<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>有機薄膜トランジスタの特性制御およびそのチャネル上のナノスケール電荷分布評価に関する研究 [Dissertation_全文]</td>
</tr>
<tr>
<td>作者</td>
<td>山岸 裕史</td>
</tr>
<tr>
<td>出版</td>
<td>京都大学</td>
</tr>
<tr>
<td>発行日</td>
<td>2016-03-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.k19714</td>
</tr>
</tbody>
</table>
| 公開条件 | 許諾条件により本文は []{ }

許諾条件により本文は []{ }

許諾条件により本文は []{ }

許諾条件により本文は []{ }

許諾条件により本文は []{ }
有機薄膜トランジスタの特性制御および
そのチャネル上のナノスケール電荷分布評価に関する研究

山岸 裕史

2016年
目次

第1章 序論 .. 1
 1.1 研究背景 .. 1
 1.2 研究課題 .. 5
 1.3 本論文の構成 7

第2章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要 9
 2.1 有機薄膜トランジスタ 9
 2.1.1 デバイス構造 9
 2.1.2 動作原理及び移動度の評価方法 10
 2.1.3 有機薄膜トランジスタの活性層材料 11
 2.2 原子間力顕微鏡 13
 2.2.1 原子間力顕微鏡の概要 13
 2.2.2 探針-試料間に生じる相互作用力 14
 2.2.3 カンチレバーの力学特性 15
 2.2.4 原子間力顕微鏡の動作モード 19
 2.2.5 JSPM-5200の装置構成 23
 2.3 本章のまとめ 28

第3章 有機薄膜トランジスタのしきい値電圧制御手法の開発 29
 3.1 研究背景と目的 29
 3.2 パッファ層のドーピング条件の検討 31
 3.2.1 試料作製 31
 3.2.2 ドーピングされたパッファ層の表面形状の比較 31
 3.2.3 パッファ層上に成膜した有機薄膜の表面形状の比較 ... 32
 3.3 ドーピングされたパッファ層の導入によるしきい値電圧制御 35
 3.3.1 しきい値電圧制御に適したドーピント種の検討 35
 3.3.2 ドーピント濃度としきい値電圧シフトの関係 37
 3.3.3 デバイス特性の再現性に関する検討 41
 3.4 本章のまとめ 43
第4章 KFM による塗布成膜有機薄膜トランジスタの物性評価 45
 4.1 研究背景と目的 45
 4.2 KFM による表面電位計測 48
 4.2.1 KFM の原理 48
 4.2.2 KFM の装置構成 50
 4.3 塗布成膜分子結晶トランジスタの KFM 評価 51
 4.3.1 デバイス作製 51
 4.3.2 デバイス特性の測定 54
 4.3.3 動作中のデバイスの表面電位測定 55
 4.4 本章のまとめ 62

第5章 KFM 及び EFM を応用した電荷分布評価手法の開発 65
 5.1 研究背景と目的 65
 5.2 ゲート電圧掃引法による有機薄膜トランジスタの評価 66
 5.2.1 手法の概要 66
 5.2.2 デバイス作製 67
 5.2.3 トラップ電荷分布の可視化 68
 5.3 時間分解 KFM 法による有機薄膜トランジスタの評価 76
 5.3.1 手法の概要 76
 5.3.2 デバイス作製 77
 5.3.3 表面電位の時間変化の可視化 78
 5.3.4 シミュレーションによる移動度の見積もり 85
 5.4 時間分解 EFM 法による有機薄膜トランジスタの評価 91
 5.4.1 手法の概要 91
 5.4.2 静電気力の時間変化の可視化 96
 5.5 本章のまとめ 104

第6章 総括と今後の展望 105
 6.1 総括 105
 6.2 今後の展望 107

参考文献 109

謝辞 119

研究業績 121
第1章 序論

1.1 研究背景

エレクトロニクス機器の発展は現代社会に生きる人々の生活を豊かにしてきた。そしてこれまでのエレクトロニクス機器の進化を支えてきたのが、半導体技術の進化である。半導体とその応用製品の変遷を辿ってみると、当初は電卓や時計から始まり、その後コンピュータに応用されるようになって半導体メモリ（dynamic random access memory: DRAM）が大きな市場を形成した。1995年にはMicrosoft社からWindows95が発売されることによりパソコン市場が立ち上がり、それに牽引されて半導体市場も大きく成長した。その後パソコンはCPUの循環的な世代交代により高性能化の一途を辿り、今日ではパソコンは現代人の生活の一部になっていると言っても過言ではない。

さらにこの動きと並行して、2000年前後からはインターネットが目覚ましい発展を遂げた。その結果、現在ではあらゆる情報が世界中で瞬時に共有される情報化社会が形成され、人々の生活が大きく変化した。このインターネットの進化を支えたのは高速通信機器や大容量記録媒体の発達であり、人々の生活スタイルがエレクトロニクス技術の発展と共に変化していることを示す好例と言えよう。また2000年代にはシステムLSIやフラッシュメモリ、CMOSイメージセンサなどの技術を基盤として、DVD機器やデジタルカメラ、携帯電話、携帯音楽プレーヤなどのデジタル家電と呼ばれる製品の市場が立ち上がり、やはり人々の生活に変化をもたらした1。さらに2010年代においては、人間と機械の間をつなぐインターフェース機器がパソコン以外にも多様化してきており、今後は携帯電話機やタブレット端末、医療用センシング機器などのインターフェース機器向けの半導体消費が増加し2、エレクトロニクスは人々の生活をさらに豊かにしていくと考えられている。
有機エレクトロニクスの登場

有機エレクトロニクスとは、有機半導体を中心とする機能性材料を能動的な電子デバイスへと応用することを主眼においた学術分野である。近年、有機エレクトロニクスという言葉が広く普及するに至り、これまでの無機半導体を中心としたエレクトロニクスとは異なる価値を創出する分野としてその発展が期待されている。

有機エレクトロニクスの源流となる有機材料の研究開発の歴史は1950年代まで遡る3)。1950年に初めて有機物が導電性をもつことが報告され4)、その後1965年には有機化合物からの発光がアントラセン単結晶において初めて観測された5,6)。1973年にはテトラチアフルバレン-テトラジノジメタン(TTF-TCNQ)電荷移動錯体が発見されたことで、有機エレクトロニクス分野の研究が大いに活性化した7)。さらに1977年にはπ共役系高分子であるポリアセチレンの導電性が報告された。この業績によりHeeger、McDiarmid、Shirakawaらは2000年にノーベル化学賞を受賞している。その後、1987年にEastman Kodak社のTangらにより実用的な発光効率の有機EL素子が開発され、現在の有機EL研究の引き金となる研究成果が報告された8)。1997年には東北バイオニアによって緑色単色パネルの有機ELディスプレイの生産が開始され9,10)、2000年以降では携帯電話やスマートフォンなどの小型表示素子やフラットパネルTVへの実用化展開が進められている11)。今日の有機エレクトロニクスは、これらの業績の上に立脚していると言っても過言ではない。

表1.1: 有機エレクトロニクスの研究開発の歴史

<table>
<thead>
<tr>
<th>年</th>
<th>報告</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>有機物が導電性を持つことを発見</td>
</tr>
<tr>
<td>1965</td>
<td>有機単結晶からのEL発光を初めて観測</td>
</tr>
<tr>
<td>1973</td>
<td>TTF-TCNQ電荷移動錯体の発見</td>
</tr>
<tr>
<td>1977</td>
<td>π共役系導電性高分子の合成手法の開発</td>
</tr>
<tr>
<td>1987</td>
<td>実用的な発光効率の有機EL素子の開発</td>
</tr>
<tr>
<td>1997</td>
<td>有機ELディスプレイの生産開始</td>
</tr>
</tbody>
</table>
有機半導体デバイス

有機エレクトロニクスの体系内にある代表的な技術分野の中で、特に重要とされる基幹的な有機半導体デバイスには以下のようなものがある12)。

- 電気を光に変換する有機EL素子
- 光を電気に変換する有機薄膜太陽電池
- 電流を増幅する有機薄膜トランジスタ
- 有機材料の分極異方性的制御に基づく有機メモリー素子
- 熱を電気に変換する有機熱電変換素子

これらのデバイスが有する基本的な機能は、無機半導体材料を用いたデバイスによっても実現可能である。それにも関わらず、これらの有機デバイスの研究開発が現在盛んに推進されているのは、有機半導体材料を用いたデバイスでこれらの機能を実現することにより、新しい価値が創出されるからに他ならない。すなわち、次に述べるような有機材料の特長を生かした電子デバイスを実現することで新しい市場・分野が開拓されると考えられるからである。

有機材料の有利性

有機材料が有する特長として、材料が軽量であること、フレキシブルなデバイスを実現可能であること、デバイス作製に溶液プロセスや低温プロセスが利用可能であること、新規材料を合成可能であり多様性に富んでいることが挙げられる。まず、有機エレクトロニクスにおいて用いられる有機化合物はその多くが比重が1以下の材料であり、比重の重い無機材料で構成されるデバイスと比較して、軽量なエレクトロニクス製品が実現できと考えられる。また、有機材料を用いた薄膜では、分子同士がファンデルワールス力によって弱く結合した凝集状態を取っているため柔軟であり、機械的歪みに対する材料の耐性が高い。そのため、例えば屈曲した壁面などの曲面形状に合わせて張り付けることが可能なフレキシブル太陽電池や、ロール状に巻き取り可能なディスプレイ、数μm程度の厚さのプラスチック基板上に作製され、くしゃくしゃにしても動作品可能な極薄の電子デバイスなどが実現可能である13,14)。
第1章 序論

さらに、有機材料は有機溶媒に対する溶解性が高い材料が多く、半導体薄膜を成膜する際にインクジェット法やスプレー法などの溶液プロセスを利用可能である。特に既存の印刷技術を利用することで、微細加工技術に匹敵する完成度のプロセスが実現可能である。また、これらの作製プロセスは室温下で適用可能である。そのため、デバイスの熱処理過程を含めても、多くの場合全てのプロセスを200℃以下の低温プロセスのみで完結できるという利点がある12）。無機半導体ベースのエレクトロニクスでは高真空中で通常500℃以上の高温のプロセスを用いてデバイスが作製されるが、この場合と比較して有機化合物ベースのエレクトロニクスでは、高温プロセスや真空プロセスが必要でないため簡便かつ低コストにデバイスを作製可能である。また近年では、インク化された自動車のボディに塗装により太陽電池を実装する技術など、新しい発想の技術も本格的に研究され始めている15）。

材料が合成可能である点も有機エレクトロニクスの本質的な特長の一つである。無機半導体をベースとするエレクトロニクスでは、材料を構成する原子を基本構造としているのに対し、有機半導体では複数の原子の集合体である分子が最も基本的な構造となる。この基本構造である分子は官能基を付与するなどの操作によってその性質を大きく変えることが可能であり、有機化学の分子設計技術を利用可能である。化学物質は、2015年時点で1億種を超える物質がCAS databaseに登録されており16）、有機エレクトロニクスではこれらの膨大な化学物質のデータベースの中から材料を選択可能である。また有機化学の知見を活かして、分子軌道のエネルギーレベルや溶解性を制御した分子設計を行い、分子に機能性を付与することで特定のアプリケーションに特化した新たな材料の提案がなされている。さらにには分子集合体としての分子の配列まで視野に入れた高次構造設計も行われている。

有機薄膜トランジスタ

有機薄膜トランジスタ（organic thin-film transistor: OTFT）は前述のように有機エレクトロニクス分野における基幹的なデバイスの一つであり、有機半導体薄膜を活性層とするトランジスタであることである。一般的に有機トランジスタという呼称を用いる場合は電界効果型のOTFTのことを指することが多く、有機電界効果トランジスタ（organic field-effect transistor: OFET）と同義で用いられることが多い。有機材料の特長である軽量、低コスト、フレキシブル、プリントタイプという
た特性を生かして、折り曲げ可能な電子回路や印刷プロセスを利用して作製された OTFT に関する研究が数多く報告されている \(^{17,18}\)。

さらに近年では OTFT を電子回路の構成要素としてのみではなく、物理センサーとしての応用を試みる研究も数多く報告されている。これにより OTFT の有機半導体層の電子状態が変化することを利用し、電子状態の変化によって生じる OTFT の出力電流の変化を検出することでこれらのセンシングを行うものである \(^{19-21}\)。さらに有機半導体が特定の化学物質と選択性に化学反応するという性质を生かし、OTFT を化学センサーとして応用した研究報告もなされている \(^{22-24}\)。OTFT を用いたセンサーデバイスと各デバイスの測定対象の一覧を表 1.2 に示す。

表 1.2: センサーとしての OTFT の応用例。

<table>
<thead>
<tr>
<th>センサーの種類</th>
<th>デバイス名</th>
<th>検定対象</th>
</tr>
</thead>
<tbody>
<tr>
<td>物理センサー</td>
<td></td>
<td></td>
</tr>
<tr>
<td>光センサー (^{19})</td>
<td>光</td>
<td></td>
</tr>
<tr>
<td>歪みセンサー (^{20,25,26})</td>
<td>応力</td>
<td></td>
</tr>
<tr>
<td>磁気センサー (^{27})</td>
<td>磁界</td>
<td></td>
</tr>
<tr>
<td>熱センサー (^{21})</td>
<td>熱</td>
<td></td>
</tr>
<tr>
<td>化学センサー</td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿度センサー (^{28,29})</td>
<td>水</td>
<td></td>
</tr>
<tr>
<td>pH センサー (^{30-37})</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>イオンセンサー (^{30,31,38})</td>
<td>カチオン、アニオン</td>
<td></td>
</tr>
<tr>
<td>パイオセンサー</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA センサー (^{39-44})</td>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td>グルコースセンサー (^{24,45,46})</td>
<td>グルコース</td>
<td></td>
</tr>
<tr>
<td>その他のセンサー (^{47-49})</td>
<td>タンパク質、アミノ酸、乳酸</td>
<td></td>
</tr>
</tbody>
</table>

1.2 研究課題

有機エレクトロニクスでは、有機材料の電子デバイスへの応用が長年模索されてきた。先述のように、有機エレクトロニクス分野における研究開発は主に発光デバイスを中心として進展し、その結果有機 EL 素子などの一部のデバイスは市場投入されるに至った。しかしこの一方で OTFT は有機エレクトロニクスの中で重
第1章 序論

要な位置づけを占めるデバイスの一つであるにも関わらず、未だ実用化には至ってない。

これまでOTFTの実用化に向けて最も重要な研究課題は移動度の向上であった。実際1986年にポリチオフェンを活性層とするOTFTの移動度が初めて報告されたとき、移動度は10⁻⁵ cm²/Vsであり、実用化に必要と考えられる移動度よりも非常に小さい値であった50）。しかしその後、高移動度を実現する有機半導体材料の開発やプロセス技術の開発が急速に進展し、2000年代では1-10 cm²/Vsの移動度が報告されようになった。これは移動度という観点では、OTFTが既に実用化されている非晶質Siを活性層とするTFTの移動度である0.5-1 cm²/Vsと同程度以上の水準に到達しつつあることを示している53）。1986年以降の文献でのOTFTの移動度の報告値をまとめた一覧を表1.3に示す。

表1.3: 1986年以降の文献でのOTFTの移動度の報告値。

<table>
<thead>
<tr>
<th>年</th>
<th>移動度 [cm<sup>2</sup>/Vs]</th>
<th>活性層の材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>10<sup>-5</sup></td>
<td>polythiophene<sup>51)</sup></td>
</tr>
<tr>
<td>1988</td>
<td>10<sup>-3</sup></td>
<td>phthalocyanine<sup>54)</sup></td>
</tr>
<tr>
<td>1995</td>
<td>0.038</td>
<td>pentacene<sup>55)</sup></td>
</tr>
<tr>
<td>1998</td>
<td>0.15</td>
<td>dihexyl-anthradithiophene<sup>56)</sup></td>
</tr>
<tr>
<td>2003</td>
<td>0.4</td>
<td>triisopropylsilyl-pentacene<sup>57)</sup></td>
</tr>
<tr>
<td>2006</td>
<td>2.0</td>
<td>dinaphthothienothiophene<sup>58)</sup></td>
</tr>
<tr>
<td>2008</td>
<td>2.9</td>
<td>dioctyl-benzothienobenzothiophene<sup>59)</sup></td>
</tr>
</tbody>
</table>

このように移動度という観点ではOTFTの性能は近年急速に向上した。しかしその一方で、依然としてOTFTの実用化は実現していない。これはOTFTの実用化に向けて以下に述べるような課題が存在していることによると考えられる。まず、素子を回路上に実装して正常に動作させるために必要な複数の要素技術が未だ開発されていないことが第一の課題として挙げられる。例えば複数のOTFTを組み合わせて回路として動作させるために必要な技術である、しきい値電圧などのデバイスパラメータの制御技術は現状では未成熟であり、開発が急務である。そこで本研究では、ポリマー材料を用いたパッファ層によってOTFTのゲート絶縁膜表面を修飾する技術及び分子ドーピング技術に着目し、OTFTのデバイス特性の制御法の開発に取り組む。
OTFTの実用化に向けた第二の課題として、デバイス評価技術の開発の必要性が挙げられる。これまでの先行研究から、有機半導体の分子構造を反映して形成される薄膜の形状や有機半導体/電極界面などの局所構造が、OTFTのデバイス特性を律速する可能性が示唆されているが、現在の研究開発の潮流ではマクロな電気特性による評価が主であり、デバイスの微視的な評価技術は確立されていない。また、デバイスを長時間動作させてバイアスストレスを印加した場合に電気特性が変化していくという問題点が広く認識されているが、このバイアスストレスの評価に関しても多くの場合マクロな電気特性測定によるものであり、原因の微視的描像は未解明のままである。OTFTのチャネル層におけるキャリア輸送を妨げ、デバイス特性の経時劣化が生じている過程の微視的描像が得られれば、問題解決に向けた重要な知見となると考えられる。そこで本研究ではOTFTの局所特性評価を行い、OTFTのデバイス性能を律速している過程やデバイス特性の劣化の原因などを明らかにすることで、OTFTの実用化に向けた課題解決に取り組む。

1.3 本論文の構成

本論文は、以下の内容の全6章から構成されている。

- 第1章では、本研究の背景及び当該分野における現状の課題について説明した。

- 第2章では、OTFTのデバイス構造や動作原理、活性層材料などの基礎的的事項について説明し、さらに本研究でOTFTの評価手法として用いる原子間力顕微鏡の動作原理や装置構成などについて説明する。

- 第3章では、OTFTのデバイス特性の制御法の開発を行った内容について説明する。

- 第4章では、塗布成膜された有機薄膜を活性層として有するOTFTに対して走査プローブ顕微鏡技術を用いて物性評価を行った内容について説明する。

- 第5章では、動作中のOTFTのチャネル部における過渡的な電荷分布の可視化手法の開発を行った内容について説明する。

- 第6章では、本研究の結論を述べ、さらに今後の研究の展開について述べる。
第2章 有機薄膜トランジスタの基礎
と原子間力顕微鏡技術の概要

本章では、OTFT のデバイス構造や動作原理、そして本研究で用いた OTFT の活性層材料について説明する。その後、本研究で OTFT の評価手法として用いる原子間力顕微鏡の動作原理や装置構成などについて説明する。

2.1 有機薄膜トランジスタ

2.1.1 デバイス構造

OTFT は電界効果型のトランジスタであり、ソース・ドレイン・ゲートの 3 つの電極と有機半導体層そしてゲート絶縁膜により構成される。ゲート電圧（V_G）によって有機半導体層のポテンシャルを変化させることで、ソース・ドレイン間に流れるドレイン電流（I_D）のオン・オフを制御している。図 2.1 に、本研究で用いた 2 種類の OTFT のデバイス構造を示す。

図 2.1 の 2 つのデバイス構造は、どちらもゲート及びゲート絶縁膜上に有機半導体が位置する構造になっており、本構造をボトムゲート構造と呼ぶ。ボトムゲート構造のデバイスは、試料構造を簡便に作製できることから有機薄膜や OTFT の研究開発において頻繁に用いられている。特に基板として表面熱酸化膜付きのヘビードープ Si 基板を用いることで、低抵抗の Si をゲート電極、その表面熱酸化膜である SiO_2 をゲート絶縁膜として利用することができるため、ゲート電極をバターニングする必要がない場合は、ヘビードープ Si 基板を用いたボトムゲート型の素子構造が採用されることが多い。

一方でソースとドレインは、図 2.1(a) のトップコンタクト型構造では有機半導体層上に、図 2.1(b) のボトムコンタクト型構造ではゲート絶縁膜直上にそれぞれパタンニングされており、各種構造では電極間を流れる I_D の経路が異なる。トップコンタクト型ではソースから注入されたキャリアが一度有機半導体層を横切って膜厚
第2章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要

図2.1: 有機薄膜トランジスタの素子構造. (a) トップコンタクト−ボトムゲート構造. (b) ボトムコンタクト−ボトムゲート構造.

方向に移動した後、有機半導体/ゲート絶縁膜界面のチャネル部をドリフトし、再度有機半導体層を横切ってドレインに移動する。そのためI_Dが流れる経路はソース・ドレイン間においてジグザグ状となる。そのため、トップコンタクト−ボトムゲート構造はスターゲ構造と呼ばれる場合もある。一方ボトムコンタクト型構造では、ソースから注入されたキャリアはそのまま有機半導体/ゲート絶縁膜界面のチャネル部をドリフトし、ドレインへと移動する。この時、I_Dは同一平面上を直線的に流れることから、本構造をコブレーナー構造と呼ぶ場合もある。

2.1.2 動作原理及び移動度の評価方法

OTFTの動作原理は、チャネル層が有機半導体であることを除いては無機トランジスタと同等と理解されており、無機トランジスタの解析に用いられる式を用いて移動度などのパラメータの評価が行われている。すなわち、ゲート/ゲート絶縁膜/半導体のMOS構造のキャパシタにソースからキャリアを注入し、半導体層に蓄積されたキャリアをドレインから排出すると理解されている。ここではまずこのモデルに基づいた式を用いて、デバイスの移動度を評価する手法について説明する。

まず、デバイスが線形領域で動作している場合にソース・ドレイン間を流れるI_Dは、ドレイン電圧をV_Dとすると次式で表される。

$$I_D = \frac{\mu_{lin} W C_i}{L} V_D (V_{TH} - V_G)$$ \hspace{1cm} (2.1)

ここでμ_{lin}は線形領域における移動度、Wはチャネル幅、Lはチャネル長、V_{TH}はしきい値電圧、C_iはゲート絶縁膜の静電容量である。式(2.1)に現れるパラメータのうちμ_{lin}以外のパラメータは既知であるため、線形領域で得られたI_D−V_D特性を本式で線形フィッティングすることでμ_{lin}を求めることができる。
一方、デバイスが飽和領域で動作している場合の I_D は以下の式で表される。

$$I_D = \frac{\mu_{\text{sat}} W C_i}{2L} (V_G - V_{\text{TH}})^2$$ \hspace{1cm} (2.2)

ただし μ_{sat} は飽和領域における移動度である。ここで式 (2.2) の両辺の平方根をとることで得られる $|I_D|^{1/2} - V_G$ 特性をプロットすると、$|I_D|^{1/2}$ は V_G に対して直線的に変化する。そこで、測定で得られた飽和特性から $|I_D|^{1/2} - V_G$ プロットを求めて線形フィッティングを行うことで、得られた直線の傾きから飽和領域における移動度 μ_{sat} を求めることができる。

これらの表式を用いた解析から求まる OTFT の移動度は、有機材料におけるキャリア伝導機構を推測するための目安となると考えられるが、その温度依存性などの解釈は複雑である。実際、有機半導体におけるキャリア伝導は薄膜状態や材料によって大きく変化し、また試料の作製条件等の外因的要因によって測定される移動度が異なることも多いため、異なる構成材料や条件下で作製されたデバイスにおけるキャリア伝導機構を統一的な描像でモデル化することは困難である。しかし室温付近での低分子有機半導体におけるキャリア伝導に限って言えば、ポーラロン伝導モデルのようなバンド伝導的な描像と、ホッピング伝導モデルの中間的な状態をとると考えられている 60)。

2.1.3 有機薄膜トランジスタの活性層材料

ペンタセン

ペンタセンは図 2.2(a) に示すようなアセン系の分子であり、OTFT の研究開発において最も頻繁に用いられる材料の一つである。ペンタセンのような拡張π型電子系を有する摂合環状の化合物は、分子間におけるπ電子同士の相互作用が強いことから、優れたキャリア輸送特性を有する場合が多い 12)。多結晶薄膜を活性層とするペンタセン-OTFT の典型的な移動度としては 0.01–0.1 cm²/Vs の報告値が多い 61)、単結晶を活性層としたデバイスにおいてはバンド伝導的なキャリア輸送機構を示唆する 35 cm²/Vs に達する移動度が報告されている 62, 63)。一方でペンタセンは、分子の HOMO (highest occupied molecular orbital) 準位が –4.85 eV と比較的浅く、大気中で分子が酸化されやすいため 63)、ペンタセンを活性層に用いた OTFT の電気特性は経時変化しやすいという問題点を有している。
第2章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要

図2.2: 有機薄膜トランジスタ材料の化学構造. (a) ペンタセン. (b) C₈-BTBT. (c) DNTT. (d) F₁₆CuPc. (e) NTCDA.

C₈-BTBT

2,7-dioctyl[1]benzothieno[3,2-b]thiophene (C₈-BTBT) は図2.2(b) に示すような四環型のヘテロアレーン系分子であり、ペンタセンと同様に拡張π電子系を有する総合環型化合物である。側鎖としてアルキル基が導入されているため有機溶媒に対する可溶性が高く、溶波プロセスによるOTFT作製技術の研究開発において多用されている材料の一つである。インクジェット法で作製された単結晶薄膜を活性層とするOTFTにおいて31 cm²/Vsの移動度が報告されている。また分子のHOMO位が−5.39 eVと深く分子が酸化されにくいため、ペンタセンを活性層とするOTFTと比較してデバイス特性の経時変化が小さく安定であるとされている。

DNTT

dinaphthio[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) は図2.2(c) に示す六環型のヘテロアレーン系分子である。分子のHOMO位が−5.44 eVと深く、分子が酸化されにくいため、DNTTを活性層として用いたOTFTは経時変化の小さい安定したデバイス特性を示す。また結晶構造解析から、DNTTはペンタセンと同様にヘリボーン構造を形成し、二次元的なπ電子共役系を有することが分かっている。DNTT-OTFTの移動度として、8 cm²/Vsの値がこれまでに報告されている。
F_{16}\text{CuPc}

copperhexadecafluorophthalocyanine (F_{16}\text{CuPc}) は図 2.2(d) に示すような分子であり、有機エレクトロニクスにおいて古くから用いられている有機半導体材料である。F_{16}\text{CuPc} を活性層とする OTFT を n 型動作させた場合に 0.08 cm²/Vs の移動度が報告されており 70)、電子輸送材料としては比較的高い移動度を示すことが知られている。そのため、本研究においても n チャネル OTFT を作製する際に F_{16}\text{CuPc} を OTFT の活性層材料として用いた。

NTCDA

1,4,5,8-naphthalenetetracarboxylicdianhydride (NTCDA) は図 2.2(e) に示すような構造を有する分子であり、電子輸送性の有機半導体材料として知られている 71)。本研究においても OTFT を n 型動作させる場合に、NTCDA を OTFT の活性層材料として用いた。

2.2 原子間力顕微鏡

2.2.1 原子間力顕微鏡の概要

原子間力顕微鏡 (atomic force microscopy: AFM) は走査プローブ顕微鏡 (scanning probe microscopy: SPM) 技術の一つであり、1986年にBinnig、Quate、Gerberらによって開発された 72)。AFM は試料表面の構造や物性情報をナノスケールで評価することが可能な測定手法であり、開発されて以降、試料表面の原子・分子スケール構造観察をはじめ、表面分析・物性評価における有力な手法として広く研究開発に用いられている。ここではまずその測定原理を説明する。図 2.3 に AFM 測定の概略図を示す。AFM では空間上の x, y, z の 3 方向に位置制御可能なスキャナ上に試料を固定し、その試料上に先端の尖った探針を数 nm 程度の距離まで接近させる。この時、探針に生じる変位や振動状態の変化を検出することで、探針-試料間働く相互作用力を検出している。測定モードが表面形状測定モードの場合には、z 方向のスキャナの変位のフィードバック制御をオンにして探針-試料間相互作用力を一定に保った状態で xy 平面上の走査を行い、平面の各点上における z 方向のスキャナの変位を記録することで表面形状を可視化する。一方、測定モードが高さ一定モードの場合では、z 方向の変位制御をオフにした状態で xy 平面上
の走査を行い、各点上での探針のたわみ量を記録することで表面形状に対応した像を得る。

2.2.2 探針–試料間に生じる相互作用力

AFM では探針–試料間に働く相互作用力を検出することで測定を行う。ここでは大気中及び真空中での測定において、探針–試料間に働く主な相互作用力について説明する。

共有結合力と交換斥力

共有結合力は、2 つの原子間の波動関数の重なり領域において原子の波動関数のうち半占軌道同士が相互作用して電子が非局在化することで生じる引力である73。一方交換斥力は、原子の波動関数のうち占有軌道同士が相互作用して電子が交換されることで生じる斥力である。共有結合力及び交換斥力の性質を記述するポテンシャルとして、以下のモース・ポテンシャル (Morse potential) が用いられる74。

\[V_{\text{Morse}}(z) = U_0 \left[\exp\left(-\frac{2(z-z_0)}{\lambda} \right) - 2 \exp\left(-\frac{(z-z_0)}{\lambda} \right) \right] \tag{2.3} \]

\(U_0 \) は結合エネルギー、\(z_0 \) は結合距離、\(\lambda \) は減衰長である。式 (2.3) から分かるように、モース・ポテンシャルは原子間の距離に対して指数関数的に変化する性質を持つ。さらにこのモース・ポテンシャルの距離微分により表される共有結合力及び交換斥力も距離変化に対して指数関数的に非常に敏感に変化する。そのため、
2.2.3 カンチレバーの力学特性

AFMでは、カンチレバーと呼ばれる片持ち梁構造の力センサーが相互作用力の検出に広く用いられている。カンチレバーの先端には先端曲率半径が数十nm程度
度の鋸型のチップが形成されており、表面形状測定ではその先端近傍の原子と試料間に働く相互作用力が用いられる。カンチレバーの力学特性を表す重要なパラメータとして、ばね定数k、共振周波数f_0、そして機械共振のQ値（Q-factor）が挙げられる。このうち、ばね定数と共振周波数はカンチレバーの構造と材質によって決まる。ビームの長さがL、幅がw、厚さがtのカンチレバーのばね定数kは以下の式で与えられる

$$k = \frac{E_Ywt^3}{4L^3}$$

（2.6）

ここでE_Yはカンチレバーを構成する材料のヤング率である。ただし実際にはkはカンチレバーごとに僅かにばらつきがあるため、精密な測定が要求される場合にはばね定数の校正を行う必要がある。一方、探針の一次の共振周波数f_0は材料の質量密度がρである時、以下の式で表される。

$$f_0 = 0.162 \frac{t}{L^2} \sqrt{\frac{E_Y}{\rho}}$$

（2.7）

一方、カンチレバーの共振のQ値は探針からのエネルギー散逸機構に依存し、測定環境によって変化する。典型的なカンチレバーでは大気中でのQ値は通常数百程度であるが、エネルギー散逸の小さい真空環境下ではQ値は通常数千から数万程度まで増加する。一方、エネルギー散逸の大きい液中環境下ではQ値は数十程度以下まで低下する。

カンチレバーの振動特性

一部のAFMの動作モードにおいては、カンチレバーを外力によって励振して振動させた状態で試料表面に接近させ、その振動の変化を測定することで相互作用力の検出を行う。AFMの動作モードの詳細については後述するが、ここでは外力によって振動しているカンチレバーに対して相互作用力が働いた場合の探針振動の変化について記述する。

まず、探針-試料間に相互作用力が働いていない状態では、ω_dの角周波数で励振されている探針の変位zの運動方程式は以下の式で表される

$$m\ddot{z} + \frac{m\omega_0^2}{Q}z + m\omega_0^2z = F_0\cos(\omega_d t)$$

（2.8）

ここでmはカンチレバーの有効質量、ω_0は共振角周波数である。ここでカンチ
2.2 原子間力顕微鏡

図 2.4: カンチレバーの共振特性. Q 値が 300 の時の (a) 振幅及び (b) 位相の周波数特性.

レバーが定常状態で振動しているとすると、変位 z は以下の式で表される。

$$z = A_0 \cos(\omega_0 t + \vartheta_0)$$ (2.9)

ここで A_0 は振動振幅、ϑ_0 は外力とカンチレバーの振動の位相差であり、これらはそれぞれ以下の様に表される。

$$A_0 = \frac{F_0/m}{\sqrt{(\omega_0^2 - \omega_d^2)^2 + (\omega_0 \omega_d/Q)^2}} = \frac{\omega_0^2 A_0}{\sqrt{(\omega_0^2 - \omega_d^2)^2 + (\omega_0 \omega_d/Q)^2}}$$ (2.10)

$$\vartheta = \tan^{-1}\left(\frac{\omega_0 \omega_d}{Q (\omega_0^2 - \omega_d^2)}\right)$$ (2.11)

ただし式変形の途中で $F_0 = kA_0$ 及び $\omega_0 = \sqrt{k/m}$ の関係を用いた。これらの式で Q を 300 とした場合に得られる振幅と位相の共振周波数近傍での周波数特性を図 2.4 に示す。カンチレバーが共振周波数で励振されている場合には、励振信号の位相に対して探針振動の位相が 90° 遅れることが分る.

次に、探針−試料間に相互作用が働いている状態での振動特性の変化を考える。まず一次元調和振動子の強制振動系のモデルにおいては、カンチレバーの共振角周波数はその有効質量を m とすると前述のように $\omega_0 = \sqrt{k/m}$ と表される。一方、探針−試料間に相互作用力 F が働いているときの実効的なカンチレバーのばね定数 k_{eff} は $k_{\text{eff}} = k - \partial F/\partial z$ と表される。これより、探針−試料間に相互作用力 F が働
第2章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要

いている状態でのカンチレバーの共振角周波数 ω' は次式で表される。\(^{78}\)

$$\omega' = \sqrt{\frac{k - \frac{\partial F}{\partial z}}{m}}$$ \(2.12\)

さらに, $k \gg \partial F/\partial z$ を仮定すると, $\partial F/\partial z$ によって生じる共振周波数シフト Δf は下式のように求まる。

$$\Delta f = \frac{\omega' - \omega_0}{2\pi} = f_0 \sqrt{1 - \frac{1}{2\pi k} \frac{\partial F}{\partial z}} - f_0 \sim -\frac{1}{2k} \frac{\partial F}{\partial z} f_0$$ \(2.13\)

この式から, 探針試料間相互作用が働いている上のカンチレバーには力勾配 $\partial F/\partial z$ に比例した共振周波数シフトが生じることが分かる。

カンチレバーの共振モード

AFM をダイナミックモード (dynamic mode) と呼ばれるモードで動作させる場合, 探針を一定振幅で励振した状態で測定を行う。この時, 通常は最も共振周波数の小さい一次の共振周波数 f_0 近傍で探針を励振する場合が多い。しかし探針の高次の固有振動モードなど, 他の振動モードを利用することも試みられている。図2.5と表2.1に, オリンバス製のカンチレバーである OMCL-AC240 の固有振動を有限要素法によってシミュレーションした結果を示す。有限要素法シミュレーションには COMSOL Multiphysics を用いた。まず図2.5 (a)−(c) のように, 64.61 kHz, 394.1 kHz, 1.077 MHz にそれぞれ一次, 二次, 三次の共振モードがそれぞれ存在する。これまでにこれらの複数の振動モードを利用して測定を行う手法が考案されており, 例えば一次と二次の両方の共振周波数で探針を励振しながら走査を行うバイモーダル AFM (bimodal AFM) と呼ばれる手法 \(^{79−81}\) や, 一次共振で探針を励振して探針−試料間距離制御を行いながら静電気力を二次共振を利用してAM 検出する方法などが提案されている \(^{82}\)。また上記の固有振動はカンチレバーチップが上下に運動するフレクシュアルモード (flexural mode) と呼ばれるモードであったが, これら以外にも図2.5 (d) のようにカンチレバーがねじれ方向に変位する振動に対応するトーショナルモード (torsional mode) と呼ばれるモードも存在する。これまでに, 高次のトーショナルモードの信号を測定することで, 材料のヤング率などの機械的物性を可視化する Torsional harmonic AFM などの手法が開発されている \(^{79,83}\)。
2.2 原子間力顕微鏡

図 2.5: カンチレバー（OMCL-AC240 シリーズ, Olympus）の固有振動のシミュレーション結果の比較. 向かって右上のベース端を固定した条件での結果を表示.

表 2.1: カンチレバーの固有振動の比較

<table>
<thead>
<tr>
<th>Eigen frequency</th>
<th>Vibration mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 64.61 kHz</td>
<td>1st flexural</td>
</tr>
<tr>
<td>(b) 394.1 kHz</td>
<td>2nd flexural</td>
</tr>
<tr>
<td>(c) 1.077 MHz</td>
<td>3rd flexural</td>
</tr>
<tr>
<td>(d) 753.4 kHz</td>
<td>1st torsional</td>
</tr>
</tbody>
</table>

2.2.4 原子間力顕微鏡の動作モード

AFM の動作モードは既に多くの手法が提案されておりその分類・定義の方法は様々であるが、ここでは以下の三つの動作モードに分類することにする 84).

- 探針を励振しない状態で試料表面に接触させ、探針の変位を測定するコンタクトモード（contact mode）
- 探針を励振した状態で試料表面に間欠的に接触させ、探針の振幅変化を測定するタッピングモード（tapping mode）
- 探針を励振した状態で試料表面に接触させずに、探針の振動周波数変化を測定するノンコンタクトモード（noncontact mode）

以下ではそれぞれの AFM の動作モードの特徴について説明する。

コンタクトモード

コンタクトモードでは、探針を励振しない状態で探針の変位の測定を行う。探針と試料を接触させた状態で探針-試料間に働く相互作用力を F_{ts} すると、探針の変位は $s = F_{ts} / k$ と表される。この式から、探針の変位を高感度で検出するため
第2章 有機薄膜トランスジスタの基礎と原子間力顕微鏡技術の概要

kの小さい探針を用いることが有効であることが分かる。そのため、コンタクトモードにおいてはばね定数が0.01-5 N/m程度の比較的柔らかい探針が測定に用いられる76。一方、コンタクトモードでは探針-試料間に強い斥力が働いている状態で測定を行うため、測定中に探針先端や試料が損傷する可能性が高い。そのため、近年ではAFMの動作モードとしては後述するタッピングモードやノンコンタクトモードが用いられることが多い。

タッピングモード

タッピングモードでは、探針をある共振周波数近傍で強制励振した状態で試料に間欠的に接触させて測定を行う。タッピングモードでは探針と試料が接触する時間は振動サイクルの中のどこに限られるため、走査中に探針先端や試料が損傷する可能性が大幅に低減されている。探針は表面から十分離れた状態では、外部からのエネルギー供給によって一定振幅で振動する。探針が表面に接近すると、探針が試料と間欠的に接触して振動振幅は減少する。この時、振動振幅の減衰量の実効値を測定することで力測定及び試料表面の走査を行っている。この振動振幅の変化を検出する方式を振幅変調（amplitude modulation: AM）検出方式と呼ぶ。

ここで探針振動の振幅変化の検出値の限界について言及しておく。探針-試料間に相互作用力Fが働いている時の探針の振動振幅A及び共振周波数ω0の変化は、式(2.12)からも分かるように∂F/∂zの変化によって生じる。この∂F/∂zの理論的な最小検出感度はカンチレバーの熱振動ノイズによって決まり、次式で表される。

\[
\left(\frac{\partial F}{\partial z} \right)_{\text{min}} = \sqrt{\frac{2kk_BT}{\pi\omega_0Q(A)^2}}
\]

ここでkBはボルツマン定数、Tは絶対温度、Bは測定の帯域幅、<A>は振動振幅の二乗平均値である。この式から、振幅変化の検出感度を高感度化するためにQ値を大きくするのが有効であることが分かる。

探針が強制励振されている状態では、∂F/∂zの変化に対する振動振幅は瞬時に変化せず、Q値に依存した時定数で特徴づけられる時間スケールで緩和的に応答する。振動振幅の変化の時定数はτAM ≈ 2Q/f0で与えられ、Q値が大きいほど緩和時間は長くなる76。そのため、Q値が高い真空環境下においては、AM検出法を用いるタッピングモードでは探針-試料間の距離制御の応答性が悪化するため、一
2.2 原子間力顕微鏡

一般的には測定は困難である\(^1\)。一方でタッピングモードは比較的簡便なセットアップで測定可能であり、また探針が試料に対して及ぼす力がコンタクトモードの場合と比較して非常に小さく走査中に試料を損傷しにくいという特長を有しているため、Q 値が真空中と比較して小さい大気中での試料表面形状の測定においては頻用されている。本研究においても、真空中で測定する必要がない、また試料の表面形状像のみが必要な場合には適宜タッピングモードを用いて試料の表面形状観察を行った。

ノンコンタクトモード

ノンコンタクトモードは広義では探針と試料が接触しない測定法全般を指し、その方式は多岐に渡るが\(^2\)、ここでは本研究で主に用いた周波数変調（frequency modulation: FM）方式で動作する AFM（FM-AFM）について説明する。

FM-AFM は探針振動の Q 値が非常に大きい真空環境下において高感度な測定を行うことを目的として Albrecht らによって開発された\(^7\)。FM-AFM の最も顕著な特徴は、探針を共振周波数で自励発振させた状態で測定を行う点である。自励発振では探針に作用する力によって生じる共振周波数の変化を追跡するように自励発振回路によるフィードバックがかかった状態で動作し、この状態での探針の共振周波数変化の時定数は $T_{FM} \approx 1/f_0$ で与えられる。つまり AM 検出法を用いる場合とは異なり、力勾配の変化に対する応答時間が Q 値によって律速されないため、真空中などの高 Q 値環境下においても力変化に対する探針の応答性が高く、安定に走査を行うことが出来る。

FM 検出法を用いた場合の応答性の向上は、共振周波数の変化によって生じるカントレーバーの運動エネルギーの変化という観点から以下のように説明できる。まずカントレーバーの振動状態が異なる振動状態へと変化する際に緩和時間が発生するのは、カントレーバーからの運動エネルギーの散逸（流入）に一定時間を要するためである。もし振動状態の変化に伴うエネルギー変化の絶対値が小さければ緩和時間は短くなり、カントレーバーの振動の外力変化に対する応答性は向上する。ここで、カントレーバーが自由振動の状態から探針-試料間相互作用が働いている状態へと変化する際の運動エネルギーの変化について考える。まず AM 検出法では、探針と試料が接近した状態での振動振幅の設定値を自由振動での振幅の 90% とすることが多い。この時、自由振動の状態と接近時の状態間の探針振動のエネルギー

\(^1\)Q 値制御法と呼ばれる手法を用いて実効的な Q 値を増加もしくは減少させることで、タッピングモードでの走査が通常困難な真空中や液中環境下で測定を行うことが可能である。\(^5\),\(^6\)
第2章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要

エネルギー差 ΔE_{AM} は以下のように表される。

$$\Delta E_{AM} = E_{ini} - E_{ts} = \frac{1}{2} m \omega_0^2 A^2 - \frac{1}{2} m \omega_0^2 (0.9A)^2 = 0.19E_{ini} \quad (2.15)$$

一方で FM 検出法において、探針の共振周波数が ω_0 から ω'_0 に変化した時の探針振動のエネルギー差 ΔE_{FM} は以下のように表される。

$$\Delta E_{FM} = E_{ini} - E_{ts} = \frac{1}{2} m \omega_0^2 A^2 - \frac{1}{2} m \omega_0^2 A^2 = \frac{1}{2} m \omega_0^2 A^2 \left(1 - \frac{\omega'_0}{\omega_0} \right) \sim E_{ini} \frac{2\Delta \omega}{\omega_0} \quad (2.16)$$

FM 検出法においては共振周波数シフトの設定値は $2\Delta \omega / \omega_0 = 10^{-4}$ 程度であることが多い。この場合には FM 検出法では AM 検出法の場合と比較して、振動状態が変化した時のエネルギー差が 1/1000 程度と非常に小さくなることから、力勾配変化に対する応答の時定数が向上することが理解できる。

図 2.6 に FM-AFM による測定の概略図を示す。本研究ではカンチレバーの変位測定法として光を用いている。光を用い、カンチレバーの背面から反射したビーム光を利用してカンチレバーの変位を検出する方法である。本研究では光源としてレーザーダイオードを用い、反射光を検出するためにセグメント式のフォトダイオードを用いた。フォトダイオードから出力された光電流は後段の変位検出回路によってカンチレバーの変位に比例した電圧信号に変換される。変位検出回路から出力された信号は探針を共振周波数で振動させるための自励発振ループと探針—試料間距離制御用のループにそれぞれ出力される。このうち自励発振ループに出力された信号は、カンチレバーを含むループ内での位相の和が $2n\pi$ なるように位相を調整する位相シフト及びカンチレバーの振幅を一定に保つための利得制御回路を経てカンチレバーの励振信号として出力される。一方、探針—試料間距離制御用のループに出力された信号は、周波数調回路によって入力信号の周波数に比例した直流信号に変換され、探針—試料間距離制御回路へと出力される。なお本研究では周波数変調回路としてフェーズロックスループ（phase locked loop: PLL）を用いた。探針—試料間距離制御回路では、入力された信号が予め設定された目標値と等しくなるように試料スキャナの z 方向の位置をフィードバック制御することで、探針—試料間距離を一定に保っている。なお FM-AFM 測定を行う場合の探針の励振方法として、先述の自励発振以外に PLL の内部情報を励振信号として利用する方法（PLL 励振）がある。この手法を用いる利点としては、励振ループ内に狭帯域の PLL の伝達関数（バンドパスフィルタと等価）が組み込まれるため、励振する帯域以外の周波数帯への励振信号のジャンプなどが自励発振の場合
図 2.6: FM-AFM による測定の概略図。

と比べて生じにくいことが挙げられる。そのため、カンチレバーを高次共振で励振する場合などには PLL 励振は自励発振と比較して安定に走査が可能である。また、探針のクラッシュなどの理由で不意に探針-試料間距離制御が不安定になりカンチレバーの振動が停止しかかっている状況においても、PLL 励振の場合では内部回路から励振信号が出力されるため、探針振動が停止しにくいという利点もある。

2.2.5 JSPM-5200 の装置構成

ここでは本研究で用い AFM である JSPM-5200 の変位検出系の構成について説明する。また研究を進めるとあたってカンチレバーの変位検出系の帯域をやるための改良を行った部位について説明する。

変位検出系の構成

図 2.7 に、本研究で用い JSPM-5200 の光で変位検出系の構成を示す。まず光源出、JSPM-5200 のレーザーでデバイス出力された直流電流に電圧制御発振器から発生された高周波成分を加算してレーザーダイオードを駆動している。これは光源で生じるモードホップ雑音及び波光雑音を低減するためである。モードホップ雑音は、レーザーダイオード内に存在する多数の発振モードのモード間競合により発生する。一方、波光雑音はレーザーダイオードの出力光が反射・
第2章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要

図2.7: JSPM-5200の光でこ変位検出系の構成。

散乱されて共振器内に戻り、モード間競合を引き起こすことにより発生する。これらエネルギを低減するためには、レーザーダイオード光を高周波変調駆動させて素子を実効的に安定なマルチモード発振状態に保つのが有効である"。そこで本研究では、電圧制御発振器POS-400（Mini-Circuits）で発生させた高周波信号をバイアス電圧PBTC-1GW（Mini-Circuits）を用いてレーザードライバの出力に重畳することで、レーザーダイオードHL6312Gを高周波変調駆動した。レーザーダイオードから出射されたレーザー光は、コリメートレンズと対物レンズがセットになったレンズペアC230260P-B（Thorlabs）とキューブ型偏光ビームスプリッターPBS101（Thorlabs）を経てカンチレバーの背面へと照射され、その反射光はミラーで反射された後、4分割Si PINフォトダイオードMI-33H-4D（Moririca）で検出した。

変位検出回路の応答特性

近年では高速AFMなどでの使用を想定した共振周波数が1MHz以上の高共振周波数カンチレバーが入手可能になっている。ダイナミックモードでAFMを動作させる場合、カンチレバーの共振周波数が高いカンチレバーを用いることで、探針応答の高速化及び高感度化が期待できる。また高分解能観察や表面粘弾性などの物性パラメータを測定するために、高次のフレクシュアルモードやトーションモードを利用して測定を行った例も報告されている。一方で、これら

2例えばNanoworld社からの共振周波数の公称値が5MHzのUSC-F5-k30という極小のカンチレバーが市販されている。
2.2 原子間力顕微鏡

図 2.8: 変位検出系の電子回路の構成。

の高共振周波数カンチレバーや高周波数の振動モードを利用した測定を行うためには、装置の変位検出系の帯域が、利用する周波数よりも十分に高い必要がある。しかし元々 JSPM-5200 の変位検出回路の帯域は 1.5 MHz 程度しかなく、その帯域幅は十分とは言えない状況であったため、広帯域化のための改良を行った。

図 2.8 に改良後の変位検出系の電子回路の構成を示す。回路は、前段のフォトディテクタの出力電流の増幅回路（電流-電圧変換回路）と、後段の加算器・差動増幅回路部の 2 段で構成されている。このうち前段の電流-電圧変換回路は JSPM-5200 の AFM ヘッド内に、後段の加算器・差動増幅回路は NIM（nuclear instrumentation module）内に、それぞれ格納されている。

ここでまず前段の電流-電圧変換回路の帯域について考える。電流-電圧変換回路の -3 dB の帯域幅 B_{IV} は以下の式で表される。

$$B_{IV} = \sqrt{\frac{GBP}{2\pi R_F C_S}} \tag{2.17}$$

GBP はオペアンプの利得帯域幅、R_F はフィードバック抵抗、C_S は回路の入力容量である。この式から、B_{IV} を大きくするためには C_S を小さくすればよいことが分かる。さらに、C_S は以下のように入力側の容量成分の総和で表され、

$$C_S = C_{PD} + C_{CM} + C_{DIF} + C_{WIRE} \tag{2.18}$$
図2.9: 差動増幅部の改良前後での変位検出系の利得の周波数特性の比較。

となる。ここで\(C_{PD}\)はフォトダイオードの容量、\(C_{CM}\)はオペアンプのコンモードの入力容量、\(C_{DIF}\)オペアンプの差分モードの入力容量、\(C_{WIRE}\)は回路の寄生容量である。\(C_{CM}\)と\(C_{DIF}\)は用いるオペアンプの特性で決まる。\(C_{WIRE}\)は配線や回路のレイアウトを最適化することで小さくすることが可能である。\(C_{PD}\)はフォトダイオードのp-n接合の容量であり、接合に対して逆バイアスを外部から印加することで\(C_{PD}\)を小さくすることが可能である。そのため、改良前の電流-電圧変換回路では、フォトダイオードはカソード端子を接地した状態で用いる光電池モード（photovoltaic mode）で動作されているが、回路の広帯域化的観点ではカソード端子に逆バイアスを印加した状態で用いる光導電モード（photoconductive mode）で用いる方が望ましい。また逆バイアスの印加によって接合容量を低減するだけでなく、接合の空乏層内のキャリアの走行時間を短くして応答を高速化する効果が期待出来る。そこで図2.8のように、フォトダイオードのカソードに+2.5Vの逆バイアスを印加する配線へと変更した。+2.5Vのバイアスは、電流-電圧変換回路のオペアンプのOPA4354が±2.5Vで駆動されているため、その電源電圧を利用して供給した。また電流-電圧変換回路の周波数特性における高周波数側のカットオフ帯域付近でのゲインピーキングを抑制するために、2 pFのコンデンサを電流-電圧変換回路のフィードバック抵抗と並列に追加した。

次に後段の加算器・差動増幅回路部について述べる。改良前の状態では、\(A - B\)信号を出力する差動増幅部の計装アンプとしてINA111が用いられていた。しかし
2.2 原子間力顕微鏡

図 2.10: 無励振状態のカンチレバーの共振周波数近傍における熱振動変位の測定結果（実線）、点線が理論曲線。

し INA111 は高周波における利得の周波数特性が十分ではなく、この差動増幅部によって変位検出系全体の帯域が 1.5 MHz 程度に制限されていた。そこでこの差動増幅部に用いる計装アンプを、より広帯域な計装アンプである AD8421 へと変更した。AD8421 をゲインが 10 の差動増幅回路として用いた場合、約 10 MHz までの高周波信号を増幅することが出来るため、INA111 を用いた場合と比較して高周波の帯域を広げることが出来る。また、同相信号除去比（common-mode rejection ratio: CMRR）の改善や入力ノイズレベルの低減などの効果も期待できる。

図 2.9 に、カンチレバーの熱雑音による変位を差動増幅部の改良前と改良後の回路で増幅し、その出力をスペクトルアナライザで測定した結果の比較を示す。信号は回路の帯域以上の周波数領域では増幅されずに減衰するため、この減衰を測定することにより変位検出系の帯域を測定することが出来る。測定結果では、改良後の変位検出系では 7 MHz 程度まで平坦な利得の周波数特性が得られており、高周波領域における帯域幅が改善されていることが確認できる。

さらに図 2.10 に、無励振状態でのカンチレバーの共振周波数近傍における熱雑音変位を測定した結果を示す。測定結果と理論曲線の差分からノイズ密度を見積もったところ、変位換算ノイズ密度が 18 fm Hz$^{-1/2}$ となり、差動増幅回路の変更後においてもノイズレベルが増加していないことを確認した。
第 2 章 有機薄膜トランジスタの基礎と原子間力顕微鏡技術の概要

2.3 本章のまとめ

本章ではまず OTFT のデバイス構造や動作原理、活性層材料などの基礎的な事項について説明した。次に原子間力顕微鏡技術の概要について説明した後、FM-AFM 測定の原理や装置構成などについて述べた。また、本研究で測定に用いた JSPM-5200 における変位検出系の広帯域化のための装置改良についても述べた。
第3章 有機薄膜トランジスタのしきい値電圧制御手法の開発

3.1 研究背景と目的

OTFTの実用化に向けた重要な課題の一つが、デバイスのしきい値電圧（threshold voltage）を自在に制御する手法の確立である。しきい値電圧はOTFTの最も重要なデバイスパラメータの一つであり、その正確な制御は集積回路を正常に動作させるために必要である。無機半導体をベースとした金属–酸化物–半導体電界効果トランジスタ（metal-oxide-semiconductor field-effect transistor: MOSFET）を例に挙げると、そのしきい値電圧を制御するための手法として、チャネル領域へのイオン注入などの技術がこれまでに開発されてきた。これは、チャネル領域にドーパントとなるドナーもしくはアクセプタを導入してチャネル領域のキャリア密度を変化させることで、しきい値電圧のシフト制御を行うものである。例えばnチャネルMOSFETのしきい値電圧を調整するためにアクセプタをチャネル領域へと注入すると、チャネルのドーピングレベルが下がり、しきい値電圧は正方向にシフトする。一方ドナーを導入した場合には、逆にしきい値電圧は負方向にシフトする。そのため、チャネル領域へ導入するイオン種及びイオン注入量を変化させることで無機半導体ベースのMOSFETではしきい値電圧の制御を実現している。一方有機半導体を活性層として用いるOTFTでは、しきい値電圧の制御手法は応用上重要であるにも関わらず、未確立であるのが現状である。

OTFT是有機半導体/ゲート絶縁膜界面でのキャリアの伝導を利用したデバイスであり、その界面状態はデバイスの電気特性、特にしきい値電圧に対して大きな影響を与える。例えば、OTFTのゲート絶縁膜としてSiO₂を用い、その表面に有機半導体薄膜を堆積してデバイス構造を作製して動作させた場合、有機半導体/SiO₂界面にキャリアが蓄積されるが、この時にSiO₂表面に存在する水酸化物基（OH基）がトラップ潜伏を形成することが報告されている。その結果、SiO₂表面に電荷がトラップされることで、デバイスのしきい値電圧がシフトする。この
第3章 有機薄膜トランジスタのしきい値電圧制御手法の開発

図3.1: バッファ層に用いた材料の化学構造。 (a) ポリメチルメタクリレート (PMMA). (b) テトラフルオロトトラシアノキノジメタン (F₄TCNQ). (c) テトラシアノキノジメタン (TCNQ).

ように、OTFTの電気特性は界面状態に大きく左右されることから、良質な界面を得るための界面修飾手法がこれまでに提案されてきた。例えば、界面に自己組織化単分子膜を導入する手法や、有機半導体/ゲート絶縁膜界面にドーパント層を導入する手法を用いることで、デバイスのゲートしきい値電圧がシフトすることがこれまでに報告されてきた94,95。一方でこれらの手法では、界面が導入された材料によって一様に被覆されるため、しきい値電圧の変化量を細かく制御することが難しいという問題点があった。

そこで本研究では、OTFTの有機半導体/ゲート絶縁膜界面にポリマーバッファ層を導入し、そのバッファ層中にドーパントを導入するという手法を用いてしきい値電圧制御を試みる。これは図3.1(a)に示すポリメタクリル酸メチル (polymethylmethacrylate: PMMA) などの絶縁性ポリマー中に、図3.1(b)(c)に示すテトラフルオロトトラシアノキノジメタン (tetrafluorotetracyanoquinodimethane: F₄TCNQ) やテトラシアノキノジメタン (tetracyanoquinodimethane: TCNQ) のような分子を一定割合添加することで、有機半導体/ゲートバッファ層界面へのキャリアの蓄積量を変化させ、しきい値電圧の制御を試みるものである。本手法で用いるバッファ層は、大気中でウェットプロセスを用いて室温下で成膜することが可能であり、低温・低コストで素子を作製することが出来るという利点がある。また本手法では、ゲートバッファ層を成膜する際に用いる溶液のポリマー濃度とドーパント濃度を任意に調整可能であり、成膜されるバッファ層の膜厚とドーパイニング比率を連続的にかつ高精度に制御できると考えられる。これらの考えに基づき、本研究では分子ドーパイニングを行ったポリマーバッファ層を有するOTFTの作製と評価を行い、デバイスのしきい値電圧制御技術の確立に向けた検討を行った。
3.2 バッファ層のドーピング条件の検討

前述のように、OTFTのデバイス特性は有機半導体/ゲート絶縁膜の界面状態によって大きく変化する。本研究では、バッファ層にドーパントを導入することで界面に誘起されるキャリア量を変化させ、しきい値電圧をシフトさせることを試みる。一方でバッファ層へのドーパント分子導入によって、バッファ層の表面粗さなどのパラメータが変化すると、デバイス特性の変化が誘起されるキャリア量の変化によるものなのか、それとも物理構造などの他のパラメータの変化によってキャリア移動度が変化したことによる効果なのか、判別が難しくなる。さらにバッファ層へのドーピングによって、その上に形成される有機半導体薄膜の形状が変化することも考えられる。そこでまず、ドーパントの導入によってバッファ層の表面構造及びその上に形成される有機半導体薄膜の構造に変化が生じ得るかどうか、バッファ層の成膜条件及びドーピング条件の確認を行った。

3.2.1 試料作製

バッファ層の材料として用いるPMMA（分子量120000, Aldrich）は再沈殿法を用いて精製した後に用いた。成膜に用いる溶液は、PMMAとドーパントをそれぞれ2～3 mg ml⁻¹、0.14～3 mg ml⁻¹程度ずつメチルエチルケトンに溶解することで作製した。次に、調整した溶液を300 nmの表面熱酸化膜付Si基板上にスピンドルし、その後393 Kで10分間アニールすることでSi基板上にバッファ層を形成した。作製した薄膜の膜厚は、DHA-FX（満巻光学）を用いてエリプソメトリープ法で測定した。薄膜の表面形状像はJSPM-5200（日本電子）を用いて取得した。さらに成膜したバッファ層上に、有機半導体を真空蒸着法で膜厚50 nmになるように蒸着した。蒸着は1.0 ×10⁻⁴ Pa以下の真空下で行い、蒸着時の基板温度は室温とした。

3.2.2 ドーピングされたバッファ層の表面形状の比較

ドーパントが導入されていないバッファ層及びF₄TCNQ又はTCNQをドーピングしたバッファ層の表面形状像を図3.2に示す。ドーパントを導入したバッファ層では、ドーパントのPMMAに対する質量比率は50 wt%とした。3つの薄膜の表面形状像から二乗平均粗さを求めたところ、それぞれ0.24 nm、0.29 nm、0.39
第 3 章 有機薄膜トランジスタのしきい値電圧制御手法の開発

図 3.2: パッファ層の表面形状像. (a) ドーピングされていない PMMA. (b) F₄TCNQ をドーピングした PMMA. (c) TCNQ をドーピングした PMMA.

nm であり、パッファ層へドーパント分子を導入することでわずかに薄膜表面の二乗平均粗さが増加することが分かった。先行研究では、ゲート絶縁膜表面の二乗平均粗さが 0.5 nm 以上になると、その上に真空蒸着で成膜される有機半導体薄膜（ペンタセン）の粒径及び結晶性が変化することで OTFT の移動度が減少することが報告されている[98]。一方、本実験でドーパントを導入したパッファ層表面の二乗平均粗さはどの像においても 0.5 nm 以下であった。そのため、ドーパントを導入したパッファ層上にペンタセン薄膜を真空蒸着法で成膜する場合にも、下地となるパッファ層の表面粗さがその結晶成長に与える影響は小さいと考えられる。

3.2.3 パッファ層上に成膜した有機薄膜の表面形状の比較

次に、ドーパントを導入したパッファ層上に真空蒸着法で有機半導体薄膜を堆積し、その表面形状像の比較を行った。図 3.3(a)–(c) に、ドーピングされていないパッファ層上、F₄TCNQ をドーピングしたパッファ層上、TCNQ をドーピングしたパッファ層上にそれぞれ成膜されたペンタセン薄膜の表面形状像を示す。これらの表面形状像では互いに非常に似た構造の樹上成長したペンタセン薄膜が見られ、さらにこれらのドメインサイズも互いに類似していることから、パッファ層へのドーピングがペンタセン薄膜の成長様式を変化させている可能性は低いと考えられる。次に、スピンコート法で成膜された F₄TCNQ 薄膜上に形成されたペンタセン薄膜の表面形状像を図 3.3(d) に示す。この薄膜の表面形状は PMMA ベースのパッファ層上に形成された薄膜形状と大きく異なっていることが分かる。また SiO₂ の直上に成膜されたペンタセン薄膜の表面形状像を図 3.3(e) に示す。この薄膜ではグレイン状の構造が見られるものの、その大きさはパッファ層上に形成されたペンタセン薄膜の場合よりも小さく、やはり異なる形状の薄膜が形成されることが分かる。つまり、これらの薄膜におけるキャリアの輸送機構は、パッファ
3.2 バッファ層のドーピング条件の検討

図 3.3: ベンタセン薄膜の表面形状像. (a) ドーピングされていない PMMA バッファ層上の場合. (b) F₄TCNQ をドーピングした PMMA バッファ層上の場合. (c) TCNQ をドーピングした PMMA バッファ層上の場合. (d) F₄TCNQ 上の場合. (e) SiO₂ 上の場合.

層上に成膜された薄膜のそれと比較して大きく変化している可能性がある。一方で PMMA バッファ層中に F₄TCNQ をドーピングした場合にはそれぞれの薄膜形状に大きな変化は見られなかったことから、PMMA が有機半導体/絶縁膜界面に存在することで、その上に形成されるベンタッセン薄膜の形状変化が抑制されることが分かる。このように、バッファ層中にドーパントを導入した場合にはベンタッセンの薄膜形状の変化が小さいため、膜形状の変化によってキャリア輸送特性が意図せず大きく変化するのを避けることが可能であると考えられる。

さらにバッファ層上に成膜する有機半導体として、NTCDA 及び F₁₆CuPc を用いた場合の表面形状像の比較結果をそれぞれ図 3.4 と図 3.5 に示す。これらの表面形状像においてもベンタッセンの場合と同様に、バッファ層にドーパントを導入した場合においてもその上に形成される有機薄膜の形状の変化はほとんど見られない。これらの結果から、バッファ層上に形成される有機薄膜の形状は、ドーパントの導入の有無によらずほとんど変化しないことが分かる。
図 3.4: NTCDA 薄膜の表面形状像. (a) ドーピングされていない PMMA パッファ層上の場合. (b) F₄TCNQ をドーピングした PMMA パッファ層上の場合.

図 3.5: F₁₆CuPc 薄膜の表面形状像. (a) ドーピングされていない PMMA パッファ層上の場合. (b) F₄TCNQ をドーピングした PMMA パッファ層上の場合. (c) TCNQ をドーピングした PMMA パッファ層上の場合.
3.3 ドーピングされたバッファ層の導入によるしきい値電圧制御

3.3.1 しきい値電圧制御に適したドーパント種の検討

次に、バッファ層内にドーピングする分子種を変化させたOTFTを作製し、そのデバイス特性の比較を行うことで、OTFTのしきい値電圧制御に適しているドーパント分子を検討した。ここでドーパントの候補として、F4TCNQとTCNQの2種類を検討した。図3.6に、ドーピングされたバッファ層を有するOTFTのデバイス構造を示す。作製したデバイスはトップコンタクト・ボトムゲート型構造である。まず前節と同様の作製プロセスでSi基板上にバッファ層を成膜し、さらに有機半導体（ペンタセン、F16CuPc、NTCDAのいずれか）を真空蒸着法で堆積した後、最後にアルミ製のチャードマスクを用いてAuを真空蒸着することでチャネル長50μm、チャネル幅1mmの上部電極を形成してデバイス構造を作製した。作製したデバイスの電気特性は、半導体パラメータ測定装置（4200-SCS, Keithley）を用いて1.0×10⁻¹Pa以下の真空中で測定を行った。

図3.7に、作製したデバイスの伝達特性の比較を示す。図3.7(a)は有機半導体層にペンタセンを用いたデバイスをp型動作させた場合である。ドーパントを導入していないバッファ層の場合と、F4TCNQ又はTCNQを20wt%の割合でドーピングしたバッファ層の場合の3種類のデバイスの飽和特性を比較したところ、F4TCNQを導入した場合にバッファ層がドーピングされていないデバイスと比較してI_Dが大きく増加することが分かる。一方でTCNQをバッファ層に導入したデバイスではI_Dの変化は小さく、ほとんど特性が変化していないことが分かる。

また図3.7(b)に、有機半導体層としてF16CuPcを用い、デバイスをn型動作させ
図 3.7: 異なるバッファ層を有する OTFT の伝達特性の比較。 (a) ペンタセン-OTFT の場合。 (b) \(F_{16}CuPc-OTFT \) の場合。図中の緑線が PMMA バッファ層、赤線が \(F_4TCNQ \) でドーピングされた PMMA バッファ層、青線が TCNQ でドーピングされた PMMA バッファ層を有するデバイスの特性にそれぞれ対応。 (c) 用いた有機材料の分子軌道エネルギーの比較。

た場合の結果を示す。どちらの場合にも、バッファ層内に \(F_4TCNQ \) を導入したデバイスで、バッファ層がドーピングされていないデバイスと比較して \(I_D \) が大きく減少していることが分かる。またバッファ層内に TCNQ を導入したデバイスでも \(I_D \) が減少していることは確認できるものの、その減少幅は \(F_4TCNQ \) をドーピングした場合と比較して小さい。

ドーピング種を変化させた場合の特性変化は、用いた有機半導体の軌道エネルギーの観点から説明することが出来る。図 3.7(c) に、用いた有機半導体のエネルギー準位の比較図を示す99-102。デバイスを p 型動作させた場合には、活性層であるペンタセンの HOMO 準位を正孔が伝導する。ここでチャネル界面近傍に \(F_4TCNQ \) が
3.3 ドーピングされたバッファ層の導入によるしきい値電圧制御

ドーピングされている場合には、ベンタセンのHOMO 準位（5.0 eV）と F₄TCNQ のLUMO 準位（5.2 eV）のエネルギー差が小さいため、軌道間で電荷移動相互作用が生じ、ベンタセンの正孔密度が増加する。その結果、バッファ層内に F₄TCNQ を導入したデバイスでは、I_D が増加したのであると考えられる。一方でバッファ層内に TCNQ をドーピングした場合には、ベンタセンのHOMO 準位と TCNQ のLUMO 準位（4.2 eV）のエネルギー差が比較的大きく、軌道間の相互作用が小さいため、特性変化が小さかったのであると考えられる。

また活性層に F₁₆CuPc を用いてデバイスをn 型動作させた場合には、F₁₆CuPc のLUMO 準位を電子が伝導する。ここでバッファ層内に F₄TCNQ を導入すると、F₁₆CuPc のLUMO 準位（4.7 eV）よりも F₄TCNQ のLUMO 準位（5.2 eV）が深いため伝導電子の一部は F₄TCNQ のLUMO 準位にトラップされる。その結果、チャネル内の電子密度が減少し、I_D が減少したと考えられる。一方バッファ層内に TCNQ を導入した場合では、TCNQ のLUMO 準位（4.2 eV）が F₁₆CuPc のLUMO 準位よりも浅いため、伝達特性の変化が F₄TCNQ を導入した場合と比較して小さかったと考えられる。

以上の結果から、OTFT のしきい値電圧制御のためにバッファ層内に導入するドーパントとしては F₄TCNQ が適していると考えられる。

3.3.2 ドーパント濃度としきい値電圧シフトの関係

次に、OTFT のしきい値電圧とバッファ層内に導入されたドーパント濃度の関係を調べるため、バッファ層内へ導入する F₄TCNQ の質量パーセント濃度を変化させた OTFT を作製し、そのデバイス特性の比較を行った。デバイスは図3.6に示したポトムゲート・トップコンタクト型の構造とした。活性層の有機半導体としてはベンタセン、F₁₆CuPc、NTCDA の3 種類を用いたデバイスをそれぞれ作製し、伝達特性を測定して、その結果の比較を行った。

測定結果を図3.8に示す。まず、活性層にベンタセンを用いたデバイスでは、ドーパントの質量濃度を増加させると I_D が増加することが分かる。また伝達特性の測定結果から、デバイスの移動度としきい値電圧を求めた結果を表3.1に示す。まずドーパント濃度を増加させた場合に移動度が増加することが分かるが、これはベンタセン OTFT におけるキャリア伝導が HOMO バンド端の局在基準間のホッピング伝導によって支配されているためであると考えられる。つまり、ドーパント濃度を増加させた場合、チャネルの正孔密度が増加することで局在基準の
第3章 有機薄膜トランジスタのしきい値電圧制御手法の開発

うち深い準位が満たされ、正孔はドーピングされていない場合よりも浅い準位を介してホッピングすることが出来るため、移動度が増加したのであると考えられる。また、ドーパント濃度を増加させるとしきい値電圧がx軸正方向にシフトしていることが分かるが、この結果もチャネルにおいて正孔密度が増加していることを示している。

次に活性層にF_{16}CuPc及びNTCDAを用いたn型のデバイスについて、移動度、しきい値電圧、スレッショルドスイング、さらにチャネル界面におけるトラップ準位密度を求めた結果を表3.2と表3.3に示す。ここでトラップ準位密度の算出には以下の式を用いた105,106)。

\[
N = \left[\frac{q S \log(e)}{kT} - 1 \right] \frac{C_{ox}}{q}
\]

ここでqは帯電荷、Sはサブレッショルドスイング、kはボルツマン定数、C_{ox}はゲート絶縁膜の単位面積当たりの静電容量である。

表3.2と表3.3の結果から、OTFTをn型動作させている場合にはバッファ層中でのドーパント濃度を増加させると、しきい値電圧が正方向にシフトすることが分かる。また、サブレッショルドスイングも同様にドーパント濃度の増加に伴って増加していることが分かる。一般に、サブレッショルドスイングの増加はバルクの半導体層及び半導体/絶縁膜界面に存在する局在準位の増加に起因すると考えられるため、バッファ層に導入されたF_4TCNQが界面近傍に局在準位を形成していることが示唆される107,108)。さらに移動度がドーパント濃度の増加に伴って減少していることから、界面近傍に深い局在準位が形成され、キャリアの輸送過程での局在準位間の遷移確率が小さくなっていることが示唆される。

表3.1: PMMAバッファ層へのF_4TCNQのドーピング濃度を変化させた時のベンゼン-OTFTのデバイスパラメータの比較。

<table>
<thead>
<tr>
<th>Dopant ratio [wt%]</th>
<th>(\mu) [cm^2 V^{-1} s^{-1}]</th>
<th>(V_{th}) [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>0.19</td>
<td>-17.6</td>
</tr>
<tr>
<td>11.1</td>
<td>0.11</td>
<td>-18.7</td>
</tr>
<tr>
<td>0.0</td>
<td>0.10</td>
<td>-23.7</td>
</tr>
</tbody>
</table>

また図3.9に、バッファ層中へのF_4TCNQのドーピング濃度に対してデバイスのしきい値シフトをプロットした結果を示す。デバイスをp型動作させた場合とn
図 3.8: 異なる濃度で分子ドーピングされたバッファ層を有するOTFTの伝達特性の比較. (a) ベンタセン-OTFT の場合. (b) F_{16}CuPc-OTFT の場合. (c) NTCDA-OTFT の場合.

表 3.2: PMMA バッファ層への F_4TCNQ のドーピング濃度を変化させた時の F_{16}CuPc-OTFT のデバイスパラメータの比較.

<table>
<thead>
<tr>
<th>Dopant ratio [wt%]</th>
<th>μ [cm2 V$^{-1}$ s$^{-1}$]</th>
<th>V_{TH} [V]</th>
<th>S [V/dec]</th>
<th>N [cm$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0</td>
<td>4.1×10^{-5}</td>
<td>19.7</td>
<td>10.7</td>
<td>1.4×10^{13}</td>
</tr>
<tr>
<td>33.3</td>
<td>2.5×10^{-4}</td>
<td>9.6</td>
<td>9.2</td>
<td>1.2×10^{13}</td>
</tr>
<tr>
<td>20.0</td>
<td>2.9×10^{-4}</td>
<td>7.2</td>
<td>8.2</td>
<td>1.0×10^{13}</td>
</tr>
<tr>
<td>0.0</td>
<td>6.1×10^{-4}</td>
<td>6.4</td>
<td>5.9</td>
<td>7.4×10^{12}</td>
</tr>
</tbody>
</table>
第 3 章 有機薄膜トランジスタのしきい値電圧制御手法の開発

表 3.3: PMMA バッファ層への F4TCNQ のドーピング濃度を変化させた時の NTCDA-OTFT のデバイスパラメータの比較。

<table>
<thead>
<tr>
<th>Dopant ratio [wt%]</th>
<th>μ [cm2 V$^{-1}$ s$^{-1}$]</th>
<th>V_{TH} [V]</th>
<th>S [V/dec]</th>
<th>N [cm$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>4.9×10^{-5}</td>
<td>-0.6</td>
<td>9.7</td>
<td>1.2×10^{13}</td>
</tr>
<tr>
<td>11.1</td>
<td>8.8×10^{-5}</td>
<td>-1.2</td>
<td>6.3</td>
<td>7.8×10^{12}</td>
</tr>
<tr>
<td>5.9</td>
<td>1.6×10^{-4}</td>
<td>-1.7</td>
<td>3.8</td>
<td>4.7×10^{12}</td>
</tr>
<tr>
<td>0.0</td>
<td>9.9×10^{-4}</td>
<td>-3.7</td>
<td>2.4</td>
<td>2.9×10^{12}</td>
</tr>
</tbody>
</table>

図 3.9: OTFT のしきい値電圧とバッファ層への分子ドーピング濃度の関係。p 型動作させた場合（ペンタセン）と n 型動作させた場合（F16CuPc と NTCDA）のしきい値電圧シフト量をそれぞれ異なる座標軸で表示。

型動作させた場合の両方において、アクセプタである F4TCNQ をドーピングした場合にはしきい値電圧が正方向にシフトすることが確認できる。一方でバッファ層中にドーパントを高濃度で導入したデバイスでは、しきい値電圧のシフト量に対するシフト量のばらつきが比較的大きいという問題点が見られることが分かった。

このシフト量のばらつきの原因としては、OTFT の有機半導体/絶縁膜界面近傍に導入された局在準位にキャリアが捕獲・放出される過程が関係していると考えられる。
3.3 デバイス特性の再現性に関する検討

これまでの実験で、PMMA パッファ層中にドープントを導入することで OTFT のしきい値電圧を変化させることが可能であることが分かった。その一方で、特にデバイスを n 型動作させている場合に、界面近傍に導入されたドープントによってしきい値電圧のシフト量のばらつきが生じることという問題点が明らかになった。そこで、ドープングされたパッファ層を有する OTFT に対してバイアスストレスを与えた場合のデバイス電気特性の再現性・安定性に関する検討を行った。チャネル界面近傍へのドープントの導入によってデバイス特性の再現性が低下しているデバイスでは、OTFT を繰り返し動作させてバイアスストレスを与えた場合に、動作前後でデバイスの電気特性が変化することを予想される。そこで前小節で作製した OTFT のバイアスストレス印加前後での飽和特性をそれぞれ測定し、比較を行った。

測定は、活性層がペンタセン、F16CuPc、NTCDA である 3 種類の OTFT に対して行った。それぞれの OTFT のうち、パッファ層にドープントが導入されていないデバイスと F4TCNQ が 20 wt%ドープングされたデバイスについて、まず初期状態での飽和特性の測定を行った。次に、それぞれの OTFT を 20 回デバイス動作させてバイアスストレスを与えた。ここで 1 回のデバイス動作とは、OTFT を p 型動作させる場合には V_D = -50 V (n 型動作の場合には V_D = 50 V) に保った状態で、V_G を +10 V (-10 V) から -50 V (+50 V) に掃引し、そこから +10 V (-10 V) へと逆方向に掃引する一連の動作のことを指す。このようにしてバイアスストレスを与えた後、もう一度各 OTFT に対して飽和特性の測定を行い、初期状態の飽和特性との比較を比較を行った。

図 3.10 に測定結果を示す。まず図 3.10(a) のペンタセン OTFT に対する測定結果より、パッファ層内にドープントが導入されたデバイスではバイアスストレス印加前後で電気特性の変化はほとんど見られないことが分かる。一方ドープングされていないパッファ層のデバイスでは、バイアスストレス印加後には V_G が僅かに減少している。バイアスストレスによる I_D の減少は界面近傍のトラップ準位によって生じていると考えられることから、パッファ層がドープングされたデバイスでは深いトラップ準位の影響が低減されていると考えられる。またパッファ層がドープングされていないデバイスでは V_G の掃引方向の変化によって I_D にヒステリシスを生じていることが分かるが、パッファ層にドープントを導入したデバイスではこのヒステリシスも低減されていることが分かる。このようにパッファ
図 3.10: V_D を 20 回掃引した場合の OTFT の伝達特性の変化. (a) ベンタセン-OTFT の場合. (b) F$_{16}$CuPc-OTFT の場合. (c) NTCDA-OTFT の場合.
3.4 本章のまとめ

本章では、OTFT の有機半導体/絶縁膜界面に分子ドーピングされたポリマー
バッファ層を導入する手法を用いて、OTFT のしきい値電圧の制御を試みた。その
結果、PMMA バッファ層中に導入する F₄TCNQ の割合を変化させることで OTFT
のしきい値電圧のシフト量を変化させることができる可能性であることを示した。一方で、
OTFT を n 型動作させた場合には、ドーピントの導入によってデバイスの電気特
性がバイアスストレスによって変化しやすくなり、さらにヒステリシスが増加す
る可能性があるという問題点が明らかになった。また今後の課題としては、本研究
で用いた F₄TCNQ のようなアクセプタ材料だけでなくドナー材料も活用すること
で、しきい値電圧の可変範囲を広げることが重要であると考えられる。化学的に安
定なドナー材料は現状ではほとんど開発されていないため、本研究ではアクセプ
タのみをドーピントとして用いたが、今後ドーピント材料の研究開発が進展して
大気安定なドナー材料が入手可能になれば、OTFT に対する分子ドーピングはよ
り汎用性の高い手法としてデバイス開発に応用できるようになると考えられる。
第4章 KFMによる塗布成膜有機薄膜トランジスタの物性評価

4.1 研究背景と目的

OTFTをはじめとする有機半導体デバイスの特性向上に向けて、有機半導体におけるキャリア挙動の評価は重要である。特に OTFT の研究開発においては、実際にデバイス動作させている状態でのキャリア挙動の評価を行い、キャリア輸送の律速過程などの問題点を明らかにすることで、更なるデバイス特性の向上が可能になると期待できる。

近年、高移動度を志向した OTFT の活性層材料として、可溶性有機半導体材料に注目が集まっている。有機半導体がエレクトロニクスにもたらす重要な付加価値の一つが、半導体層の形成過程において溶液プロセスを容易に利用可能であることである。固体状態の有機化合物は分子間力によって分子同士が弱く結合・凝集した状態をとるため、無機材料と比べて溶液に分散しやすくインク化が容易であり、現在では溶液プロセスを用いた有機半導体薄膜の成膜手法の開発が盛んに行われている 12)。OTFT の研究開発において、溶液プロセスによるデバイス作製手法がこれまでに多数報告されてきたが、これまでの先行研究では高い可溶性を有する高分子材料が用いられることが多く、可溶性に乏しい低分子材料が用いられることは少なかった。しかし近年では材料開発が進展し、高い可溶性を有する低分子有機半導体を利用した高移動度デバイスの開発に注目が集まっている 64)。

近年、可溶性の低分子有機半導体として広く研究に用いられている分子として、6,13-bis(triisopropylsilyl ethynyl) ベンタセン (TIPS-PEN) が挙げられる。この分子は、溶液に対する溶解度が非常に小さいベンタセンに対して官能基修飾を行うことで、分子に可溶性を付与することに成功した例として広く知られている 57)。その一方で、近年ではさらなる高移動度と大気安定性が実現された分子として、アルキル鎖修飾された BTBT (C₈-BTBT) が注目されている。

図 4.1(a) に、BTBT 化合物の中で広く研究に用いられている C₈-BTBT の分子
構造を示す。C₈-BTBT は分子の骨格にあたるチエノアセンが二つのアルキル鎖で終端された構造を有している。C₈-BTBT はアルキル鎖によって分子修飾されているため溶媒に対して高い溶解性を持ち、例えば室温下でクロホルムに約 80 g/L 溶解する。そのため、溶液プロセスによるデバイス作製において有用な分子であると考えられている。

図 4.1(b),(c) に、C₈-BTBT の結晶構造を示す。C₈-BTBT 溶液を大気下で基板上に塗布して溶媒を乾燥させた場合、C₈-BTBT は近接する分子間の相互作用によって自己組織的に基板上に配向して結晶化する。その際、分子の骨格にあたる BTBT 部は分子間でヘリングボーン構造を形成し、C₈-BTBT 分子の長手方向が基板と垂直（c 軸方向）に配向した状態で結晶化する。C₈-BTBT の単結晶においては、結晶の ab 平面に平行な方向の移動度が結晶軸 c 軸に沿った方向の移動度と比較して非常に高いことが密度関数法を用いた理論計算で報告されている。一般的な OTFT のデバイス構造では電荷がソース・ドレイン間を基板と平行な方向に輸送されるため、C₈-BTBT を活性層に用いた OTFT では π 電子共役系による効率的なキャリア輸送が実現されると考えられ、実際基板下で 10 cm²/Vs 以上に達する高い移動度が報告されている。また、分子に付与されたアルキル鎖は分子の溶媒への可溶性を高めるだけでなく、結晶内の BTBT のパッキングを高める効果があると考えられている。実際異なるアルキル鎖の C₈-BTBT を活性層に用いた OTFT の移動度を比較した場合、n の大きい C₈-BTBT-OTFT においてより高い移動度が得られることが報告されている。同じような報告は類似の分子構造を持つチエノアセン系分子である DNTT についても報告されており、アルキル鎖が長鎖化することによる π 共役電子系の電子軌道の変化がキャリアの移動度を向上させる効果があると考えられている。

このように BTBT などのアセン系分子をアルキル鎖によって修飾するというコンセプトは、分子の可溶性と移動度を両立するために有望な分子設計指針であると考えられる。しかし BTBT に付与されるアルキル鎖は絶縁性であるため、アルキル鎖で分子修飾することによって結晶軸 c 軸に沿った方向の導電率が減少することも考えられる。すなわち C₈-BTBT へのアルキル鎖の付与は、結晶の ab 平面内におけるキャリア輸送には有利に働くものの、結晶軸 c 軸に平行な方向へのキャリア輸送に対しては不利に働くと考えられる。例えば、ドレイン電流 I_D が有機半導体薄膜の膜厚方向に流れるスターガ型の OTFT のデバイス構造を考えた場合、薄膜の膜厚方向の電気抵抗の増加は OTFT のアクセス抵抗を増加させるため、デバイス特性を劣化させる。また絶縁性のアルキル鎖が長鎖化した場合、デバイス性能を劣化させ、有機半導体薄膜の膜厚方向に流れる电流を減少させる。
図 4.1: (a) C₈-BTBT の分子構造. (b) C₈-BTBT 結晶の単位格子. (b) が c 軸方向から見た構造、(c) が b 軸方向から見た構造に対応. (b) においては分子内の BTBT 部分のみを描画している. 結晶構造は Takimiya によって提供されている構造ファイル 59) を用い、描画ソフトには Mercury111) を用いた.

スの有機半導体/ゲート絶縁膜界面近傍の π 共役電子系同士の距離が広がり、界面近傍の分子層の層数が減少するため、やはり電気伝導に対しては不利に働くと考えられる 110). このように分子のアルキル鎖修飾による結晶構造や電子構造の変化が OTFT のデバイス特性に与える影響は複雑であり、OTFT のデバイス特性を最大限発揮させるための明確な分子設計指針は未だ得られていないのが現状である. そこでこれらの分子を活性層とする OTFT を実際に作製し評価を行うことで、デバイスが抱える問題点を明らかにすることが重要である.

これらの考えに基づき、本研究では塗布成膜された C₈-BTBT 薄膜を活性層とする OTFT を作製し、デバイス動作中のその表面電位変化を測定することで、C₈-BTBT 薄膜におけるキャリア輸送の評価を行った. また KFM では、半導体材料の表面に存在するトラップ準位の評価が可能である. そこで、デバイス特性を劣化させる要因となり得るトラップ準位の素性を明らかにするため、C₈-BTBT-OTFT を動作させた後に C₈-BTBT 薄膜に誘起される長寿命のトラップ電荷の評価を行った.
4.2 KFM による表面電位計測

4.2.1 KFM の原理

KFM は試料の局所表面電位を測定する手法であり、電位差の存在する2導体間に作用する静電気力を検出す EFM を電位計測へと応用した手法である。KFM は1991年にNonnenmacherらによって開発されて以来、試料表面の電位分布の評価や半導体試料上に存在する電荷分布の評価など、材料物性分野の研究開発において広く用いられている112)。ここではまずその測定原理について説明する。

探針と試料が共に導体である場合を考える。探針-試料間の電気容量をC、電位差をV とおくと探針-試料間に蓄えられる静電エネルギーは \(U = CV^2/2 \) と記述される。この時、この静電エネルギーに起因する静電気力 \(F_{ES} = -\frac{\partial U}{\partial z} = -\frac{1}{2} \frac{\partial C}{\partial z} V^2 \) が探針-試料間に作用する113)。EFM ではこの静電気力の強度を試料表面上の各点で測定・マップすることで、試料表面の局所電荷分布などに関連付けられる物性情報を可視化する。一方この時可視化される静電気力の測定値は、 \(V^2 \) に比例する値であるものの \(V \) に関する定量的な情報を直接得ることは通常困難である。そこでKFM では、試料もしくは探針に直流電圧を印加することで \(V \) の測定を実現している。

図4.2にKFM 測定の原理を示す。図4.2(a)のように仕事関数差が \(eV_C \) である探針と試料から構成される系を考える。図4.2(b)のように探針と試料を電気的に接地した状態で接接させると、探針と試料の表面に電荷が誘起され、探針-試料間に接触電位差に由来する電界が生じるため、静電気力（引力）が作用する。ここで探針に直流バイアス \(V_{DC} \) を印加する。この時探針に印加するバイアス \(V_{DC} \) と探針-試料間の働き引力の関係は図4.2(d)のようになる。前述の通り探針試料間に作用する静電気力は \(V^2 \) に比例するため、バイアスに対して静電気力による引力は物性線的に変化する。ここで、 \(eV_C \) を打ち消すようにバイアス \(V_{DC} = -V_C \) を印加した時、静電気力は極小となる。つまり、探針-試料間に作用する静電気力が最小となるように \(V_{DC} \) を調整すると、その時のバイアスの適正値から \(V_C \) が得られ、試料表面の局所電位を測定することが出来る。さらに探針-試料間の静電気力を打ち消すようにバイアスを常にフィードバック制御しながら試料上を走査し、その時のバイアスをマッピングすることで試料表面の局所電位の分布（表面電位像）を得ることが出来る。

KFM では前述のように探針-試料間に作用する静電気力を検出することで測定を行うが、探針-試料間には静電気力以外にもファンドルワールス力や共有結合力
図 4.2: KFM 測定の原理。 (a) 探針−試料間が絶縁されている場合のエネルギーダイアグラム。 (b) 探針−試料間が電気的に接地されている場合のエネルギーダイアグラム。 (c) 探針−試料間に作用する静電気力を打ち消すように外部電圧を探針に印加した場合のエネルギーダイアグラム。 (d) 探針に印加する直流バイアスと探針に作用する引力の関係。 (e) バイアスフィードバックの概念図。 KFM では角周波数 \(\omega_m \) の交流バイアスによって静電気力を変調する。そして変調された静電気力の \(\omega_m \) 周波数成分をロックインアンプで検出し、それを打ち消すようにバイアスフィードバックを行う。
第4章 KFMによる塗布成膜有機薄膜トランジスタの物性評価

など他の力が作用する。そのため測定では静電気力とそれ以外の相互作用力を分離して静電気力のみを高感度に検出する必要がある。そこでKFMでは探針-試料間に対して、前述の直流バイアスに加えて静電気力変調のための交流バイアスを重畳して印加する手法が用いられる。静電気力を打ち消すために印加される直流バイアスをV\text{DC}、静電気力を変調するために印加される交流バイアスをV\text{AC}\cos(\omega_m t)とすると、探針-試料間に作用する静電気力F_{ES}は以下のようにならされる。

\[
F_{ES} = -\frac{\partial U}{\partial z} = -\frac{1}{2} \frac{\partial C}{\partial z} \left\{ \left(V_C - (V_{\text{DC}} + V_{\text{AC}} \cos \omega_m t) \right)^2 \right\}
\]

\[
= -\frac{1}{2} \frac{\partial C}{\partial z} \left\{ (V_{\text{DC}} - V_C)^2 + \frac{V_{\text{AC}}^2}{2} + 2V_{\text{AC}}(V_{\text{DC}} - V_C)\cos \omega_m t + \frac{V_{\text{AC}}^2}{2} \cos 2\omega_m t \right\}
\]

(4.1)

ここでV\text{C}は探針-試料間の局所電位差である。式(4.1)から分かるように、交流バイアスを印加したときに探針-試料間に作用する静電気力には、直流成分、ω_m成分、2ω_m成分の3種類が存在することが分かる。このうちω_mの成分に注目すると、その振幅はV_{\text{DC}} - V_Cに比例している。これよりロックインアンプを用いてω_m成分を検出し、図4.2(e)のようにロックインアンプの出力がゼロになるように（すなわちV_{\text{DC}} - V_C = 0となるように）V_{\text{DC}}を制御すれば、V_Cが得られる。

4.2.2 KFMの装置構成

図4.3に、FM検出方式によるKFM（FM-KFM）の装置構成の概略図を示す。FM-KFMでは、探針の励振と探針-試料間の距離制御を行うためのFM-AFMのセットアップに加え、探針-試料間に作用する静電気力をフィードバック制御するための直流バイアス、さらに静電気力変調するための交流バイアスをカンチレバーに印加するための配線が追加されている。また交流バイアスで変調された静電気力は、周波数変調器（PLL）の出力をロックインアンプを用いてFM方式で検出される。この時静電気力は探針の共振周波数の側波帯信号として検出されるため、静電気力の変調周波数はPLLで復調可能な帯域内の周波数である必要がある。PLLの帯域はPLLのループゲインとループフィルタの設定値によって決まるが典型的には数kHz程度であるため、本研究では特に記述のない場合は静電気力の変調周波数は1kHzとして、さらにロックインアンプの時定数の設定値は3msと
4.3 塗布成膜分子結晶トランジスタのKFM評価

4.3.1 デバイス作製

電極作製

評価対象のデバイスとして、ポットメゲート・ポットコンタクト構造のデバイスを作製した。基板には表面ポリマ化膜300 nm付きの高濃度p型ドープSi基板を用いた。この時、表面ポリマ化膜をゲート絶縁膜、高濃度p型ドープSi層をゲート電極として利用することが出来るため、ゲート電極の作製プロセスを省略することができる。そしてSi基板上にフォトリソグラフィにより２層レジスト法を用いて電極パターンを作製した後、ドロップキャスト法によりC₈-BTBT薄膜を形成してFET構造を作製した。デバイスの詳細な作製手順は以下の通りである。

- 基板切り出し・洗浄
第4章 KFM による塗布成膜有機薄膜トランジスタの物性評価

表面熱酸化膜 300 nm 付きの高濃度 p 型ドープ Si 基板を 1.5 cm 角に切り出し
した。切り出した基板はエタノールに浸して 10 分間超音波洗浄した後、イ
ソプロパノールの蒸気を用いて蒸気洗浄を行った。その後 30 分間 UV オゾ
ン洗浄を行った。

・ 2 層レジスト塗布

1 層目のレジスト (リフトオフレイヤー) には LOR3B (Microchem 社製) を用
いた。塗布時はスピンコーナを用いて 1 段階目は 500 rpm で 5 秒間、2 段階
目は 4000rpm で 45 秒間と 2 段階の回転速度で成膜した。その後、190 ℃に
加熱したホットプレート上で 5 分間ブリーベージを行った。2 層目のレジスト
には S1813G (Rohm and Haas 社製) を用いた。1 層目のレジストの塗布時と
同様に 1 段階目は 1000 rpm で 3 秒間、2 段階目は 5000 rpm で 30 秒間と 2 段
階の回転速度を設定して成膜した。その後、115 ℃に加熱したホットブレー
ト上で 1 分間ブリーベージを行った。

・ 露光・現像

レジストの露光装置として両面マスクアライナ PEM-800K(ユニオン光学社
製) を用いた。所望の電極形状がパターンングされた石英マスクを基板上に
固定した状態で、3 秒間露光を行ってレジストに電極パターンを転写した。
その後、現像液 Microposit MF-CD-26 (Rohm and Haas 社製) に 40 秒間基板
を浸漬することで露光部分を溶解し、レジストに電極パターンを形成した。

・ 金属の真空蒸着

金属の真空蒸着装置として電極パターンが形成された基板上に、電子線蒸着
法により Cr を 2 nm、抵抗加熱蒸着法により Au を 20 nm それぞれ堆積した。
蒸着時の真空度は 1.0 × 10⁻⁴ Pa 以下とし、また基板温度は室温とした。

・ リフトオフ

200 ℃に加熱した Microposit remover 1165 (Rohm and Haas 社製) に基板を
10 分間浸漬し、さらに 5 分間超音波洗浄を行うことでレジストのリフトオフ
を行った。その後、アセトン、エタノール、超純水を入れたシャーレをそれ
ぞれ用意して順に基板を洗浄し、最後に加熱したイソプロパノールの蒸気で
蒸気洗浄を行って電極を完成させた。
図 4.4: (a) ソース・ドレイン電極間に架橋された C_{8}-BTBT 結晶の光学顕微鏡像。 (b) DNTT-OTFT のチャネル部近傍の表面形状像（(a) の光学顕微鏡像の中の白線で囲まれた領域に対応）。黒線で囲まれた領域内では分子ステップに沿って黒破線が表示されている。数字は分子層の層数（ゲート絶縁膜界面側から数えた层数）に対応。 (c) 表面形状像の中に示された線分 AB におけるラインプロファイル。

C_{8}-BTBT 薄膜の成膜

次に、電極を作製した基板上でドロップキャスト法を用いて C_{8}-BTBT 薄膜の成膜を行った。薄膜の成膜手順は以下の通りである。

- C_{8}-BTBT 溶液の調製
 溶媒であるメチルエチルケトンに C_{8}-BTBT (純度 99%, 日本化薬（株）より提供)を 0.25 wt% の濃度になるように加え、回転子を入れた密閉容器中でスターラー上で 12 時間以上攪拌することで C_{8}-BTBT 溶液を調製した。

- ドロップキャスト法による成膜
 調製した溶液を基板上に 10 μL 滴下し、溶媒を乾燥させることで金属電極上に C_{8}-BTBT 薄膜を成膜した。この時溶媒の乾燥はメチルエチルケトンを封入して気化させたスチロール容器内で行った。このように溶媒が封入された容器内で基板上の溶媒をできるだけゆっくりと乾燥させることで、より大きな結晶ドメインを有する薄膜を形成することが可能である。

図 4.4(a) に、作製したデバイスの光学顕微鏡像を示す。作製した電極のチャネル長は 20 μm である。光学顕微鏡像で赤紫色に表示されている領域が金属電極であり、その間に 20 μm のギャップが形成されている。また光学顕微鏡像で緑色と黄色に表示されている領域が C_{8}-BTBT の結晶である。像の中央付近の結晶の一
図 4.5: 作製した DNTT-OTFT のデバイス特性。 (a) 出力特性。 (b) 伝達特性。チャネル長及びチャネル幅はそれぞれ 20 μm, 1 mm。}

部が、電極間のギャップ部に架橋されていることが分かる。また結晶の縁には複数の特徴的なファセットが見られるが、このファセット角（図中に白線矢印で表示）が C8-BTBT 結晶の (100) 方向と (110) 方向の成す角度である 106.1° に一致していることが分かった 66)。このことから、電極間に架橋されている薄膜は単結晶であると考えられ、薄膜内で分子は基板に対してほぼ垂直に配向していると考えられる。また、図中の白線で囲まれた正方形の領域上において AFM で取得した表面形状像を図 4.4(b) に示す。得られた表面形状像においては、ソース電極側の薄膜の膜厚が厚く、そこからドレイン電極側に向かって膜厚が薄くなっていくことが分かる。また薄膜表面に見られる筋状のコントラストは分子ステップに対応している。図 4.4(b) の区間 AB 上において取得したラインプロファイルを図 4.4(c) に示す。ステップ状の構造の 1 層の高さは約 3 nm であり、単結晶構造の c 軸方向の格子定数（2.918 nm）に近いことからも分子ステップであることが確認できた。また表面形状像を取得した領域内には SiO2 の基板が露出している部分があるが、この部分と薄膜の高低差を調べることで薄膜の分子層数を得ることが出来る。その結果、表面形状像を取得した領域内での薄膜の膜厚は 42-60 nm であり、14 層から 20 層の分子層に対応する膜厚であることが分かった。

4.3.2 デバイス特性の測定

図 4.5 に、作製した OTFT のデバイス特性を測定した結果を示す。電気特性の測定は半導体パラメータアナライザ（4200-SCS, Keithley 社製）を用いて、1 × 10⁻² Pa 以下の真空中で測定を行った。測定時のバイアスの掃引速度は 20 V/s とした。
4.3 塗布成膜分子結晶トランジスタのKFM評価

図4.6: KFMによるCs-BTBT-OTFTの表面電位計測の模式図。

図4.5(a)の出力特性では、ドレイン電流の立ち上がり部分（線形領域）で非線形な特性が見られる。このことから、デバイスの有機/電極界面に存在するショットキーライクな特性を有する接触抵抗が、デバイスの電気特性を測定していることが示唆される。またデバイスの飽和領域と線形領域における移動度μ_{sat}とμ_{lin}を求めたところ、それぞれ1.6×10^{-1} cm2/Vs、8.2×10^{-3} cm2/Vsであった。これらの値は先行研究でボトムゲート・ボトムコンタクト型のOTFTの移動度として報告されている値[114]と比較して小さな値であった。先行研究よりも小さな移動度が得られた原因として、今回作製したデバイスにおける上部電極/有機半導体界面における接触抵抗が高いことが考えられる。先行研究においては電極/有機層の表面にp型有機半導体に対してドーパントとして機能するMoO$_3$層を導入することで接触抵抗の低抵抗化が図られていたが、今回はそうした処理を行っていないため、移動度が小さく見積もられていることが考えられる。

4.3.3 動作中のデバイスの表面電位測定

次にKFMを用いて、バイアスが印加された状態のOTFTの表面電位の測定を行った。測定の模式図を図4.6に示す。KFMの走査範囲は図4.4(b)内の黒線で囲われた領域内とした。図に示すようにソース電極を接地し、ドレインとゲートにソースメーター（2636B, Keithley社製）で定のバイアスを印加した状態で表面電位像を取得した。走査はバイアスを印加した直後に開始した。1枚の電位像を取得するのに要した時間は約50分であった。またあるバイアス条件で表面電位像を取得した後に印加するバイアス条件を変化させ、複数の表面電位像を連続して取得した。
第 4 章 KFM による塗布成膜有機薄膜トランジスタの物性評価

測定で得られた表面電位像を図 4.7(a)–(e) に示す。これらの表面電位像は (a) から (e) の順に連続して取得したものである。また各表面電位像の中に示された線分において取得した電位プロファイルを図 4.7(f)–(h) に示す。まず図 4.7(a) はソース、ゲート、ドレインのすべての電極を接地した状態で最初に取得した表面電位像である。表面電位は C8-BTBT のテラス上ではおおよそ一定の値を取っているが、ステップに沿った領域ではテラス上と比較して電位が約 150 mV 高くなっていることが分かる。この原因については後述するが、ステップに吸着した分子が原因となっていることが考えられる。次にソースとゲートを接地し、ドレインに −2 V を印加した状態で取得した表面電位像を図 4.7(b) に示す。テラス上ではソースからドレインに向かって緩やかに電位が変化しているのに対し、ステップ構造では電位がステップ状に急激に変化していることが分かる。表面電位像の取得中にはドレイン電流は流れておらず有機半導体層におけるキャリア密度は非常に小さい状態であると考えられる。観察された電位はソース・ドレイン間を定常的に流れる電流に由来する電位ではなく、C8-BTBT に注入された電荷によって生じていると考えられる。また分子層内の電位勾配は非常に小さい一方、各分子層の間では顕著な電位差が生じていることから、各分子層内のシート抵抗は非常に小さく、逆に各分子層の間には非常に高い層間抵抗が存在することが示唆される。前述のように、C8-BTBT 結晶においては導電性の高い π 電子共有系を有する BTBT 層が高抵抗なアルキル鎖層に交互に挟まれた構造になっており、結晶の ab 平面に平行な方向の移動度が結晶軸 c 軸に沿った方向の移動度と比較して非常に高いことが密度汎関数法を用いた理論計算で報告されている。C8-BTBT 結晶では移動度の異方性が非常に顕著であるため、今回測定されたような特徴的な表面電位分布が形成されたのであると考えられる。

図 4.7(b) に示した二本の線分に対応する線上で取得した電位プロファイルを図 4.7(f) に示す。図 4.7(f) では、ソースとドレインの電位が印加している 0 V, −2 V よりもそれぞれ約 200 mV ずつ高くなっている。これは有機半導体/金属界面に形成される電気二重層などの影響によって、図 4.8 に示すように C8-BTBT 上の電位の方が電極上の電位よりも約 200 mV 高いためである。図 4.7(f) の線分 AB における電位プロファイルでは、ドレインに −2 V を印加した状態では C8-BTBT の 14 層から 16 層（これ以降、C8-BTBT/ゲート絶縁膜界面側から数えた分子層番号で特定の分子層を表現することとする）における電位が約 −1 V とドレインに印加したバイアスの約半分の値になっていることが分かるが、これは以下のように説明できると考えられる。一般的に有機半導体/金属界面の等価回路は、抵抗とキャパシ
図 4.7: 異なるバイアスを印加した状態で順に取得した C8-BTBT-OTFT のチャネル近傍の表面電位像。 (a) $V_D = 0 \text{ V}, \ V_G = 0 \text{ V}$ (b) $V_D = -2 \text{ V}, \ V_G = 0 \text{ V}$ (c) $V_D = 0 \text{ V}, \ V_G = 0 \text{ V}$ (d) $V_D = -2 \text{ V}, \ V_G = -20 \text{ V}$ (e) $V_D = 0 \text{ V}, \ V_G = 0 \text{ V}$。さらにそれぞれの図の中で示されている線分上的電位プロファイルを (f), (g), (h) に表示。
タの並列接続で表すことが出来る。OTFTのゲートにバイアスが印加されておらず有機半導体のキャリア密度が非常に小さい場合、等価回路における抵抗が非常に大きいため、等価回路は単純なキャパシタ構造と考えることが出来る。ここでソース/C₈-BTBT界面とドレイン/C₈-BTBT界面のキャパシタの静電容量が等しく、さらにC₈-BTBT層が直流電圧に対して抵抗成分のみを持つと仮定する。この状態でドレインに−2 Vのバイアスを印加すると、電圧は前述した二つの界面において1 Vずつ等しく分圧され、その結果C₈-BTBTの電位はソースとドレインの電位のちょうど中間の−1 Vになる。さらに図4.9(a)に、線分CDに対応する断面における各分子層の電位分布の概略図を示す。チャネルの内部の分子層の電位分布を直接測定することは困難であるが、図に示すようにC₈-BTBTの1層目から16層目までの電位は一様におよそ−1 Vであると考えられる。これはゲートにバイアスが印加されていない状態では、ソース/C₈-BTBT界面とドレイン/C₈-BTBT界面における接触抵抗が支配的であり、チャネル内では電位降下がほとんど生じないと考えられるからである。

一方、4.7(f)中の線分CDにおける電位プロファイルにおいて、ドレインに−2 Vのバイアスを印加した状態ではC₈-BTBTの17層目から20層目の分子層の電位が−1 Vから0 Vの間で離散的に変化している。17層目から20層目の分子層は1層目から16層目の分子層とは異なり、分子層がドレインには直接接続されておらず、ソースにのみ接続された状態になっている。各分子層間はアルキル鎖層で分離されており高抵抗であるため、直流電圧を印加した時にその界面はキャパシタとしてふるまう。そのため印加した直流電圧に対応した電位差が各分子層間に生じる。その結果17層目から20層目の分子層は、ドレインに−2 Vを印加した時に16層目の電位（−1 V）とソースの電位（0 V）の間の電位になると考えられる。

ドレインに一度バイアスを印加した後、再度ソースとドレイン、ゲートの全電極を接地した状態で取得した表面電位像を図4.7(c)に示す。ドレインにバイアスを印加する前に全電極を接地した状態で取得した表面電位像である図4.7(a)と比較すると、バイアス印加後ではチャネル領域の電位が約100 mV増加していることが分かる。これはドレインにバイアスを印加した時にチャネル領域に正電荷が注入され、その一部がチャネル領域のトラップ差分に捕獲されて長寿命の固定電荷となったためであると考えられる。またドレインにバイアスを印加している間、ソース・ドレイン間の電流は流れていないため、これらの正電荷はドレインへのバイアスの印加直後にチャネル領域に注入されたと考えられる。

次に、図4.7(d)はドレインとゲートにそれぞれ−2 V、−20 Vのバイアスを印
図 4.8: (a) C₈-BTBT-OTFT のチャネル近傍で取得した表面形状像. (b) (a) の黒線で囲まれた領域で取得した表面電位像. ソース・ドレイン・ゲートを接地した状態で取得. (c) (b) の線分 EF に対応する電位プロファイル.
第4章 KFMによる塗布成膜有機薄膜トランジスタの物性評価

図4.9: C8 BTBT結晶の各分子層の電位分布を示した断面図(線分CDに沿った平面で分割した断面に対応). 各分子層の電位はカラーバーで示されたコントラストに対応.(a) \(V_G = 0 \) Vの場合. (b) \(V_G = -20 \) Vの場合.

加熱した状態で取得した表面電位像である。図4.5の電気特性の測定結果からも明らかであるが、この状態ではチャネルが形成されるのに十分なバイアスがゲートに印加され、ソースとドレインの間に一定の電流が流れている。ここで取得した表面電位像中の線分ABと線分CDに対応する電位プロファイルを4.7(g)に示す。チャネルが形成されて有機半導体層の導電率が大きく増加した状態では、ソース電極端に大きな電位降下が生じることが分かる。一方でドレイン電極端では電位効果はほとんど見られず、正孔の注入側の電極端においてのみ顕著な電位降下が見られていることが分かる。このことから、ソース電極端における電位降下は有機半導体/金属界面にエネルギー障壁が存在しており、デバイスの電気特性が注入律速であることを示している。このことはデバイスの出力特性の線形領域において非線形な電流-電圧特性が確認されたことにも合致する。またソース電極端では顕著な電位降下が見られた一方で、チャネル領域では電位分布がほとんどみられず、特に14層目から17層目の分子層はドレインと同じ電位となっていることが分かれる。一方で17層目と18層目の境界からドレインの電位からの電位変化が生じ始めている。結晶の表面に近い18層目から20層目の分子層にかけてはドレインとソースの間の電位となっている。ここで図4.4(b)で各分子層と電極の位置関係を確認すると、1層目から17層目まではソースとドレインの両方に接続されている一方、18層目よりも上にある層はドレインには重ねておらず、ソース電極経の
4.3 塗布成膜分子結晶トランジスタの KFM 評価

図 4.10: (a) トップ電荷と鏡像電荷によって正の表面電位が生じている時のデバイス断面の模式図. (b) 構造がキャパシタ構造とみなされると仮定した場合の等価回路.

み接続されていることが分かる。そのためドレインと同電位の1層目から17層目の分子層とは異なり、17層目から20層目までの電位はソースの電位に近い値となり、図 4.9(b) に示すような電位分布が形成されたと考えられる。

デバイスのドレインとゲートにそれぞれ－2 V、－20 V のバイアスを印加してデバイスを動作させた後、ソース・とドレイン、ゲートを接地した状態にして取得した表面電位像を図 4.7(e) に示す。さらに図 4.7(e) の線分 CD に対応する線分における電位プロファイアルを図 4.7(h) に示す。全電極を接地しているにも関わらず、表面電位はチャネル領域全体において1 V 以上増加した。また結晶表面のステップ構造に沿った領域では表面電位が特に大きく増加しており、最も電位が大きい点では 6 V を超える電位となっていることが分かった。一方でチャネル領域で観察された正の電位は時間の経過とともにゆっくりと減衰し、24 時間経過後にはほとんど初期状態の電位に戻った。このことから、観察された正の電位はチャネル領域にトップされた長寿命の正電荷によって生じていると考えられる。またゲートにバイアスを印加しない状態でドレインに－2 V を印加した後ではチャネル領域の電位の増加は100 mV 程度であったが、これと比較してゲートにバイアスを印加した後ではチャネル領域の電位の増加量が大きかった。これはゲートにバイアスを印加した場合にはチャネル領域に蓄積されるキャリア量が非常に大きく、トップ電位に捕獲される正電荷の密度が大きく増加したためであると考えられる。

また表面電位の測定結果から、C8-BTBT のステップ構造近傍に局在するトップ電荷密度の見積もりを行った。図 4.10(a) に示すように、ステップ構造の近傍に
局所的に正電荷がトラップされているとし、トラップ電荷と反対符号の鏡像電荷がゲート電極/SiO₂界面に誘起されていると仮定する。ここでゲートが接地されているため、これらの電荷によって形成される電界によってステップ近傍の電位は正の値となる。この仮定の下で、KFM で測定した表面電位と C₈-BTBT/SiO₂構造の静電容量と電位の測定結果からトラップ電荷密度を求めることができる。図 4.7(h) 内に破線で示したステップ上のある点の表面電位の測定値を用いてトラップ電荷密度を見積もったところ、トラップ電荷密度は 2.6 × 10¹¹ cm⁻² であった。

分子結晶のステップ構造近傍に局所的にトラップ準位が形成される理由として、ステップ構造への分子の物理吸着が考えられる。結晶表面への分子の吸着はステップなどの特定の構造において特に生じやすいことが知られており、ベンタセンなどの有機半導体においてはそうした吸着分子が解離した場合にトラップ準位が形成されることがこれまでに報告されている 117）。トラップ準位の形成要因として他に考えられる理由として、ステップエッジに局在する電子準位が挙げられる。グラフェンリボンなどの一部の電子材料においてはステップエッジの部分に局在する電子準位が形成されることが知られている 118）。C₈-BTBT 結晶においてはステップエッジに局在する電子準位が形成されるとはこれまでに報告されていないが、分子結晶のステップエッジにおける電子構造に由来した準位である可能性が考えられる。結晶表面に局在するトラップ準位は、スターガ構造の OTFT など有機薄膜表面を横切るように電流が流れるデバイス構造の OTFT において、デバイス特性を制限する要因となり得ると考えられる。

4.4 本章のまとめ

本章では C₈-BTBT 薄膜を活性層とする OTFT に対して KFM を用いてデバイス動作中の表面電位計測を行い、分子内に導入されたアルキル鎖が分子結晶での電気伝導やデバイス特性に与える影響について調べた内容について述べた。KFM による表面電位の測定結果から、C₈-BTBT 結晶では各分子層のπ電子共役系が絶縁性のアルキル鎖層によって電気的に分離されており、各層間の抵抗が各分子層のシート抵抗と比較して非常に高いことを示唆する結果を得た。次に OTFT のゲートに順バイアスを印加した状態でソース・ドレイン間にバイアスを印加すると、ソース電極端において大きな電位降下が観察されたことから、測定したデバイスでは有機半導体/金属界面にエネルギー障壁が存在することが分かった。これはソース・ドレイン間のキャリア輸送が注入電極端において律速されていること
4.4 本章のまとめ

を強く示唆している。またデバイス動作後のOTFTのチャネル領域における表面電位の測定結果から、C₈-BTBT結晶表面のステップ構造近傍においては局所的にトラップ準位が高く、2.6 × 10¹¹ cm⁻²に達するトラップ電荷密度となっていることが明かになった。
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

5.1 研究背景と目的

前章においては、KFMを用いて塗布成膜された分子結晶のステップ構造に局在するトラップ電荷の評価を行い、活性化しているトラップ準位密度の見積もりを行った。トラップ準位は有機半導体デバイスのデバイス特性に大きく影響を与えることが広く知られており116,119)、OTFTにおいては移動度やしきい値電圧などの重要なデバイスパラメータに影響を与えることが知られている。そのため、これまでにKFMを用いて半導体材料中の局所的なトラップ電荷密度や分布を測定した例が報告されている120-122)。一方、これまでの先行研究においてKFMを用いてトラップ電荷を評価する場合には、深い準位に捕獲された長寿命の電荷を評価する場合がほとんどであった。これはKFMでは一枚の表面電位像を取得するのに通常数分程度の時間がかかるため、像を取得している途中で脱トラップが生じてしまうような浅い準位に電荷が捕捉されている系では評価が困難なためであった。一方、材料評価の観点からはより寿命の短い、早い時間スケールで緩和するような電荷についても評価が可能である。そこで本研究では、動作中のOTFTのチャネル部で時間変化する電荷の過渡的な分布を評価する手法の開発に取り組む。そして動作直後のデバイスにおける過渡的な電荷分布を可視化することで、OTFTのチャネル内におけるキャリア挙動を明らかにすることを研究目的とする。本章では、以下の三つの手法を用いてOTFTにおける過渡的な電荷分布評価を行った内容についてそれぞれ説明する。

- OTFTのゲート電圧を掃引した時に生じる電位シフトをKFMで測定することにより電荷分布を可視化する手法（ゲート電圧掃引法）

- 電荷分布の変化によって生じる表面電位の時間変化をKFMで可視化する手法（時間分解KFM法）
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

図5.1: ゲート電圧掃引法を用いて電荷分布を可視化するためのセットアップの概略図。右上の写真はデバイスの電極ギャップ部近傍の光学顕微鏡像。

- 電荷分布の変化によって生じる静電気力の時間変化をEFMで可視化する手法（時間分解EFM法）

5.2 ゲート電圧掃引法による有機薄膜トランジスタの評価

5.2.1 手法の概要

図5.1にゲート電圧掃引法による測定の概略図を示す。ゲート電圧掃引法では、OTFTのソースとドレインを接地した状態でゲートに印加するバイアスを掃引して測定を行う。ここでノーマリオフ型のpチャネルOTFTにおいて、チャネル上のある一点におけるゲート電圧（V_G）掃引時の表面電位（V_SP）の変化をKFMで測定してその関係をプロットすると、図5.2(a)に示すような関係（V_SP–V_G特性）が得られる120,123。ゲートに負の電圧を印加した順バイアス状態（図中の領域(I)）では、印加しているバイアスの絶対値によらずチャネル上で観察される表面電位は0となる。これはチャネル内に蓄積されたキャリアによって有機半導体層が導体化し、V_Gが遮蔽されているためである。別の言い方をすると、順バイアス状態の領域(I)ではチャネル内に蓄積された正電荷とゲートに誘起された鏡像電荷によって電界が形成されるため、チャネル表面ではV_Gが打ち消された状態になっているとも言える。一方、ゲートに正のバイアスを印加した逆バイアス状態（領域(II)）で
5.2 ゲート電圧掃引法による有機薄膜トランジスタの評価

図 5.2: V_G とチャンネル上の表面電位の関係。 (a) 有機半導体層に固定電荷がない場合。 (b) 有機半導体層に正の固定電荷が存在する場合。

は、チャンネル上の表面電位は V_G に比例し、その傾きは 1 となる。これも逆バイアス状態ではチャンネルが形成されていないため、有機半導体層の表面電位が V_G と等しくなるためである。ここで、領域 (I) と領域 (II) の境界にあたるゲート電圧（図中で V' と表記）は、一般的な OTFT ではおよそ 0 V となる。一方、有機半導体層内にトラップ電荷などの電荷が存在する場合には、この電荷とゲートに誘起される鏡像電荷が形成する電界によって V' は 0 V にはならず、図 5.2(b) に示すように 0 V からシフトする。もし有機半導体層内の電荷が正電荷である場合には負の鏡像電荷がゲートに誘起されるため、V' のシフト方向は V_G 軸負方向となる。ここでこの V' のシフト量はトラップ電荷量に比例すると考えられるため、V' のシフト量を測定すれば有機半導体層内のトラップ電荷密度を求めることができる。さらにこの測定をチャネル上の各点において行い、マッピングすることでチャネル領域におけるトラップ電荷密度のマップが得られる。本節では、まずポトムコンタクト・ポトムゲート構造の DNTT-OTFT を作製し、作製したデバイスに本手法を適用することで、デバイス動作に伴ってチャネル領域に誘起されるトラップ電荷の可視化を行った。

5.2.2 デバイス作製

前章と同様に、評価対象のデバイスとしてポトムコンタクト・ポトムゲート構造の試料を作製した。まず Si 基板上にフォトリソグラフィー法でギャップ長 2 μm の電極パターンを作製した。この時の基板の洗浄プロセス及び電極作製プロセスは第 4 章で述べた手順と同様である。その後、基板上に真空蒸着法で DNTT を 50 nm 堆積して活性層を形成し、DNTT-OTFT のデバイス構造を完成させた。
5.2.3 トラップ電荷分布の可視化

ゲートにバイアスを印加した時の、チャネル上のある点における表面電位変化の測定結果を図5.3に示す。測定時には、探針を試料表面に接近させて探針-試料間距離制御をホールドした状態で測定を行った。図5.3(a)は、$V_G = -10 \text{ V}$ を1秒間印加した時のチャネル上の表面電位の時間変化を示したものである。まず、V_Gを印加する直前では表面電位は約700 mV で一定であるが、印加直後に直ちに約0 V へと変化していることが分かる。これは有機半導体層に正孔が注入されてチャネルが形成され、有機半導体層の電位がソース・ドレインの電位 (0 V) と等しくなったためである。次に V_Gをターンオフすると、表面電位が約2 V（図中で ΔV と表記）増加し、その後数十秒かけてゆっくりと減衰することが分かる。これはチャネルに蓄積された正孔が、接地されたソース・ドレインへと直ちに排出されず、数十秒程度の時間スケールで排出されるためであると考えられる。ところでV_G が印加されている間、チャネル領域には $V_G = -10 \text{ V}$ に相当するキャリアが蓄積されていると考えられる。そのためV_G をターンオフした直後に正電位は表面電位が10 V 増加すると考えられるが、実際に測定される ΔV は10 V よりも小さく、2 V以下であった。これはKFM測定に用いている電位フィードバック回路の帯域が約400 Hzと比較的狭帯域であるため、V_G ターンオフ直後に生じる電位変化に電位フィードバック回路の応答が及ぼしていないためであると考えられる。つまりV_G ターンオフ直後の数 ms 以内に生じる初期のキャリア排出過程で80%以上のキャリアが排出されており、チャネル上にトラップされた残りの電荷がここでは可視化されていると考えられる。別の言い方をすると、ΔV としてはKFMの時間分解能で測定可能なトラップ電荷のみが測定されているので注意が必要である。また図5.3(b)に、V_G と ΔV の関係を示す。ΔV はV_G に比例して増加することが分かるが、これは活性化されるトラップ準位密度が最初に蓄積された正孔密度に依存していることを示唆している。

図5.3(c)は、V_G を正から負及び負から正の二方向に掃引した時の表面電位の測定結果（V_{SP}–V_G 特性）の比較である。V_G を V_G 正方向から負方向へと掃引した場合と比較して、負方向から正方向へと掃引した場合には V'' がV_G 軸負方向へ約2 V シフトしている。先に述べたように、この電位シフトの大きさは順バイアス方向に印加したV_G の最大値及びV_G ターンオフ後の経過時間によって決まっていると考えられる。そのためこの電位シフト（$\Delta V_{TH} = V_2 - V_1$）をチャネル上の各点で測定してマッピングすれば、そのV_G の掃引条件下でソース・ドレインへと排出
図5.3: V_Gの偏移に対する表面電位の変化の測定結果。 (a) V_G = -10 Vを1秒間印加した場合の表面電位変化。 (b) V_Gをターンオフした直後に現れる正電位（ΔV）とV_Gの関係。 (c) V_Gを二方向から偏移した場合の表面電位変化の比較（V_{SP}-V_G特性）。

5.2 ゲート電圧偏移法による有機薄膜トランジスタの評価
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

される過程にあるトラップ電荷の分布が可視化できる。しかし図5.3(a)に示したように、一度デバイスにVGを印加した後、蓄積されたキャリアがチャネルから完全に排出されて表面電位がバイアス印加前と同じ電位に戻るためには、VG = -10 Vの場合に一点の測定に約50 sの時間が必要となる。この測定をチャネル上の64×64ピクセル上的各点で行う必要があるが、この場合1回の測定にかかる時間が非常に長くなり測定が困難となるため、測定時間を短縮するための工夫が必要となる。

そこで、電位シフトが生じる前後のVSP−VG特性を各点で測定するのではなく、電位シフト後のVG掃引に対するVSP−VG特性のみを測定することで測定時間を短縮を行った。この場合、一度VGを掃引して正面電位変化を測定した後、チャネルに蓄積されたキャリアが排出されるのを待たずに次のピクセル上での測定に移行するため、測定時間を大幅に短縮することが可能である。しかしこの方法で測定を行う場合には二つの問題が生じる。一点目は、測定時間を短縮した手法では電位シフトが生じる前のV′ (V1)をどのように定義するかという問題であり、二点目は、測定で繰り返しVGを印加することによって累積的に増加するトラップ電荷の影響をどのように補正するかという問題である。

まず一点目の問題点について述べる。先に説明したようにV1は一般的なpチャネルOTFTではチャネル上ではほとんど一定とみなすことができると考えられる。そのため、V1を測定しその平均値をV1として定義することが出来ると考えられる。しかし、チャネル上でのV1の分散が大きい場合には電位シフト前のV′が一定値であるとして電位シフトを求める場合の誤差が大きくなる。そこでまずKFMを用いた予備測定で、V1のチャネル上でのばらつきを調べることにした。V1のチャネル上での分布は、ソース・ドレイン・ゲートの全電極を接地した状態でのチャネル上の表面電位（図5.2(b)中のVG）を測定することで確認できる。これは、図5.2において領域(II)の直線の傾きが1である場合にはV′ = −VGの関係が満たされるためである。

図5.4(a)に全電極を接地した状態で得たチャネル上の表面電位像を示す。また図5.4(b)に測定された表面電位のヒストグラムに対してガウシアンフィッティングを行った結果を示す。チャネル領域における表面電位が平均が0.322 V、分散が0.06のガウス分布に従うことが分かった。ここでトラップ電荷に由来する電位シフトがチャネル上におけるこのV1のばらつきよりも十分大きい場合には、V1はチャネル上の全領域において0.322 Vで一定であると近似することが出来る。

次に二点目の問題点は、VGが繰り返し印加されるために累積的に誘起されるト
図 5.2 ゲート電圧掃引法による有機薄膜トランジスタの評価

図 5.4: (a) ソース・ドレイン・ゲートを接地した状態で取得した表面電位像. (b) (a) の表面電位像のヒストグラム解析結果.

図 5.5: (a) 誤正前の電位シフト (ΔV_{TH}) のマップの例. (b) 走査中に繰り返し V_G を印加することで誘起されるトラップ電荷が ΔV_{TH} マップに与える影響の模式図. X 方向および Y 方向への走査の進行に伴ってトラップ電荷密度が増加する
ラップ電荷の影響をどのように補正するかという問題である。キャリアのチャネルからの排出が、V_Gの掃引周期（~1.5 s）よりも十分に短い時間で完了していればV_Gを繰り返し印加することで誘起されるトラップ電荷の影響は無視できるが、今回の試料ではキャリア密度の時間変化の時定数が大きくこの影響が無視できないことが分かったため補正を行った。図5.5(a)に、この補正を行う前の状態でのΔV_{TH}のマップの例を示す。チャネル上におけるコントラストは、V_Gを順バイアス状態から逆バイアス状態へと掃引した時に生じる長寿命のトラップ電荷密度を反映している。ΔV_{TH}は電極の周辺では小さく、電極から離れていくに従って大きくなるという傾向が見られるが、これは電極からの距離によってトラップ電荷密度が変化することを示していると考えられる。一方それとは別の傾向として、ΔV_{TH}がマップの左上で小さく、右下で大きいという傾向が見られる。これは図5.5(b)に示すように、測定中に探針を像の左上から右下に向かって順次走査しているため、V_Gを繰り返し印加した時にチャネル上に誘起されるトラップ電荷の影響が、走査開始直後の左上の領域よりも走査後半の右下の領域で特に顕著になるためである。

ここで、バイアスを印加した時にチャネルに誘起されるトラップ電荷密度$\sigma(t)$は、バイアスの印加時間tを用いて次式のように表される119)。

$$\sigma(t) = \sigma_0 + \sigma_F(1 - e^{-kt}) \quad (5.1)$$

ここで、σ_0はバイアス印加前の初期状態でのトラップ電荷密度、σ_Fはバイアス印加によって新たに形成されたトラップ電荷密度、kはトラップ電荷が形成される時定数の逆数である。この式を用いて、まずデータの各行（x方向）に対してフィッティングを行いテストスキャン方向のアーティファクト除去した後、同様の処理をデータの各列（y方向）に対して再度行うことでスロースキャン方向のアーティファクトの除去を行い、ΔV_{TH}のマップ全体の補正を行った。

DNTT-OTFTの表面形状彫は256×256ビクセル上で取得し、V_Gの掃引はそのうち4ビクセル毎に64×64ビクセル上で行った。V_Gの掃引は0 Vから−10 V、+10 V、0 Vの順に一定の掃引速度で行い、全体で1.47 sかけて1周期の三角波を印加した。図5.6(a)に走査領域の表面形状を示す。表面形状を、チャネル領域が数百nm程度の粒径を有するDNTT多結晶で構成されていることがわかる。図5.6(b)に、補正後のΔV_{TH}のマップを示す。図にはΔV_{TH}からトラップ電荷密度($C_{ox}\Delta V_{TH}/e$)に換算した場合のスケールバーを併せて示している。図5.6(b)では、多結晶のDNTT薄膜の結晶グレインの形状を反映したコントラストが見られる。特にグレイン境界において大きな電位変化が見られているが、これはチャ
図 5.6: トラップ電荷分布の測定結果. (a) 表面形状像. (b) 補正後の電位シフト（ΔV_{TH}）のマップ. 二つ目のカラーバーでは $C_{ox}\Delta V_{TH}/e$ の式を用いて算出された長寿命のトラップ電荷の密度を表示. (c) 傾き（S）のマップ. 二つ目のカラーバーでは $(1-S)C_{ox}(V_{G(max)} - V_1)$ の式を用いて算出された寿命の短いトラップ電荷の密度を表示.
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

図5.7: 分布定数回路モデルによるキャリア排出過程で形成される不均一なキャリア分布の説明。 (a) V_Gを印加する前。 (b) V_Gをターンオンした直後。 (c) V_Gをターンオフした直後。

ネル領域から電極へとキャリアが拡散していく過程でキャリア移動がグレイン境界によって律速されていることを示唆している。また、チャネル上でΔV_{TH}の大きい領域ではV_Gを印加した際にチャネルに蓄積された全キャリアのうち約8%に相当するキャリアがトラップ電荷として捕捉されていることが分かった。

図5.6(b)はチャネルからのキャリア排出過程において、トラップ電荷密度が電極近傍において小さく、電極から離れるに従って大きくなるという空間的に不均一な分布を形成することを示している。こうしたトラップ電荷分布はチャネル領域の不均一な抵抗分布を反映していると考えられ、その分布の形成過程は以下の如く分布定数回路モデルを用いて説明することが出来る124)。図5.7にその概略図を示す。まず、V_Gを順バイアス方向に控引していくと、キャリアがソース・ドレイン電極から有機半導体層へ注入され、チャネルが形成される（図5.7(b)）。この形成過程はKFMでは測定できなかったため、キャリアの排出過程と比較して
5.2 ゲート電圧掃引法による有機薄膜トランジスタの評価

早い時間スケール（< 3 ms）で生じていると考えられる。次に V_G が順方向から逆方向へと掃引されてキャリアが電極へと排出されていく時、まず電極近傍のグレイン内のキャリアが最初に排出されてその領域の抵抗値が高くなる。キャリアのチャネルからの排出の時定数 τ はチャネル上から電極までの抵抗 R とゲート絶縁膜の単位面積当たりの静電容量 C_{ox} を用いて $\tau = RC_{ox}$ と表され、チャネル近傍のグレインが高抵抗化すると電極から遠方のグレイン内のキャリアの緩和時間は長くなる。この結果、トラップ電荷密度が電極近傍では小さく、遠方に離れるに従って大きくなるという不均一な空間電荷分布を形成すると考えられる。

次に $V_{SP} - V_G$ 特性的逆バイアス領域に現れる直線（図5.2中の領域 (II) の直線）の傾き S を解析することで得られたマップ（傾きマップ）を図5.6(c)に示す。既に述べたようにチャネル領域での傾きの値は 1 となるはずであるが、測定結果では 1 よりも小さい値が得られた。もしバイアス掃引中にトラップ電荷がトラップ準位から放出された場合、放出されたトラップ電荷に相当する表面電位が減少するため傾きが 1 より小さくなる。このことから、得られた結果は、V_G の掃引中に探針直下領域のトラップ電荷の一部がトラップ準位から放出されていることを示唆していると考えられ、V_G の掃引中に放出されたトラップ電荷の密度を $(1 - S)C_{ox}(V_G(\text{max}) - V_1)$ の式を用いて近似的に計算することが出来る。ここで、$V_G(\text{max})$ は逆バイアス領域において印加される V_G の最大値である。ここで傾きマップで得られる、V_G の掃引中に放出されたトラップ電荷密度は、電極近傍の領域においては大きく、電極から離れるに従って減少するという傾向が見られるが、これは電極近傍の領域内のトラップ電荷の緩和時間が小さいため、トラップ電荷のトラップ準位からの放出頻度が高いことに対応していると考えられる。また興味深いことに、チャネル上の一部の領域での傾きマップのコントラストがグレイン形状に一致しており、ある特定のグレインにおいて傾きが小さくなっている。これは、その対応するグレインと電極間の電気抵抗が周囲と比較して小さく、キャリアが電極へと排出されるのに必要な時間が小さくなるため、トラップ電荷の放出頻度が高いことを示唆している。
5.3 時間分解 KFM 法による有機薄膜トランジスタの評価

前節で説明したゲート電圧掃引法では、OTFT への印加バイアスを掃引した時にチャネル上に生じる長寿命のトラップ電荷の可視化を行ったが、その測定結果からトラップ電荷がバイアス掃引中に脱トラップしており、電荷分布は時々刻々と変化していることが分かった。しかしゲート電圧掃引法は、OTFT のチャネル内のトラップ電荷が電極へと排出されるのに要する時間がゲート電圧の掃引時間よりも十分に長いことを前提とした測定であり、トラップ電荷分布の時間的変化を評価する手法としては不十分であった。トラップ準位から電荷の放出が生じる時間は準位の深さによって異なるが、もしその時間が KFM の時間分解能（〜 3 ms）よりも遅いのであれば、トラップ電荷分布の変化によって生じる電位の時間変化を観察することが可能である。そこで本節では、パルス電圧で OTFT を駆動した後にチャネル上で生じる電荷分布の時間変化を KFM で時間分解観察する時間分解 KFM 法の概要について説明し、さらに本手法を用いて DNTT-OTFT のチャネル領域における電荷分布を評価した結果について述べる。

5.3.1 手法の概要

図5.8に、時間分解 KFM 法による測定の概略図を示す。本手法は KFM による電位測定をベースとしており、測定系はゲート電圧掃引法と同様の構成を用いる。ゲート電圧掃引法と異なる点は、デバイスへのバイアスの印加方法とデータの再構成方法である。ゲート電圧掃引法では、試料上の各点で V_G を掃引した時の表面電位を測定し、V_G の関数として記録していた。一方本節では、デバイスに数十 ms 程度バイアスを印加して有機半導体層にキャリアを注入・蓄積した後バイアスをオフし、オフ後にはチャネル上に生じる表面電位変化を時間 t の関数として記録する。この測定を試料平面上の各ピクセルにおいて行った後、得られたデータを再構成して時間軸上で表示することで表面電位像の時間変化を得ることができる。本手法ではゲート電圧掃引法とは異なり、デバイスのソース・ドレイン・ゲートに任意波形のバイアスを印加した時の電位の時間変化を可視化することが可能である。
5.3 時間分解 KFM 法による有機薄膜トランジスタの評価

図 5.8: 時間分解 KFM 法による測定の概略図. (a) 測定の装置構成. (b) 測定で集録されたデータの再構成によって電位の時間変化を可視化する概念図.

5.3.2 デバイス作製

評価対象のデバイスとして、トップコンタクト・ボトムゲート構造の OTFT を作製した。作製したデバイス構造を図 5.9 に示す。今回作製するデバイスでは Si 基板切り出し後に有機シランを用いて表面処理を行い、基板表面に自己組織化単分子膜 (self-assembled monolayer: SAM) を形成した上に薄膜を積層してデバイスを作製した。これは表面処理を行わない状態の SiO₂ では基板表面に存在するヒドロキシル基がトラップ準位となるため、ヒドロキシル基を別の官能基で置換して不要な界面トラップ準位を抑制することを目的としている。デバイスの作製手順を以下に示す。

- 基板切り出し・洗浄
 表面熱酸化膜 300 nm 付きの高濃度 p 型ドープ Si 基板を 1.5 cm 角に切り出し、エタノール中で 10 分間超音波洗浄を行った。さらに加熱したイソプロパノールの蒸気を使って蒸気洗浄を行った後、30 分間 UV オゾン洗浄を行った。

- SAM による Si 基板の表面修飾
 洗浄後の Si 基板を炭素数 18 の長鎖アルキル鎖を有する n-octadecyltriethoxy-silane (OTES) の溶液を入れた容器と共にテフロン製容器に大気下で封入
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

図5.9: 作製したデバイス構造。

し、150℃に加熱した窒素置換されたオープン内に２時間入れた。一定時間が経過しSAM形成の化学反応が終了した後、トルエン、アセトン、エタノール、超純水を入れたシャーレ中に基板を順に流し出した。最後に加熱したイソプロパノールの蒸気で蒸気洗浄を行った。

- 有機半導体の真空蒸着
 OTE5で表面処理を行った基板上にDNTTを真空蒸着法で60 nm堆積した。蒸着時の真空度は1.0×10⁻⁴ Pa以下であった。

- 金属電極の真空蒸着
 チャネル長5 µmの電極ギャップを形成するため、直径5 µmの炭素繊維(IMS65, Toho Tenax)のフィラメントを1 cm程度の長さに切り、DNTTを蒸着させたSi基板上にポリイミドテープを用いて固定した。その上にシェードマスクを使って真空蒸着法でAuを40 nm堆積して電極パターンを形成した後、最後に炭素繊維のフィラメントをはがしてチャネル長5 µmのトップコントラクト型デバイスを完成させた。Auの蒸着時の真空度は1.0×10⁻⁴ Pa以下であった。

5.3.3 表面電位の時間変化の可視化

実験条件

探針にはPtコートされた共振周波数が約70 kHzの探針(Olympus, OMCL-AC240TM)を用いた。測定では表面形状は256×256ピクセル上において取得し、そのうち64×64ピクセルにおいてパルス電圧を印加した時の表面電位の時間変化を測定した。バイアスの印加タイミングはファンクションジェネレータ(Tektronix, AFG3022B)のトリガ入力に走査ソフトのトリガ出力を接続して制御を行った。印加したバイアスとCPD信号は、ロガー(Keyence, NR-500)を用いて
5.3 時間分解 KFM 法による有機薄膜トランジスタの評価

サンプリング周波数 1 kHz で連続記録した。1 ピクセルにおける電位変化の取得時間は個々の測定によって異なるが、多くの場合 1 s 程度とした。また 1 回の測定に要する平均時間（表面形状像と電位データの集録にかかる合計時間）は 2 時間程度であった。測定した電位データは Matlab を用いて再構成を行った。

測定結果

図 5.10 に DNTT-OTFT に対して時間分解 KFM 測定を行って取得したデータの一部を示す。測定においてドレインとゲートを接地した状態で、ソースに \(V_S = 3 \) V (幅 30 ms) のパルス電圧を印加した。そして \(V_S \) 印加後から \(V_S \) ターンオフ 950 ms 経過後までの間の表面電位変化を取得した。図 5.10(a) の表面形状像では、チャネル領域が数百 nm 程度の粒径の多結晶 DNTT 薄膜であることが確認できる。また表面形状像で像の左右に位置する高い領域が電極に対応している。

\(V_S = 3 \) V をターンオンして 20 ms が経過した時の表面電位像を図 5.10(b) に示す。ソースが 3 V、ドレインが 0 V となっており、その間のチャネルに対応した領域では DNTT 薄膜のグレイン形状を反映した不均一な電位勾配が見られる。この像は \(I_D \) が流れている状態での電位分布像であり、通常の KFM で一定バイアス条件下で走査した場合に取得される定常状態の電位像に対応する。次にパルス電圧をターンオフ後 750 ms 経過時の電位像を図 5.10(c) に示す。バイアスをターンオフした状態であるにも関わらず、チャネルの中央部付近に正の電位が分布していることが分かる。このパルス電圧印加後に観察された正の電位は、チャネルから電極への排出過程にあるキャリアに由来する電位であると考えられる。

次にバイアスの印加条件を変えてチャネル上での電位応答の測定を再度行った。デバイスのドレインとゲートを接地した状態でソースに \(V_S = 3 \) V を印加した場合の表面電位の時間変化を図 5.11(a)–(c) に、ドレインとソースを接地した状態でゲートに \(V_G = -3 \) V を印加した場合の表面電位の時間変化を図 5.11(d)–(f) に示す。ここで、(a)–(c) は図 5.10 で示したデータを異なる時間・コントラストで表示したものである。バイアス条件が異なるものの、ターンオフ後の電位像ではいずれの場合にもチャネル上でトラップ電荷に由来すると考えられる正の電位が確認された。その一方で、バイアスをターンオフした後 950 ms 経過後の電位分布を比較すると、ソースにバイアスを印加した (c) の場合の方がゲートにバイアスを印加した (f) の場合と比較して正電位が小さい、すなわち電荷密度が小さいことが分かれる。これは図 5.12 に示すように、ゲートに \(V_G = -3 \) V を印加した場合にはチャネ
図 5.10: DNTT-OTFT のドレインとゲートを接地した状態でソースに $V_S = 3$ V のパルス電圧 (幅 30 ms) を印加した場合の表面電位の変化. (a) 表面形状像. (b) V_S ターンオン後 20 ms 経過時の表面電位像. (c) V_S ターンオフ後 750 ms 経過時の表面電位像.
図 5.11: 異なるバイアス印加条件下での表面電位の時間変化の比較. (a)–(c) ドレインとゲートを接地した状態でソースに $V_S = 3\, \text{V}$ (幅 30 ms) を印加した場合 ((a) V_S ターンオン後 20 ms 経過時. (b) V_S ターンオフ後 20 ms 経過後. (c) V_S ターンオフ後 950 ms 経過後.). (d)–(f) ドレインとソースを接地した状態でゲートに $V_G = -3\, \text{V}$ (幅 30 ms) を印加した場合 ((d) V_G ターンオン後 20 ms 経過時. (e) V_G ターンオフ後 20 ms 経過後. (f) V_G ターンオフ後 950 ms 経過後.).
第 5 章 KFM 及び EFM を応用した電荷分布評価手法の開発

図 5.12: バイアスターンオフ後のチャネル上の電位の時間変化の模式図。 (a) ドレインとゲートを接地してソースにバイアスを印加した場合、(b) ドレインとソースを接地してゲートにバイアスを印加した場合。

ル領域全体に 3 V に相当するキャリアが一様に蓄積されるのに対し、ソースに $V_S = 3$ V を印加した場合にはドレイン・ゲート間に電位差が存在せずチャネルがピンチオフされているため、バイアス印加時にチャネル内に蓄積された電荷密度が相対的に小さいためであると考えられる。バイアスがターンオフされた後は蓄積されたキャリアが拡散によって電極へと排出されるが、初期状態で蓄積された電荷密度が小さい方が一定時間経過後のチャネル内の電荷量も小さくなる。そのため、初期状態での電荷密度が小さい場合（ソースにバイアスを印加した場合）の方が観察された正の電位の大きさが小さかったのであると考えられる。またこの結果はゲート電圧掃引法で得られた測定結果と同様に、チャネル内の電荷密度が最初に蓄積された電荷密度に依存していることを示している。

図 5.13 は、OTFT のソースとドレインを接地した状態でゲートに $V_G = -3$ V を印加した時の、チャネル上のある点における電位の時間変化 (図 5.10 の電位像のデータの一部) である。まず V_G をターンオンした直後に電位が 0 V 付近へと变化しているが、これはチャネルにキャリアが注入されて有機半導体層がソース・ドレインと同電位に近づいたためである。またこの時チャネル内には V_G に印加されている -3 V に相当するキャリアが蓄積されている。この後、V_G をターンオフすると、この蓄積キャリアの一部が可視化され、約 1.6 V の正電位が見られることが分かる。ここで DNTT 薄膜のキャリア密度の変化による準位シフトの影響が

V_G をターンオンまたはターンオフした直後に観察される表面電位のスパイクは KFM 測定に用
5.3 時間分解 KFM 法による有機薄膜トランジスタの評価

図 5.13: ドレインとソースを接地した状態でゲートに $V_G = 3 \text{V}(\text{幅} 30 \text{ ms})$ を印加した時のチャネル上のある点における表面電位の時間変化。

無視できると仮定すると、蓄積された3Vに相当するキャリアのうち53%がKFMで測定されており、逆に残りの47%の電荷はKFMの時間分解能($\sim 3 \text{ ms}$)よりも短時間で電極へと排出されていることになる。つまり DNTT-OTFT のチャネルからキャリアの排出過程では、まずバイアスをオンオフした直後の短時間内に大部分のキャリアが初期の電極へと排出されてキャリア密度が低下し、その後応答が大きく減少したキャリア（トラップ準位に捕捉されていると考えられる）が比較的遅い時定数で緩和するという多重の緩和過程になっていることが示唆される。

また図 5.13 では、電位が指数関数的に減衰している。この電位の減衰の時定数はチャネル上の各点で不均一に分布しており、この分布を可視化することでチャネル内の局所的な性質を分析することが期待できる。そこでバイアスオフ後の電位の減衰曲線に対して以下の式を用いてフィッティングを行い、チャネル上の各点における電位の減衰の時定数のマッピングを行った。

$$V_{\text{fit}}(t) = V_0 + V_{\text{init}} \exp\left(-\frac{t}{\tau}\right)$$ \hspace{1cm} (5.2)

ここで V_0 はバイアスオンオフ前の表面電位、V_{init} は電位の減衰成分の初期値、τ は電位の減衰時定数である。

チャネル上の各点における表面電位の減衰時定数をマッピングした結果（時定数

ているバイアスフィードバック回路のオープニュートによる。
第 5 章 KFM 及び EFM を応用した電荷分布評価手法の開発

図 5.14: 表面電位の減衰時定数のマップ。

マップを図 5.14 に示す。また、時定数マップを得るために用いた測定データを電位像として表示した結果の一部を図 5.15 に示す。時定数マップの作成にはソースとドレインを接地してゲートにバイアスを印加する条件での測定データを用いた。時定数マップでは、電極の近傍の領域では電位の減衰時定数が小さい（〜150 ms）一方、電極から離れたチャネル中央付近では時定数が比較的大きく、キャリアが長時間トラップされている（〜450 ms）ことが分かる。この空間的に不均一な時定数の分布は分布定数回路モデルを用いて説明することができる。すなわち、チャネル上のある点から電極に至るまでの抵抗 R がチャネルの中央部では相対的に大きいため、蓄積電荷の緩和時定数 RC が増加するためであると考えられる。しかし多結晶薄膜ではチャネル上で抵抗が一様に分布しており、電極までの距離のみならずグレイン境界の有無もチャネルの抵抗値に寄与するため、グレイン形状を反映した複雑な時定数分布となったと考えられる。

図 5.16 に、DNTT-OTFT の表面形状像に時定数マップの等価線 （τ = 274 ms）を重ねて表示した像を示す。表面形状が 256 × 256 ピクセルでマップされているのに対して時定数は 64 × 64 ピクセルでマップされており、表面形状像と時定数マップの空間分解能は異なる点に注意が必要であるが、表面形状像におけるグレイン境界と時定数の等価線が一致している領域が存在することが確認出来る。これは DNTT-OTFT のチャネル領域から電極への緩和過程にある正孔が、図 5.17 に示すように結晶粒界に存在するポテンシャル障壁によって移動が妨げられているためであると考えられる。また粒界ではポテンシャル障壁が存在するだけでなく、トラップ準位密度が局所的に高くなることがベンゼンなどの一部の有機半導体について報告されている125,126。今回評価対象とした DNTT-OTFT のチャネル部においても、これらの要因により空間的に不均一な時定数分布が得られたことが考
図 5.15: ドレインとソースを接地した状態でゲートに $V_G = 3 \text{V}(\text{幅} 30 \text{ms})$ を印加した時の表面電位の時間変化。 (a) V_G ターンオン直前。 (b) V_G ターンオン後 10 ms 経過時。 (c) V_G ターンオフ後 18 ms 経過時。 (d) V_G ターンオフ後 150 ms 経過時。 (e) V_G ターンオフ後 450 ms 経過時。 (f) V_G ターンオフ後 950 ms 経過時。

えられる。

5.3.4 シミュレーションによる移動度の見積もり

時間分解 KFM 法を用いることで DNTT-OTFT にバイアスを印加した後のチャネル上のトラップ電荷分布の時間変化を測定できることが分かった。一方、デバイスのチャネル上における電荷分布の時間発展はキャリアの拡散を記述する微分方程式を用いて数値シミュレーションで求めることが出来る。そこで時間分解 KFM の測定結果を数値シミュレーションを用いて解析することで、キャリアの移動度を見積もりることが可能である。ここではまずその手順について述べる。

電界効果トランジスタのチャネル内のキャリアダイナミクスを記述するモデルはこれまでに複数報告されているが、ここでは Burns らによって報告されている一次元伝送線路に基づいたモデルを用いた 127)。Burns のモデルの模式図を図 5.18に示す。ここでは簡単のため DNTT 薄膜の膜厚方向の電荷分布の変化は無視できると仮定し、トップコンタクト型 OTFT のチャネル内の空間電荷分布を一次元の
第 5 章 KFM 及び EFM を応用した電荷分布評価手法の開発

図 5.16: DNTT-OTFT の表面形状像に減衰時定数のマップの等値線（τ = 274 ms）を重畳した像。

図 5.17: 多結晶 p 型有機半導体薄膜中での正孔の伝導機構の模式図。
図 5.18: OTFT のチャネル部の電位の時間発展のシミュレーションで仮定しているモデルの概略図。

モデルで扱う。Burns のモデルでは電界効果トランジスタのチャネル内において、ある座標 \(x \) と時間 \(t \) の電位 \(\phi(x, t) \) が以下の偏微分方程式に従うと仮定する。\(^{128}\)

\[
\frac{\partial I(x, t)}{\partial x} = WC_0 \frac{\partial \phi(x, t)}{\partial t} \quad (5.3)
\]

\[
\frac{\partial \phi(x, t)}{\partial x} = \frac{r}{W} I(x, t) \quad (5.4)
\]

ここで \(I \) は電流、\(W \) はチャネル幅、\(C_0 \) はゲート絶縁膜の単位面積当たりの静電容量、\(r \) はチャネルのシート抵抗である。ここで \(C_0 \phi(x, t) \) がある \((x, t) \) での空間電荷に相当することに注意すると、式 (5.3) は電荷の保存則を示す式（連続の式）であることが理解できる。また式 (5.4) はオームの法則を示す式である。さらに \(r \) はキャリアの移動度 \(\mu \) を用いて以下の式で表される。\(^{128}\)

\[
r^{-1} = \mu C_0 \phi(x, t) \quad (5.5)
\]

ここでも \(C_0 \phi(x, t) \) がある \((x, t) \) における空間電荷に相当することに注意すると、式 (5.5) は導電率を示す式であることが理解できる。式 (5.4) を微分して式 (5.3) に代入し、さらに式 (5.5) を代入して整理すると以下の偏微分方程式が得られる。

\[
\frac{\partial \phi(x, t)}{\partial t} = \frac{\mu}{2} \frac{\partial^2 \phi(x, t)^2}{\partial x^2} \quad (5.6)
\]

式 (5.6) は一般的な拡散方程式に似た形式であるが、\(\phi(x, t) \) の次数が一般的な拡散方程式と異なるため、通常の拡散方程式の解析手法を適用することが出来ない点に注意が必要である。

また式 (5.6) には \(\mu \) が含まれているが、ここでは \(\mu \) は定数ではなく正孔密度 \(p \)や欠陥パラメータ (disorder parameter) などのパラメータに依存する変数として取り扱う。\(\mu \) の \(p \) に対する依存性を表現する式として、以下の表式に示すモデル (extended Gaussian disorder model: EGDM) に基づいた式を利用した。EGDM
第 5 章 KFM 及び EFM を応用した電荷分布評価手法の開発

では μ は以下の式で表される \(^{(129)}\).

$$
\mu = \mu_0 \exp\left(-0.42\hat{\sigma}^2 + \frac{1}{2}(\hat{\sigma}^2 - \hat{\sigma})(2pa^3)\delta\right) \quad (5.7)
$$

$$
\hat{\sigma} = \frac{\sigma}{kT} \quad (5.8)
$$

$$
\delta = \frac{2}{\hat{\sigma}^2}(\ln(\hat{\sigma}^2 - \hat{\sigma}) - \ln(4)) \quad (5.9)
$$

ここで σ は無秩序パラメータ (disorder parameter), a は DNTT の分子間距離である。EGDM では通常、μ が電界と p に依存することが仮定される。しかし本研究の系ではバイアスが印加されていない状態での電荷の挙動をシミュレーションするため、μ の電界依存の効果は無視できると仮定した。

式 (5.7), 式 (5.8), 式 (5.9) を式 (5.6) に代入し、各パラメータに適当な初期条件を与え、さらに適当な電位分布を初期条件として与えると、その条件下における電位分布の時間発展をシミュレーションすることができる。そこで電位の初期条件と境界条件を与えた状態で各パラメータに適当な初期条件を与えて電位の時間発展を計算し、その結果と時間分解 KFM の測定結果の二乗誤差を最小化するパラメータを求めることで μ の見積もりを行った。

μ の見積もりに用いる測定データは、ソースとドレインを接地してゲートに $V_G = -3 \text{ V}$ を印加した時の時間分解 KFM 測定の結果 (図 5.15) を用いた。$x \times y = 64 \times 64$ のデータピクセルで測定を行って得られたデータの中から、$y = 25$ の行に対応するデータを選出し、さらにそれを補正して用いた。補正では、チャネル部の DNTT と Au 電極上の電位差を、チャネル部の DNTT の電位から差し引き、トラップ電荷に由来する成分以外の電位のオフセット成分を除去した。また表面電位の測定データのうち V_G ターンオフ直後の時間領域では、スパイク状の電位変化 (KFM の電位フィードバック回路のオーバーシュートによる) が見られ、電位フィードバックが実際の電位変化に追従していないことが示唆された。そのため、一定時間が経過して電位フィードバックが表面電位に確実に追従している V_G ターンオフ後 50 ms 経過時点から 950 ms 経過時までの 900 ms 間のデータを選出し用いた。電位分布の初期条件は、時間分解 KFM で V_G ターンオフ後 50 ms に対応する測定データを多項式近似して計算に用いた。$x = 0, L$ における境界条件は電位一定条件 (ディリクレ条件) とした。さらに a の値には DNTT の a 軸方向の格子定数 ($a = 6.2 \times 10^{-10} \text{ m}$) を用いた。また KFM の測定データでは、チャネル部にトラップ電荷が存在しない状態でも電極上の DNTT とチャネル部の DNTT に電位差が存在したため、こ
図5.19: 電位の時間発展のシミュレーション結果と測定結果の比較. (a) シミュレーション結果 ($\mu_0 = 1.1 \times 10^{-6}$ cm2/Vs, $\sigma = 0.14$ eV, $a = 6.2 \times 10^{-10}$ m の時). (b) 時間分解KFMによる測定結果.

の差を補正する必要があった。この電位差は厳密には V_G に依存して変化していると考えられるが$^{130-132}$, $V_G = -3$ V が印加された時の電位差 (電極上よりもチャネル部の方が 0.14 V 高い) を予め引いておくことで近似的にチャネル部のDNTTでの電位の補正を行った。これらの条件のもとで数値シミュレーションを行い、μ を見積もるために必要となる μ_0 と σ を求めた。

図5.20に電位の時間発展のシミュレーション結果と、時間分解KFMで測定した結果を示す。図5.20(a)のシミュレーション結果は求まったパラメータ ($\mu_0 = 1.1 \times 10^{-6}$ cm2/Vs, $\sigma = 0.14$ eV) を式5.7に代入して求めたものである。図5.20(b)の時間分解KFMの測定結果とシミュレーション結果の電位の時間発展を比較すると、類似した電位の時間発展が得られていることが分かる。一方でシミュレーション結果では 900 ms 経過後にはチャネル上の電位は空間的に平均化されるのに対し、図5.20(b)では 900 ms 経過後においても電位が高い領域と低い領域のばらつきが大きいことが分かる。これはシミュレーション結果では考慮されていないグレイン単位の電極の影響が時間分解KFMの測定結果では現れていることによると考えられる。また図5.20に、シミュレーション結果から得られた μ の p に対する依存性のグラフを示す。グラフの p のプロット範囲は、時間分解KFMの測定結果でDNTT薄膜内に蓄積されていると見積もられる p に対応する範囲のみをプロットした。$V_G = -3$ V を印加した場合の p は、蓄積キャリアが有機半導体/ゲート絶縁膜界面近傍の1層に局在すると仮定した場合に $10^{14} - 10^{16}$ cm$^{-3}$ 程度の値であったが、この時 μ は $10^{-7} - 10^{-8}$ cm2/Vs程度の値となった。この値は、本研究と同じトップコ
第5章 KFM 及び EFMを応用した電荷分布評価手法の開発

図5.20: EGDMを適用して求めた移動度のキャリア密度依存性。

インタクト・ボトムゲート型構造のDNTT-OTFTの電気特性の測定結果からμを見積もった先行研究68)で報告されている1.6〜1.8 cm²/Vsと比較して非常に小さい。これはバイアスターンオフ直後の極めて短時間に生じる初期のキャリア排出過程でDNTT薄膜の正孔密度が大幅に減少し、それに伴って移動度が大きく減少した正孔のみが時間分解KFMで可視化されているためであると考えられる。先行研究でのμの評価では一定のV_Gが印加された状態、すなわちρが高い状態で測定を行っている。これに対し今回の時間分解KFMによる測定では、測定の時間分解能(〜3 ms)よりも早い時定数で緩和しているキャリアは測定されていないと考えられる。一般的にμはρに依存しておりρの増加に伴ってμも増加するため129)、時間分解KFMによる測定ではチャネルの正孔密度が大きく減少した後のμが小さいキャリアのみが可視化されたのであらると考えられる。バイアスターンオフ直後の短時間に生じる初期のキャリア排出過程でのμを評価するためには、測定の時間分解能を現在よりも大幅に向上する必要がある。

またμが小さく見積もられた別の原因として、時間分解KFMで測定された電位をρに換算する際の前提に問題があったことが考えられる。今回シミュレーションに用いたモデルではチャネルが一次元であると仮定しており、DNTTの膜厚方向へのρの分布は考慮されていなかった。そのため、蓄積キャリアが有機半導体/ゲート絶縁膜界面近傍の分子1層に局在すると仮定してρを求めた。しかし実際ににはDNTTは60 nm程度の有限の膜厚を有しているため、DNTT-OTFTのバイアスターンオフ後のキャリア排出過程においてキャリアが有機半導体薄膜の厚み方向に拡散し、実際のρは仮定に基づいて求めたρよりも小さいと考えられる。
5.4 時間分解 EFM 法による有機薄膜トランジスタの評価

のため今回のシミュレーション結果では、グラフでプロットされている 10^{14}–10^{16} cm$^{-3}$ よりも小さい p に対応する μ が求まっていたため、μ が小さく見積もられた可能性がある。

5.4 時間分解 EFM 法による有機薄膜トランジスタの評価

前節では、時間分解 KFM を用いて電荷のチャネルからの排出過程の可視化を行ったが、時間分解 KFM では測定の時間分解能が 3 ms 程度であるため、これよりも早い時間スケールでチャネルから排出されるキャリアの可視化は困難であった。時間分解 KFM では、交流バイアスで変調された静電気力をロックインアンプを用いて検出し、それがゼロになるように直流電圧をバイアスフィードバック回路から試料または探針に出力することによって電位測定を行っている。そのため、KFM 測定の時間分解能は、交流バイアスの周波数（FM-KFM では数 kHz）やバイアスフィードバック回路の帯域（制御回路のゲインの設定によって異なるが、通常数百 Hz）によって制限される。一方で静電気力の変調を行わず、静電気力によって生じる探針の共振周波数シフトの時間変化を直接検出すれば、測定の時間分解能が大幅に向上することが期待できる。この方法を以後時間分解 EFM 法と呼ぶ。特に瞬時周波数法を時間分解 EFM に適用することで、探針の共振周波数変化測定の時間分解能を向上することが可能である。本節では、まず時間分解 EFM 法による測定の要素技術について説明した後、本手法を用いて DNTT-OTFT のチャネルからの電荷の排出過程の評価を行った内容について説明する。

5.4.1 手法の概要

時間分解 EFM では探針-試料間に相互作用する静電気力を高時間分解能で検出することが重要である。一般的な EFM では探針の変位信号を PLL によって周波数復調することで共振周波数シフトを検出しているが、この手法では PLL の応答速度によって時間分解能が制限される。PLL の出力の変化の時定数は PLL のループゲイン及びループフィルタの設定により決まるが、典型的に数百 μs 程度であり、これより高い時間分解能での共振周波数変化の検出は困難である。そこで本研究では、探針の変位信号を瞬時周波数法による信号処理によって復調して探針振
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

動の瞬時周波数の時変信号を得ることで、静電気力検出の時間分解能の向上を試みた。

瞬時周波数法

正弦波の周波数が時間と共に変化する場合、ある瞬間の周波数は信号の位相の時間変化率として定義される。しかし位相は複素信号に対してのみ与えられるため、探針の位相信号のような実時間信号の周波数の時間変化を求めるためには、これをまず複素信号に変換することが必要となる。一般的には、実信号から複素信号を生成する場合、実信号に対してフーリエ変換を適用して位相がπ/2だけ遅れた信号を生成し、それを虚部とする複素信号（解析信号）を定義する134）。この時、実信号s(t)の解析信号z(t)は以下のように定義される。

\[
z(t) = s(t) + \frac{j}{\pi} \int \frac{s(t')}{t-t'} dt'
\]

この解析信号z(t)を用いると、瞬時周波数は\(\frac{\pi}{dt} \angle z(t)\)で与えられ、各瞬間の振幅（瞬時包絡線）は|z(t)|で与えられる。これらの一連の信号処理は数値計算ソフトを用いることで実現可能である。本研究では、測定した実時間信号をMatlabのSignal Processing Toolboxを利用して信号処理することで、探針の共振の瞬時周波数の時間波形を得た。

瞬時周波数解析により得られる信号の時間分解能を確認するため、以下のよう
</textarea>
図5.21：自励発振している探針にパルス的な静電気力変化を与えた時の探針の変位信号を異なる方法で周波数復調した結果の比較。 (a) 探針の変位信号を瞬時周波数法で復調して得られた瞬時周波数信号。 (b) PLLで復調された周波数シフト信号。が可能であることが分かる。

トリガタイミング調整回路の作製

FM-EFMでは、原理的には探針の振動周期程度の時間スケールで探針の運動が変化する。すなわち、探針の共振周波数をf_0とすると$1/f_0$程度の静電気力の時間分解能が得られる。一方で、$1/f_0$と同程度もしくはこれよりも早い時間スケールで変化する静電気力を測定する場合、静電気力は保存力としては作用せず、振動する探針のどの位相で静電気力が入力されるのかによって探針応答が変化することが考えられる。この問題を回避するため、測定で外部から入力する静電気力、すなわちバイアスは、探針振動の位相に同期して入力することが望ましい。そこで、
第 5 章 KFM 及び EFM を応用した電荷分布評価手法の開発

図 5.22: トリガタイミング調整回路の回路図。

AFM の走査ソフトから出力されたトリガー信号を一定時間待機させておき、探針振動のある位相においてトリガーを出力するためのトリガタイミング調整回路を作製した。

図 5.22 にその回路図を示す。回路の作製に当たっては、同様の手法を報告している先行研究を参考にした。

回路に入力された探針の変位信号は、まずコンパレータ（AD790）に入力される。コンパレータのもう一つの入力には DC 電圧を与える。この DC 電圧は可変抵抗によって +5 V から -5 V まで調整できるようにになっている。コンパレータの TTL 出力は、正弦波状の探針の変位信号が基準となる DC 電圧よりも大きくなった瞬間に立ち上がるため、基準電圧を調整することでコンパレータの出力タイミングを変化させることができるとする。さらに、コンパレータの出力は後段の D フリップフロップのクロック入力に接続されており、D 入力に接続されたトリガー信号がコンパレータ出力が立ち上がった瞬間に出力される。なお、この回路では探針の変位信号の立ち上がり側に対応する位相でしかトリガーを出力できないため、探針の変位信号の全ての位相でトリガーを出力可能にするためには、探針の変位信号のラインに利得 1 の反転増幅回路を挿入するスイッチを追加するなどの変更が必要である。

作製したトリガタイミング調整回路に、100 kHz の正弦波とトリガー信号を入力した場合の出力波形を図 5.23 に示す。この時、コンパレータの基準電圧は 0 V に設定した状態で動作させた。図 5.23 に示すように出力トリガーは、外部トリガー
5.4 時間分解 EFM 法による有機薄膜トランジスタの評価

図 5.23: トリガタイミング調整回路に 100 kHz の正弦波とトリガー信号を入力した場合の出力波形。コンパレータの基準電圧は 0 V に設定した。

が入力された直後の正弦波のポジティブエッジ（正弦波状の交流電圧が負から正に変化する点）に相当するタイミングで出力されており、本回路を用いることで正弦波に同期したトリガーを出力出来ることが分かる。これ以後の時間分解 EFM の測定では、本回路を用いてトリガタイミングを探針の変位信号に同期させた状態で測定を行った。

時間分解 EFM による測定の概略

図 5.24 に、時間分解 EFM 法によって DNTT-OTFT のキャリア排出過程を可視化するための測定の概略図を示す。測定対象のデバイスには、時間分解 KFM 法での測定で評価対象としたトップコンタクト型の DNTT-OTFT を再度用いた。また試料の配置は時間分解 KFM による評価を行った際と同様に、ソース・ドレインの両電極を電気的に接地した状態でゲートにバイアスを印加する構成とした。このデバイスにバイアスを印加して DNTT-OTFT のチャネル内にキャリアを蓄積させた後バイアスをターンオフすると、チャネル上では排出過程のキャリアによって表面電位が増加する。この時、チャネル上にアプローチした状態の探針に静電気力が作用して探針の振動状態が変化するが、この時の探針の変位信号を記録する。この時、変位信号を測定するためのデバイスとして、サンプリング周波数の異な
第5章 KFM及びEFMを応用した電荷分布評価手法の開発

図5.24: 時間分解EFM法による測定の概略図。

これ2種類のロガーを用いた。一つ目のロガーでは10 MHzのサンプリング周波数で探針の変位の信号を直接記録した。このデータは測定後の信号処理によって瞬時周波数信号へと变换されるため、バイアスをターンオフした直後の高速の静電気力変化が100 nsの時間分解能で得られる。しかし10 MHzの高いサンプリング周波数で記録を行うため、データ量が膨大になるという欠点がある。そこでバイアスターンオフ前後の数msの時間のみ10 MHzのサンプリング周波数で探針の変位信号をサンプリングし、それ以外の時間の探針の周波数シフトのデータはPLLで復調された信号を二つ目のロガーを用いて10 kHzでサンプリングする構成とした。この構成を用いることにより、OTFTへの印加バイアスをターンオフした直後の高速の静電気力変化は高時間分解能で取得しつつ、全体のデータ量を低減することが出来る。またサンプルへのパルス電圧の印加及び各ロガーでのデータ集録は、トリガタイミング調整回路を用いて探針の変位信号の特定の位相に同期して行った。

5.4.2 静電気力の時間変化の可視化

EFMでは静電気力によって生じる探針振動の周波数シフトを測定するが、測定された周波数シフトから試料の表面電位を見積もるためには、試料の表面電位と周波数シフトの関係（パラボラカーブ）が必要である。そこで予めDNTT-OTFTの評価を行う探針を用いて、パラボラカーブをAu電極上で測定した。その結果を図5.25に示す。カンチレバーはNCH-Pt（Nanoworld社製）を用いた。また測定
図 5.25: 探針を Αu 電極上へアプローチした状態で電極電位を掃引した時の周波数シフトの変化。カシレバー（NCHPt, Nanoworld 社製）に -1.3 V を印加した状態で取得。

は探針に -1.3 V を印加した状態で行った。これはバイアスを印加することでパラボラカーブの頂点位置を x 軸負方向にシフトさせ、パラボラカーブの原点付近における表面電位と周波数シフトの対応関係を分かりやすくするためである。この後に説明する DNTT-OTFT の評価のように、主に探針よりも試料の表面電位が高いと考えられる状態で測定する場合においては、パラボラカーブをシフトしておくことで試料電位と周波数シフトを対応付けすることが容易になる。また試料上を周波数一定モードで走査する時に、探針-試料間に静電気力のバイアスが加算されることで、バイアスがない場合よりも探針は試料から離れた位置を走査するため、試料と探針が意図せず接触する可能性を低減する効果も期待できる。図 5.25 ではパラボラカーブの頂点位置が -1.12 V であり、x 軸負方向へシフトしていることが分かる。なお本測定は Au 電極上で行われており、DNTT-OTFT のチャネル上で取得されるパラボラカーブは非線形の二次の係数 \(\frac{d^2 C}{dx^2} \) の値が異なると考えられる。そのため Au 電極上で得られたパラボラカーブから求まる周波数シフトと電位の関係はあくまで目安であり、定量的な電位の見積もりは困難であることに注意が必要である。

次に DNTT-OTFT のチャネル上の一点において、共振周波数の時間変化の測定を行った。カシレバーを DNTT-OTFT のチャネル上にアプローチした状態で \(V_G = -15 \) V のパルス電圧 (幅 5 ms) を印加し、パルス電圧がターンオンされた直後
図 5.26: (a) DNTT-OTFT への印加電圧をターンオフした時の探針の共振周波数変化を瞬時周波数法と PLL で復調した結果の比較。 (b) (a) の一部の拡大図。

の探針の変位信号及び PLL で復調された周波数シフト信号を測定した。この時、瞬時周波数法によって得られた信号と PLL で復調された信号の比較を図 5.26 に示す。図中の t = 50 μs がパルス電圧のターンオフの時刻に対応しているが、ターンオフ後にどちらの信号においても負の周波数シフトが生じていることが確認できる。瞬時周波数法で得られた信号ではパルス電圧をターンオフした 10 μs 後に周波数シフトが極小となり、−160 Hz に達する周波数シフトのピークが見られる。今回測定に用いた探針の振動周期は約 3.6 μs であることから、パルス電圧ターンオフ後に探針が 3 周期程度振動した時点で周波数シフトがピークに達していることになる。一方 PLL で復調された信号では、パルス電圧ターンオフ直後の 20 μs 間は周波数は変化しないが、その後緩やかに減少し始め、ターンオフ後 110 μs 経過後に周波数シフトが極小 (−30 Hz) となっている。このことから、瞬時周波数法によって復調された信号では PLL で復調された信号よりも高い時間分解能で電荷の挙動に由来する静電気力の時間変化が検出されており、探針の振動周期と同程度の時間スケールの瞬時周波数の時間変化を測定可能であることが分かった。

次に DNTT-OTFT のチャネル上の各点において、パルス電圧ターンオフ時の探針応答の測定を行った。探針は共振周波数 276.47 kHz の NCH-Pt (Nanoworld 社製) を用いた。探針に −1.3 V を印加した状態で周波数シフトの設定値を 33 Hz として試料上を走査し、256×57 ピクセル上で表面形状信号を取得した。パルス電圧の印加は 128×57 ピクセルにおいて行った。DNTT-OTFT のソースとドレインを接地した状態で、ゲートに −15 V のパルス電圧を 5 ms 印加し、パルス電圧ターンオフ時の探針の変位信号の応答をロガーで記録した。探針の変位信号は、パ
ルス電圧ターンオフ前100 µs間とターンオフ後3 ms間の合計3.1 ms間をサンプリング周波数10 MHzのロガー（LPC-320910, Interface社製）で記録した。PLL（HF2LI, Zurich Instruments社製）で復調された周波数シフト信号は、パルス電圧ターンオン前5 msからターンオフ後500 msまでの510 ms間をサンプリング周波数10 kHzのロガー（NR-500, Keyence社製）で記録した。全体の測定にかかった時間はおよそ3時間であった。

DNTT-OTFTの表面形状像を図5.27(a)に、PLLで復調された信号をマッピングした周波数シフト像を図5.27(b)-(h)に示す。まず図5.27(a)の表面形状像では、チャネル領域は粒径数十nmから1.5 µm程度の多結晶DNTT薄膜で構成されていることが分かる。次に図5.27(b)のパルス電圧印加直前の周波数シフト像では周波数シフトには有意なコントラストは見られず、試料上でほとんど一様に約0 Hzである。ここで$V_G = -15$ Vを印加すると、図5.27(c)に示すようにチャネル上での周波数シフトが約10 Hz減少すること分かる。これは正孔がDNTT薄膜に注入・蓄積されたことによって、探針-試料間に作用する静電気力の係数$\frac{dC}{dV}$が増加したのであると考えられる。また表面形状像でDNTTの膜厚が薄くなった領域での周波数シフトが生じており、チャネル上に斑点状のコントラストとなって現れている。これはグレイイン境界のうち特に膜厚が薄い部分ではキャリアの蓄積及びチャネルの形成が不完全であるため、V_Gがチャネル内のキャリアによって完全には遮蔽されず、正の電位の一部がチャネル上に現れているのであると考えられる。次にV_Gをターンオフすると、チャネル上では図5.27(d)のように大きな負の周波数シフトが見られ、さらに図5.27(d)-(f)のように時間経過とともに減衰していた。このことから、V_Gをターンオフした直後のチャネルからの排出過程にある正電荷が可視化されたと考えられる。また図5.27(d)(e)の周波数シフト像では、電極エッジ近傍のDNTTの特定のグレイイン境界において周波数シフトのコントラストが急激に変化していることが分かる。これは高抵抗なグレイイン境界が、正電荷が電極へ排出されていく拡散過程を律速することを示唆している。また興味深いことに、V_Gをターンオフした後100 ms経過時の周波数シフト像である図5.27(g)では、図5.27(c)に見られる斑点状のコントラストに対応する領域において、周波数シフトが周囲より小さいことが分かる。これは多結晶薄膜のグレイイン境界では局所的にトラップ準位密度が高いため125,126、V_Gのターンオフ後にトラップ準位に捕捉される正電荷の密度が周囲よりも高くなっていることを示唆していると考えられる。

次に瞬時周波数法で復調された信号をマッピングして得られた瞬時周波数シフ
図 5.27: 時間分解 EFM の測定結果. (a) DNTT-OTFT の表面形状像. (b)-(h) ソースとドレインを接地した DNTT-OTFT に $V_G = -15$ V のパルス電圧 (幅 5 ms) を印加した時にチャネル上で得られた周波数シフト像 (PLL で復調). (b) 電圧印加直前の周波数シフト像. (c) 電圧ターンオン後 0.5 ms 経過時. (d) 電圧ターンオフ後 0.1 ms 経過時. (e) 電圧ターンオフ後 1 ms 経過時. (f) 電圧ターンオフ後 20 ms 経過時. (g) 電圧ターンオフ後 100 ms 経過時. (h) 電圧ターンオフ後 500 ms 経過時.
5.4 時間分解 EFM 法による有機薄膜トランジスタの評価

図 5.28: 瞬時周波数法で復調された信号をマッピングすることで得られた瞬時周波数シフトのマップ。(a) V_G をターンオフする直前の瞬時周波数シフト像。(b) V_G ターンオフ後 6 μs 経過時。(c) V_G ターンオフ後 20 μs 経過時。(d) V_G ターンオフ後 50 μs 経過時。

ト像を図 5.28 に示す。まず図 5.28(a) に V_G をターンオフする直前の瞬時周波数シフト像を示す。瞬時周波数法で復調された瞬時周波数シフト信号では高い時間分解能が得られる一方、復調された信号の S/N 比は PLL で復調された周波数シフト信号よりも小さい。そのため、チャネル上と電極上における瞬時周波数シフトの値に有意な差は見られない。次に図 5.28(b) に V_G をターンオフした後 6 μs 経過した時の周波数シフト像を示す。瞬時周波数シフトのコントラストが特定のグレイン境界において急峻に変化していることや、グレイノン境界のうち特に膜厚が薄い領域で周波数が正の瞬時周波数シフトが生じていることが分かる。これは図 5.27(d) で見られた特徴と一致している。また V_G をターンオフ後 50 μs 経過時よりも時間的に後の瞬時周波数シフト像では、像のコントラストの時間変化は非常に小さかった。このことから、図 5.26(b) で V_G をターンオフしてから 50 μs 間の時間内にのみ有意な S/N 比で周波数シフト像が得られることが分かった。

次に瞬時周波数シフト信号に対してヒストグラム解析を行い、V_G をターンオフした後の瞬時周波数シフトのピーク値 Δf_{peak} と、V_G をターンオフしてから瞬時周波数シフトが最小になるまでの時間 τ_{peak} を調べた。Δf_{peak} のヒストグラムを図 5.29(a) に、τ_{peak} のヒストグラムを図 5.29(b) に示す。まず図 5.29(a) の Δf_{peak} の
図 5.29: 瞬時周波数シフト像のヒストグラム解析結果。 (a) 瞬時周波数シフトの最小値のヒストグラム。 (b) V_G のターンオフ後に瞬時周波数シフトが最小値をとるまでの経過時間のヒストグラム。
ヒストグラムでは-40 Hzと-160 Hz付近にそれぞれピークが見られる。このうち-40 Hzのピークは主に電極上の領域のデータに対応しており、周波数ノイズによって検出されるピーク値であるため物理的な意味はなく、-160 Hz付近を中心に分布しているピークがチャネル領域におけるΔf_{peak}に対応している。ここで図5.25の関係を用いて-160 Hzの周波数シフトに対応する表面電位を求めると約4 Vの値が得られる。もしカンチレバーの振動がパルス電圧ターンオフ直後の静電気力変化に対して十分早く応答しており、かつ瞬時周波数数による復調が十分な時間分解能を有しているのであれば、パルス電圧のターンオフ直後に15 V分の表面電位に相当する、絶対値が数kHz程度の瞬時周波数シフトが生じるはずである。しかしこれと比較して測定された瞬時周波数シフトのピーク値の平均値はV_Gに印加している-15 Vの絶対値よりも非常に小さい。このことから、周波数シフトの大きさから正孔に由来する正電位の定量的な見積もりを行うことは困難であると考えられる。

一方で図5.29(b)のt_{peak}のヒストグラムに着目すると、6 μs付近を中心にしたピークが見られる。これまでに探針に指数関数的に変化する静電気力が作用した時の探針応答を解析した先行研究において、t_{peak}と指数関数的な静電気力の時間変化の時定数との間に定量的な関係があることが報告されている。そのため、モデル試料を用いた測定でこの関係を求めることができれば、時間分解 EFM で測定されるt_{peak}の値から静電気力の時間変化の時定数、つまり電荷密度の時間変化の時定数を求めることが可能であると考えられる。先行研究ではt_{peak}が数百μs程度の場合には、実際の静電気力の時間変化の時定数はその1/10から1/100であり、t_{peak}の時間スケールよりも高速の静電気力の時間変化を半定量的に評価できることを報告している。先行研究で評価の対象となったのは光照射によって探針-試料間の相互作用力が始状態から終状態へと指数関数的に変化するような系であり、本研究のようなパルス的に立ち上がった静電気力が指数関数的に減衰する系とは異なる。そのため先行研究で得られた関係を、直接本研究の系へと適用することは出来ない点に注意が必要であるが、一方で実際の静電気力変化の時間スケールのオーダーを見積もる際の参考にすることは可能であると考えられる。本研究で測定されたt_{peak}は、先行研究のおよそ1/100程度に相当する3~10 μsと非常に小さく、DNTT 薄膜の正孔の排出過程における電荷密度の時間変化の時定数は1 μsよりも小さいことが示唆される。
5.5 本章のまとめ

本章では、KFM 及び EFM を応用した 3 つの手法によって動作中の DNTT-OTFT のチャネル部におけるキャリア分布の可視化を行った。まず、OTFT に印加するバイアスをもとにして時表面微弱変化を測定・解析するゲート電圧印加法により、デバイス動作後にチャネル上に存在する長寿命のトラップ電荷が可視化できることを示した。次に時間分解 KFM 法によって、OTFT のチャネル部に蓄積された正孔が排出される過程における表面電位の時間変化の可視化を行った。その結果、正孔がチャネルから排出される過程において、DNTT 薄膜のグレイン境界が正孔の移動を妨げており、不均一な電位分布が形成されていることを明らかにした。また数値シミュレーションによってこの時のキャリア移動度の評価を行ったところ、バイアスターンオフ後の DNTT 薄膜における移動度は、デバイスの電気特性から評価される移動度よりも非常に小さい値であることが分かった。このことから、バイアスターンオフ直後の極めて短時間に生じる初期のキャリア排出過程で DNTT 薄膜の正孔密度が大幅に減少し、移動度が非常に小さくなった状態の正孔が時間分解 KFM で可視化されていることが示唆された。つまりバイアスターンオフ直後の初期のキャリア排出過程を定量的に評価するために、測定の時間分解能を向上する必要があることが分かった。そこでチャネル上の電位変化によって生成される静電気力をより高時間分解能で評価するため、時間分解 EFM の開発を行った。瞬時周波数を導入した時間分解 EFM では、1/f0 程度の時間分解能で探針振動の瞬時周波数の時間変化を評価可能であることを示した。さらに本手法を用いて DNTT-OTFT のチャネル領域における電位分布の時間変化の評価を行った。その結果、DNTT 薄膜のグレイン境界に対応する領域の一部で、ゲートバイアス印加時にチャネル形成が不完全であることや、局所的にトラップ電位密度が高い可能性があることが明らかになった。また瞬間周波数を用いた時間分解 EFM では、周波数シフトの測定値から試料上の電位を定量的に評価することが困難であることが分かったが、周波数シフトがピークを到達するまでの時間を測定することで静電気力の時間変化の時定数が得られる可能性があることを示した。
第6章 総括と今後の展望

本論文では、OTFTの実用化に向けたデバイスの物性制御法及び評価技術の確立に取り組んだ内容について述べた。本章では、まず本研究で得られた研究成果の総括を述べ、さらにその内容を踏まえて今後の研究展望について述べる。

6.1 総括

第3章 有機薄膜トランジスタのしきい値電圧制御手法の開発

第3章では、OTFTのしきい値電圧の制御手法の開発を行った内容について述べた。しきい値電圧はOTFTの最も重要なデバイスパラメータの一つであり、その正確な制御技術は回路を正常に動作させるために必須である。本研究では、OTFTの有機半導体/絶縁膜界面の修飾に用いられるポリマーバッファ層中にアクセプタ分子を導入する手法を開発し、OTFTのしきい値電圧の制御を試みた。その結果、PMMAバッファ層中に導入するドーパント分子の濃度を制御することでOTFTのしきい値電圧のシフト量を連続的に変化させることができる可能性を示した。一方で課題として、OTFTの界面バッファ層にアクセプタとしてF4TCNQを導入してp型動作させた場合に、ドーピング濃度の増加とともに移動度が僅かに増加することが挙げられた。またバッファ層にアクセプタが導入されたデバイスをn型動作させた場合には、バイアスストレスによる電気特性の変化量やヒステリシスが増加する可能性があることが示唆された。そのため、本手法を用いてOTFTのしきい値電圧の制御を行う場合には、しきい値電圧以外のパラメータが変化しない範囲でバッファ層中のドーパント濃度を制御する必要があることが分かった。

第4章 KFMによる塗布成膜有機トランジスタの物性評価

第4章では、OTFTのデバイス特性を律速する要因を明らかにするため、塗布成膜されたC₆-BTBT結晶を活性層とするOTFTを対象として、KFMを用いて
第6章 総括と今後の展望

デバイス動作中の表面電位計測を行った内容について述べた。KFMを用いて取得した表面電位分布の測定結果から、C8-BTBT結晶では各分子層のπ電子共役系がアルキル鎖層によって空間的に分離されているため、各層間の抵抗が各分子層内のシート抵抗と比較して非常に高いことを示唆する結果が得られた。これはC8-BTBT結晶の結晶軸c軸方向の移動数がab面内方向の移動数と比較して小さいことに合致する結果であった。次にOTFTのゲートに順バイアスを印加した状態でソース・ドレイン間にバイアスを印加すると、ソース電極端において顕著な電位降下が生じることが分かった。この結果から、デバイスの電気特性が有機半導体/電極界面の接触抵抗によって律速されていることが強く示唆された。さらにOTFTをデバイス動作させた後に全電極を電気的に接地した状態で取得した表面電位像で、C8-BTBT結晶表面のステップ構造近傍において顕著な正電位が見られたことから、ステップ構造近傍においてトラップ準位密度が局所的に増加していることが明らかになった。トラップ準位密度がステップ近傍で高い原因は明らかにすることは出来なかったが、ステップに特異的に吸着した分子が解離することで局在準位が形成されることなどが考えられる。こうした結晶表面に局在するトラップ準位は、スターガ構造のOTFTなど有機薄膜表面を横切るように電流が流れるデバイス構造のOTFTにおいて、デバイス特性を制限する要因となり得ると考えられる。

第5章 KFM及びEFMを応用した電荷分布評価手法の開発

第5章では、動作中のOTFTのチャネル部におけるキャリアの過渡的な分布を可視化する手法の開発に取り組んだ内容について述べた。まず、OTFTに印加するバイアス電圧を掃引した時の表面電位変化を測定・解析するゲート電圧掃引法により、デバイス動作後にチャネル上に存在する長寿命のトラップキャリアが可視化できることを示した。次に時間分解KFM法を用いることで、OTFTのチャネル部に蓄積された正孔の排出過程におけるチャネル上の表面電位の時間変化の可視化が可能であることを示した。この場合、正孔のチャネルからの排出過程では抵抗なDNTT薄膜のグレイン境界が正孔の輸送を妨げており、その結果チャネル上での空間的に不均一な電位分布が形成されていることを明らかにした。また数値シミュレーションを併用してこの時のキャリア移動度の評価を行ったところ、バイアスタンオフ後のDNTT薄膜における移動度は、デバイスの電気特性から評価される移動度よりも非常に小さい値であった。この結果は、バイアスタンオフ直後
6.2 今後の展望

有機薄膜トランジスタの実用化

本研究では、まず OTFT を集積化して回路として動作させるために必須の技術である、しきい値電圧の制御技術の開発に取り組み、新しいアプローチによるしきい値電圧の制御手法の提案を行った。パッファ層中に導入するドーパント濃度によって連続的にしきい値電圧を変化させることができることを示したが、今後しきい値電圧を移動度などの他のパラメータから独立した変数として制御できる技術が確立されれば、デバイスの実用化に向けた取り組みがさらに推進されると期待される。

さらに本研究ではプローブ顕微鏡を応用した OTFT のナノスケール物性評価を実施した。その結果、可溶性分子単結晶を活性層とした OTFT におけるデバイス特性の律速要因や、多結晶薄膜を活性層とする OTFT におけるキャリア挙動を明らかにした。こうした知見は今後の新規有機半導体材料の設計指針や、有機半導体層の作製プロセスの改善につながるものであると期待出来、今後の高性能デバイスの研究開発に寄与するものであると考えられる。
ナノスケールのキャリアダイナミクス評価手法の確立

OTFT の実用化とは別の展開として、本研究で OTFT の評価手法として開発に取り組んだ時間分解 KFM や時間分解 EFM などの評価手法が、ナノスケールのキャリアダイナミクス評価手法として今後展開していくことも期待される。これらの測定手法で高時間分解能化が実現し、半導体材料や誘電材料に誘起されたキャリアダイナミクスをナノスケールで可視化・評価する手法が確立されれば、例えば半導体デバイスにおけるキャリアのドリフト速度や拡散定数などのパラメータの微視的測定が可能になる。さらに本手法の応用分野は半導体デバイスに限らず、バイオセンサ、光合成、光触媒など広範な分野の材料系に適用可能であると考えられる。本手法によってこれらの材料系における電荷の生成、輸送、緩和などの微視的過程が明らかになれば、今後の当該分野の物性研究や材料開発が大きく推進されると考えられる。
参考文献

[16] CAS Database Counter: https://www.cas.org/content/counter.

[74] 重川秀実, 吉村雅満, 河津寛: 走査ブローブ顕微鏡 (共立出版, 2009).

116

謝辞

本研究は、京都大学工学研究科 電子工学専攻教授の山田啓文先生のご指導のもと行われたものであり、ここに博士論文として研究成果をまとめることができました。研究内容に関していつも熱心にご助言を頂き、適切に研究を進めることができました。心より感謝致します。

京都大学工学研究科 附属光・電子理工学教育センター教授の藤田静雄先生、ならびに京都大学工学研究科 電子工学専攻准教授の須田淳先生には、副指導教員として博士課程在学期間中に幾度も時間を割いて丁寧にご指導を頂きました。また本論文の審査を行って頂きました。ここに深く感謝致します。

京都大学 白眉センター特定准教授の小林圭先生には、研究全般に渡っていつも丁寧にご指導を頂き、実験から論文執筆に至るまで、本研究を遂行するにあたって適切なご助言を頂きました。心より感謝致します。

四国大学 学長の松重和美先生には、研究室在籍の折にご指導を頂きました。研究を進める上での方向性や心構えなど、多くのご助言を頂きました。ここに深く感謝致します。

慶應義塾大学理工学部 電子工学科准教授の野田啓先生には本研究の遂行に当たり、幾度も有益なご助言を頂きました。特に研究室在籍の折には、普段から研究の方向性や実験方法についてのディスカッションなどに応じて頂き、ご指導を頂きました。心より感謝致します。

学術振興会 博士研究員の木村邦子氏には、普段から暖かいご助言を頂き、本研究を遂行する励みになりました。心から感謝致します。

学術振興会 博士研究員の梅田健一氏には、研究に関して様々なアドバイスを頂きました。また、真摯に研究に取り組む姿勢に刺激を受けました。深く感謝致します。

元電子材料物性研究室 博士研究員の鈴木一博氏には、研究室在籍の折に研究に対する真摯な姿勢をご教示頂きました。また研究以外の場面においても普段から気さくに会話に応じて頂きました。深く感謝致します。

東京工業大学応用セラミックス研究所 博士研究員の服部真史氏には、研究室在
籍の際に大変お世話になりました。研究に限らず研究室生活などについて普段から多くのお面でご助言を頂きました。深く感謝致します。

元電子材料物性研究室所属の井戸慎一郎氏には、研究室在籍の折にお世話になりました。特に博士課程における研究に対する姿勢など、多くの点で刺激を受けました。深く感謝致します。

元電子材料物性研究室所属の広瀬政晴氏には、研究室在籍の折にお世話になりました。特に博士課程における研究推進に必要な多くの事を学ばせて頂きました。深く感謝致します。

学術振興会特別研究員の八尾惇氏には、普段から親身に接して頂き、研究に対する考え方などに対して多数のご助言を頂きました。深く感謝致します。

山田研究室在籍の学生の皆さんには、研究に限らず多くの場面を通じて大変お世話になりました。特に博士課程三回生の木村知玄氏には、常日頃からディスカッションに応じて頂き、また研究に関して率直な意見を交換するなど、本研究の遂行に関して大変お世話になりました。心より感謝致します。

秘書の林田知子氏には、研究室の事務を円滑に進めて頂き、研究をサポートして頂きました。心より感謝致します。

そして、いつも私を支えてくれる家族に心より感謝致します。

4. Y. Yamagishi, K. Kobayashi, K. Noda and H. Yamada, Visualization of trapped charges being ejected from organic thin-film transistor channels by Kelvin-probe force microscopy during gate voltage sweeps. (*submitted*)

5. Y. Yamagishi, K. Kobayashi, K. Noda and H. Yamada, Nanoscale time-resolved observation of carrier relaxation processes in polycrystalline dinaphthothienothiophene (DNTT) thin-films. (*to be submitted*)

国際学会発表

1. Y. Yamagishi, K. Noda and H. Yamada, Organic transistors with molecularly doped polymer gate buffer layer, 7th International Conference on Molecular Electronics and Bioelectronics, Fukuoka, Japan, March (2013)

国内学会発表

1. 山岸裕史, 若月雄介, 野田啓, 松重和美 「分子ドープされたバッファ層を有する有機トランジスタ」 第72回応用物理学会秋季学術講演会, 30a-R-15, 山形大学 (2011年8月)

2. 山岸裕史, 野田啓, 山田啓文 「極薄酸化インジウム層を有するn型有機トランジスタ」 第73回応用物理学会秋季学術講演会, 13a-PB2-9, 愛媛大学 (2012年9月)

3. 山岸裕史, 野田啓, 山田啓文 「分子ドープされた極薄絶縁バッファ層を有する有機トランジスタ」 薄膜材料デバイス研究会 第9回研究集会, 2001, なら100年会館 (2012年11月)

4. 山岸裕史, 野田啓, 小林圭, 山田啓文 「表面電位測定による局所ドープ有機トランジスタの評価」 第60回応用物理学会春季学術講演会, 27a-G15-8, 神奈川工科大学 (2013年3月)

5. 山岸裕史, 野田啓, 小林圭, 山田啓文 「ゲートを用いた有機トランジスタの作製及び評価」 第74回応用物理学会秋季学術講演会, 18p-P8-9, 同志社大学 (2013年9月)
6. 山岸裕史, 野田啓, 小林圭, 山田啓文「ケルビンプローブ原子間力顕微鏡による塗布成膜有機トランジスタの局所ポテンシャル評価」第61回応用物理学会春季学術講演会, 19p-E3-7, 青山学院大学 (2014年3月)

7. 山岸裕史, 野田啓, 小林圭, 山田啓文「周波数変調ケルビンプローブ原子間力顕微鏡による有機トランジスタの局所しきい値電圧マッピング」第75回応用物理学会秋季学術講演会, 18p-A4-12, 北海道大学 (2014年9月)

8. 山岸裕史, 木村知玄, 小林圭, 野田啓, 山田啓文「動作中の有機トランジスタにおける過渡的キャリア分布のナノスケール可視化」第62回応用物理学会春季学術講演会, 13a-D14-2, 東海大学 (2015年3月)

9. 山岸裕史, 木村知玄, 小林圭, 野田啓, 山田啓文「時間分解ケルビンプローブ原子間力顕微鏡によるDNTT薄膜でのキャリア緩和過程の可視化」第76回応用物理学会秋季学術講演会, 15a-2N-2, 名古屋国際会議場 (2015年9月)