>1</td>
<td>122</td>
<td>250.2</td>
<td>1 122</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Maprotiline</td>
<td>2</td>
<td>117</td>
<td>118.0</td>
<td>2.87 [2.69, 3.06]</td>
<td>114.8 [107, 122.4]</td>
<td>0 1 46 125.0</td>
<td>1 71 124.0 2 117 118.0 high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mianserin</td>
<td>1</td>
<td>65</td>
<td>101.1</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Milnacipran</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>4</td>
<td>737</td>
<td>50.9</td>
<td>1 197</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Moclobemide</td>
<td>6</td>
<td>679</td>
<td>575.2</td>
<td>5 1320 14.91 [14.16, 15.7]</td>
<td>569.4 [566.4, 628.0]</td>
<td>90 6 679 575.2</td>
<td>6 679 535.6 6 769 575.2 moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nefazodone</td>
<td>6</td>
<td>532</td>
<td>535.2</td>
<td>2 165</td>
<td>13.52 [12.51, 14.61]</td>
<td>540.8 [500.4, 584.4]</td>
<td>0 4 286 561.9 4 445 560.9 5 458 516.5 moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomifensine</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Nortriptyline</td>
<td>1</td>
<td>205</td>
<td>100.9</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>1</td>
<td>581</td>
<td>34.0</td>
<td>3 378</td>
<td>0.77 [0.73, 0.81]</td>
<td>69 4 581 34.0</td>
<td>4 581 33.0 4 581 34.0 low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenergan</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Phamipexole</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Reboxetine</td>
<td>3</td>
<td>941</td>
<td>11.5</td>
<td>1 168</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Sertraline</td>
<td>8</td>
<td>1676</td>
<td>98.5</td>
<td>6 1326 2.53 [2.43, 2.64]</td>
<td>1012 [97.2, 105.6]</td>
<td>39 6 1227 95.5</td>
<td>7 1568 88.6 8 1676 98.5 high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sertindole</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Tianeptine</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Trazodone</td>
<td>3</td>
<td>191</td>
<td>40.1</td>
<td>1 40</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Tramipramine</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a. low</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>9</td>
<td>2084</td>
<td>149.4</td>
<td>5 1927</td>
<td>4.24 [4.12, 4.36]</td>
<td>169.6 [164.8, 174.4]</td>
<td>94 7 2468 150.1 7 2468 141.5 9 2684 149.4 high</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUM 83 1431 51 9000 60 9300 63 12338 70 12391

^a Included all eligible studies.
^b Included studies which reported mean and S.D. Meta-analysis of the ratio of means was conducted.
^c Fluoxetine trials only.
^d As in primary analysis but adjusted by relative risk of response of each study.
^e Excluded outlying studies in which the comparator’s flexible dose range did not include the dosage calculated from the primary analysis.
Role of funding source
None.

Conflict of interest
YH, MP, LRM, NT, AC, and CB have no conflict of interest to declare.

YO reported having received research funds from the Japan Society for the Promotion of Science and speaking fees from Eli Lilly.

SL reported having received honoraria for lectures from Abbvie, AstraZeneca, Bristol-Myers Squibb, ICON, Eli Lilly and Co, Janssen, Johnson & Johnson, Roche, Sanofi-Aventis, Lundbeck, and Pfizer and for consulting or advisory boards from Roche, Eli Lilly and Co, MedAvante, Bristol-Myers Squibb, Alkermes, Janssen, Johnson & Johnson, and Lundbeck, and Eli Lilly and Co has provided medication for a study with him as primary investigator.

TAF reported having received lecture fees from Eli Lilly and Co, Meiji, Mochida, MSD, Pfizer, and Tanabe- Mitsubishi, consultancy fees from Sekisui and Takeda Science Foundation, royalties from Igakushoin, Seiwa-Shorten, and Nihon Bunka Kagaku-sha, and research project funding from the Japanese Ministry of Education, Science, and Technology, the Japanese Ministry of Health, Labor, and Welfare, and the Japan Foundation for Neuroscience and Mental Health, and he is a diplomate of the Academy of Cognitive Therapy.

Acknowledgments
None.

References

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jad.2015.03.021.

Role of funding source
None.

Conflict of interest
YH, MP, LRM, NT, AC, and CB have no conflict of interest to declare.

YO reported having received research funds from the Japan Society for the Promotion of Science and speaking fees from Eli Lilly.

SL reported having received honoraria for lectures from Abbvie, AstraZeneca, Bristol-Myers Squibb, ICON, Eli Lilly and Co, Janssen, Johnson & Johnson, Roche, Sanofi-Aventis, Lundbeck, and Pfizer and for consulting or advisory boards from Roche, Eli Lilly and Co, MedAvante, Bristol-Myers Squibb, Alkermes, Janssen, Johnson & Johnson, and Lundbeck, and Eli Lilly and Co has provided medication for a study with him as primary investigator.

TAF reported having received lecture fees from Eli Lilly and Co, Meiji, Mochida, MSD, Pfizer, and Tanabe- Mitsubishi, consultancy fees from Sekisui and Takeda Science Foundation, royalties from Igakusho Shin, Seiwa-Shorten, and Nihon Bunka Kagaku-sha, and research project funding from the Japanese Ministry of Education, Science, and Technology, the Japanese Ministry of Health, Labor, and Welfare, and the Japan Foundation for Neuroscience and Mental Health, and he is a diplomate of the Academy of Cognitive Therapy.

Acknowledgments
None.

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jad.2015.03.021.