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A B S T R A C T

We present measurement methods for schools of fish with image pro-
cessing technology and use them to analyze the behaviors of a large
school of sardines.

Collective behaviors of animal groups such as crowds of people,
flocks of birds and schools of fish are attractive not only from the
viewpoint of animal behavior but also from the perspectives of sta-
tistical physics, behavioral economics, and engineering. However, be-
haviors of schools of fish, in particular large and dense schools, have
not been sufficiently empirically analyzed and understood, compared
to behaviors of other insects and animals such as ants, bees, and birds.
It is mainly because there are difficulties in measuring the behaviors
of such fish schools. Nevertheless, to investigate measurement tech-
nologies and mechanisms of schooling behavior is important not only
for natural science but also for engineering because such technology
and knowledge related to schooling behavior must be useful for de-
veloping systems to observe health and growth of schooling fishes in
aquariums and fish farms, and improving their survival rate.

Based on this research background, we have developed measure-
ment methods for large and dense schools of fish in this thesis. We
also have recorded such schools of fish in an aquarium to conduct
our research. For such schools, we can sometimes track the members
manually even though there are occlusions. On the other hand, we
often cannot track members of the schools, even using manual meth-
ods, due to frequent occlusions. It is hard to develop a measurement
method that deals effectively with these different situations. There-
fore, we divide the schools into two types: relatively sparse and rela-
tively dense. And we propose measurement methods which are suit-
able for each type of density.

For relatively sparse type schools, we first track isolated members
and develop a measuring method for each fish behavior. We also pro-
pose a multiple fish tracking method based on an appearance model
that functions even if more than two fish are occluded.

For schools of the relatively dense type, it is hard to track individ-
uals even using manual methods. However, tracking is not necessary
for the measurement of behaviors of the school. We propose a method
to estimate the speed distribution of collective motions with dense op-
tical flow.

We analyze schooling behaviors of rotating sardines in the torus
shape with the developed measurement methods. We first measure
the length and speed distributions in a relatively sparse type school
with one of the proposed methods. The speed structure of the school

iii



and the time evolution of the structure are also analyzed. The speed
structure we discovered where, outer fish always swim faster in a
rotating school, is a new discovery of fish behavior and it is impossi-
ble to analyze the time evolution of the speed distributions for large
school of fish without the proposed automatic measurement method.
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1
I N T R O D U C T I O N

Collective behavior is a widely observed phenomenon in nature. Promi-
nent examples of such behavior are swarms of insects, flocks of birds,
schools of fish and crowds of people. Figure 1 shows examples of a
colony of army ants (Figure 1(a)), a flock of European starlings (Fig-
ure 1(b)), a school of sardines (Figure 1(c)), and a crowd of people
(Figure 1(d)).

These behaviors have been intensively investigated using the meth-
ods of biology, physics, mathematics, and engineering. Over 2400

years ago, it is said that Aristotle first observed schooling behavior
in the sea [105]. Over the past few decades, various collective behav-
iors have been empirically studied through observations in outdoor
fields and laboratories [80, 12, 9, 77], mathematical models [7, 91, 78,
110], and simulation experiments [54, 28, 29]. This research has par-

(a) (b)

(c) (d)

Figure 1: (a) A circular column of army ants (Eciton praedator). Source:
adapted from [95]. (b) A flock of European Starlings (Sturnus vul-
garis) . Source: adapted from [10]. (c) A school of sardines. (d) Hun-
dreds of people participating in a marathon. Source: adapted from
[72] .
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2 introduction

Figure 2: A dense and large school of sardines in an aquarium

tially clarified schooling mechanisms, advantages of collective behav-
ior, and the origin of collective motions [81, 86, 67, 111]. However,
the questions of why and how animals behave as flocks, herds, and
schools still remain unanswered today.

Behaviors of fish schools or shoals, which are frequently observed
in aquariums, in fish farms, and in nature, also have been studied [96,
90, 112]. The local interactions between individuals in the school, and
the global shape and functions of the school have been investigated
through observation [80, 60, 99]. And numerous mathematical models
of fish schooling and corresponding simulations have been studied
[78, 55, 31, 13].

However, behaviors of schools of fish, in particular large and dense
schools as shown in Figure 2, have not been sufficiently empirically
analyzed and understood, compared to the behaviors of other insects
and animals such as ants, bees, and birds. It is mainly because there
are difficulties in measuring the behaviors of such fish schools: video
filming underwater is more difficult than on land and frequent oc-
clusions usually occur as shown in Figure 1(c) and Figure 2. Nev-
ertheless, to investigate the mechanisms and functions of schooling
behavior is important not only for natural science but also for engi-
neering because such knowledge related to schooling behavior must
be useful for developing systems to observe health and growth of
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schooling fishes in aquariums and fish farms, and improving their
survival rate.

In response to this problem, a lot of measuring methods, in partic-
ular multi-target tracking methods, have been proposed in the field
of computer vision [97, 57, 24, 6]. Tracking individuals in a group
is a naive but important way to measure behaviors of the group.
For schools of fish, multi-target tracking methods have been stud-
ied [59, 39, 20, 34, 89]. However, for a dense and large school of fish
as shown in Figure 2, the proposed methods are insufficient to mea-
sure behaviors and track individuals in the school for analysis of fish
behaviors.

Based on this background, it is essential to establish automatic mea-
surement methodologies for schooling behaviors in order to advance
research on fish schooling. Moreover, measurement methodologies
for dense and large groups such as schools of fish must be fundamen-
tal methods for automatic monitoring of schools in an aquarium or
fish farm, and for other collective behaviors like those of crowds of
people. These are the motivations of this thesis.

1.1 the goals of this thesis

Based on this research background and our aforementioned motiva-
tions, we set out to develop measurement methods for a large and
dense school of fish in this thesis. However, an immediate problem
we encountered is that the density of fish schools change, as shown
in Figure 3. For the situation in Figure 3(b) individual tracking is
hard even manually. Therefore, we assume that there are two types
of school density as follows,

relatively sparse (rs), there are a certain number of isolated
fish and we can manually track most of them if occlusion of
multiple fish occur. Figure 3(a) shows a typical example of type
RS.

relatively dense (rd), isolated fish are very few and we cannot
reliably track individuals in a group, even using manual track-
ing. We show the example of the type RD in Figure 3(b).1

We have developed measurement methods which are suitable for
each type of density.

We first track the isolated fish in a RS type school and develop a
measuring method for each fish behavior (such as tail beat frequency
and coast phase). These features are essential for modeling deforma-
tion of a fish body and for discussion of energy consumption in the
school.

1 It is of course impossible to classify schools precisely into one of the two types. We
need to select the method suitable for the purposes of analysis based on the the
appearance of the school.
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(a)

(b)

Figure 3: (a) A part of a RS type school of sardines. (b) A part of a RD type
school of sardines.

Tracking isolated fish in a RS type school is not so difficult, however
individual tracking becomes difficult when occlusions occur, even in
the case of type RS. We also propose a tracking method which is
based on an appearance model. We can track fish with this method
even if more than two fish are occluded.

For a school of the RD type, it is hard to track individuals even
manually. However, tracking is not necessary for the measurement of
behaviors of the school. We propose a method based on dense optical
flow to estimate the speed distribution of collective motions. In order
to measure and detect different information about the behavior, we
also propose several kinds of divisions of space.
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Figure 4: Structure of this thesis.

The second goal of this thesis is to find and analyze characteristic
features of schools of fish. We focus on sardine and anchovy schools,
usually observed rotating in solid torus. With the proposed measure-
ment methods, we first measure fundamental features of the school,
such as body length distribution. With these measures we are able to
determine the speed structure of the rotating school and analyze the
time development of the structure.

1.2 the overview of this thesis

This thesis consists of 8 Chapters. Figure 4 depicts a schematic struc-
ture of this thesis.

In Chapter 1, we presents the background and motivations of this
thesis. The goals of this thesis are also stated.

In Chapter 2, we introduce related works on collective behaviors
in Section 2.1 and schooling behaviors of fish in Section 2.2. We also
review measurement methods for collective behaviors and their limits
in Section 2.3.

In order to conduct our research, we have collected videos of schools
of fish that are large (over 2000 individuals) and close to those found
in their natural environment. The details of the filmed data are de-
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scribed in Chapter 3. Fundamental data such as filmed data are sum-
marized. We also provide some snapshots as examples of the video
footage used in our research.

In Chapter 4, for schools of the RS type, we track the isolated fish
and measure their behaviors such as tail beat frequency and coast
phase. We also review related work on fish swimming and swimming
mechanics.

In Chapter 5, for schools of the RS type, we propose a tracking
method which is based on an appearance model and can track fish
even if more than two fish are occluded.

In Chapter 6, for schools of the RD type, we propose a method to es-
timate the speed distribution of collective motions with dense optical
flow. In order to measure and detect different behavior information,
we also propose several kinds of divisions of space.

In Chapter 7, we analyze schooling behaviors of rotating sardines
in a torus shape with the developed measurement methods. We first
measure the length and speed distributions in a RS type school with
the proposed method in Chapter 4. The speed structure of the school
and the time evolution of the structure are analyzed.

In Chapter 8, we conclude the thesis and discuss future work.



2
R E L AT E D W O R K S

In this chapter, we first briefly review research into collective behav-
iors in Section 2.1. In particular, we introduce research related to
schools of fish in Section 2.2 and measurement methods of fish be-
havior in Section 2.3.

2.1 collective behaviors

Collective behaviors have been observed and studied for various an-
imals such as bacteria [61, 30], insects [27, 12], birds [50, 9, 42] , and
fish [47, 13, 45]. Collective motions of human crowds have also been
investigated [49, 43, 36].

A large number of models have been proposed to understand the
mechanisms of collective behavior. Rules of schooling mechanisms
were studied in earlier work on such models. For example, Partridge
et al. analyzed schools of saithe (Pollachius virens) and found that
members match the heading and swimming speeds of at least their
first two nearest neighbors [80]. Aoki also proposed a model of fish
schooling and conducted simulations to examine the schooling mech-
anism in 1982 [7].

Reynolds proposed a well-known flocking model called “boid” in
1987 [91]. The boid model has the only three local rules:

1. collision avoidance: avoid collisions with neighbors

2. alignment: attempt to match velocity with neighbors

3. cohesion: attempt to stay close to neighbors.

Each particle (bird) interacts only with their neighbors according to
the above rules and thereby the collective of particles form a virtual
flock. Reynolds demonstrated that group leadership and global in-
formation are not necessary for schooling behaviors with his simple
model.

The boid model triggered research into mathematical models of
collective behaviors [78, 31, 32, 29]. Viscek et al. proposed a statistical
physics type model with perturbations [110]. Several properties of
the model, e.g. the order-disorder phase transition, have been inten-
sively investigated with theoretical analysis and simulations [23]. The
above models in which each particle in collective groups is self driven
and interacts with other particles is called the self-propelled particles
(SPP) approach. Toner and Tu have proposed nonequilibrium contin-
uum dynamical models as another modeling approach to collective
behaviors. [106, 107].
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8 related works

Various features of collective behaviors such as the role of leaders
[16, 102], their forms in escaping from predators [81, 56] and informa-
tion transmission in collective groups have been studied [90, 101, 99].
The role of leaders and decision making of animal groups are attrac-
tive topics [26]. For instance, Couzin et al. showed that a minority of
informed individuals in a group can affect the behaviour of the whole
group [28] and Nagy et al. showed the existence of hierarchy in a pi-
geon flock recorded by small GPS devices [77]. Transmission of infor-
mation in various groups have been investigated [90, 101]. Recently,
in investigating schools of fish, Strandburg-Peshkin et al. recorded
information transmission in a school of golden shiners in a shallow
tank and suggested that each member of the school interacts with
other fish as far as the member can see [99].

In addition to animal groups, non-living systems such as shaken
metallic rods, robots, and boats have been studied. For example, traf-
fic congestion has been focused on as a kind of collective motion of
vehicles, and various mathematical model of congestion have been
proposed [85, 76, 11]. As a result related to traffic jams, Sugiyama et
al. showed that a bottleneck, which was thought to cause a traffic jam,
is only a trigger and not the essential origin of a traffic jam with both
analysis of their optical velocity model and experiments on a circuit
using real cars [100].

The findings in collective behavior research have been widely used
in other areas. The boid model has been employed to easily cre-
ate collective motions in computer graphics [52] and for other pur-
poses such as data visualization [75]. For crowds of people, strate-
gies of avoidance of dangerous crowd pressure and human stam-
pedes have been proposed with models of human crowds [43, 44].
Recently, strategies for autonomous control of robots [41, 74], Un-
manned Aerial Vehicles (UAVs) [51, 94], and cars [3] have been de-
veloped based on research into collective animal behaviors.

2.2 schooling behaviors of fishes

Schooling behaviors are observed in many kinds of fishes. Shaw esti-
mated that more than 25% of the approximately 27,000 species of the
teleosts adopt shoaling behaviors throughout their life and over 50%
do as juveniles [96]. Among schools of fish, huge shoals containing
tens of millions of fish and extending for many kilometers have been
observed [71].

A number of reasons for schooling behaviors have been proposed
[81, 86]. The benefits of being a member of a fish school in reducing
the effectiveness of predator’s attack have been studied for a long
time [70, 88]. Pitcher et al. demonstrated that predators in a shoal
find prey more efficiently with experiments [87]. Moreover, the en-
ergetic benefits from the hydrodynamical interactions of swimming
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(a) (b)

(c) (d)

Figure 5: (a) A shoal of Surgeonfish. (b) A rotating school of sardines. (c)
A school of Goldband Fusilier. (d) A school of Sixfinger threadfin.
Couzin et al. called (a) a swarm, (b) a torus, (c) a dynamical parallel
group and (d) a highly parallel group [29]. (a) by Uxbona, (c) by
Brocken Inaglory, and (d) a public domain image.

in a school have been proposed and experimentally demonstrated
[114, 67, 48].

Schools of fish take a variety of forms and dynamically change
their forms, although the schools were traditionally thought to be
leaderless and egalitarian systems [17, 63]. We show the four classes
of school forms in Figure 5 according to the classification of [29].

In order to analyze and model such schooling behaviors, as early
studies, the forms of schools of fish in a water tank and interactions
between members in each school have been measured [18, 92, 93, 80].
Partridge and Pitcher also studied the sensory basis of fish schools
in which members utilize both their lateral lines and vision [84]. The
form of a school and distribution of individuals in a school have also
been observed. For example, Partridge et al. showed that schools are
usually oblong and fish do not position themselves at random within
schools [83].

As stated in Section 2.1, large number of models of schooling have
been proposed. With these models, we can create artificial schools
in a computer without leaders or external global stimuli for their
school organization [54, 55]. Couzin et al. demonstrated that simula-
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tions with their model exhibited four characteristic collective behav-
iors, which are observed in nature as shown in Figure 5, when certain
parameters were changed [29]. However, for numerous models and
research based on simulations, it was difficult to decide which model
is fitting to describe a real school, because sufficient observational re-
search was not available and the characteristics of social interaction
between individuals was not well understood.

Recently, researchers have observed collective behavior, informa-
tion transmission among schools, and form and density distributions
of schools in detail. Based on these observations, previously proposed
models of collective behavior have been modified and novel models
have been proposed. Some examples of such observations include
transition from disordered to correlated motion of a school of young
Tilapia [13], monitoring of oceanic fish shoals with a kind of sonar
echo [71] and interactions between two or three fish [60]. Strandburg-
Peshkin et al. measured information transmission among a shoal of
golden shiners in a shallow tank and evaluated the proposed models
with their observations. In a separate school, Bumann et al. observed
the highest density distribution of individuals in a school is often at
the front [19]. The origin of density distribution and size sorting have
been also observed [64, 47, 45].

2.3 measurement methods for collective motions

A number of devices and techniques to measure collective motions
have been developed. According to the purposes of researches or
the types of collective groups, researchers have chosen or developed
many devices: cameras (photo) [17], video cameras [83, 80], sonar
echoes [71, 58], and GPS devices [16, 77]. For example, Cavagna et
al. have measured the 3D positions of individual European starlings
within flocks of up to 2,600 birds using a stereo camera [22]. Here, we
review measurement methods specially proposed for fish behavior
analysis and outline their limits.

The initial measurements for fish schools were manual and labori-
ous [18, 80]. For example, in 1980s, the 3-D positions of schools of 20-
30 saithe were recorded manually with their manual plotter system
[82, 83]. Even recently, some researchers have used manual detection
by clicking on the screen at the position of the fish, frame by frame
[73, 34].

However, automatic or semi-automatic measurement methods are
essential because manual analyses would be complicated, time-consuming
and sometimes even impossible. For the last several decades, mea-
surement methods, in particular individual tracking methods, for
schools of fish have been developed in collaboration with image anal-
ysis and computer vision. Tracking each member of a school is a naive
but effective way for the analysis of schooling behavior. In the field of



2.3 measurement methods for collective motions 11

computer vision, object tracking is an important task and has various
applications such as automatic surveillance, robotics, and collective
motion analysis [69, 97, 57, 24, 25]. For multi-target tracking, Ver-
maak et al. introduced mixture particle filter (MPF) [109] and many ex-
tended algorithms based on the MPF have been proposed [79, 62, 14].
In this field, tracking methods for multiple objects in highly dense
groups have recently been proposed [116, 6, 68].

For example, Ylieff et al. tracked two fish with color tags [117] and
Suzuki et al. tracked 25 individuals using a mathematical model [103].
Recently, fish schools of up to 100 individuals have been multitracked
for several minutes [13, 33]. Moreover, there is an open source track-
ing system SwisTrack [4] and commercial tracking systems such as
EthoVision[1] and VideoTrack now available [5].

The major problem of individual tracking in fish schools is occlu-
sion, as stated in [34] An occlusion is the phenomenon of two or more
tracked target images becoming one during a time period. Figure 6(a)
and 6(b) show examples of separated fish and occluded fish. For oc-
clusion events as shown in Figure 6(c) and 6(d), tracking algorithms
need to identify each fish after occlusions. Individual identification is
quite difficult when three or more fish are superimposed as shown in
Figure 6(e) and 6(f).

Many solutions for the occlusion problem have been proposed. The
simplest but most widely used way (even these days) is to leave fish in
a shallow tank. This strategy can reduce occlusions [99, 89]. In order
to avoid occlusions in a video filmed from one direction, two strate-
gies have been proposed. The first one is using lights and shadows
as shown in Figure 7(a). From the fish images and their shadows, we
can continue tracking from one direction even if occlusions occur [66].
The second strategy is the stereo camera technique, which uses two
or more video cameras to detect 3D positions. Figure 7(b) shows an
overview of stereo camera. For instance, Viscido et al. tracked groups
of 30 giant danios with stereo camera [113]. Hemelrijk et al. utilized
a mirror and measured the 3D positions of 60 mullets with one cam-
era as shown in Figure 7(c) [46]. As another approach for occlusions,
some researchers have presented estimation methods to determine
whether two fish have crossed (Figure 6(c)) or not (Figure 6(d)) from
the information gathered in previous and later observations [59, 33].

Several researchers have measured not only the positions and di-
rections of tracked fish but also their postures with parameterized de-
formable models [39, 20]. Ukita et al. tracked goldfish and measured
their postures with the stick and ellipse model [108].

From the above, a number of auto measurement tracking methods
of schooling behaviors of fish have been developed, particularly for
fish schools in shallow tanks. The positions of fish schools of up to
100 members have been measured with stereo cameras and light and
shadows. However, measuring and tracking for real fish schools in
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) Two fish are separated. (b) Two fish are occluded. (c) During
an occlusion, trajectories of two fish are crossing. (d) During an
occlusion, trajectories of two fish are not crossing. (e) Three fish
are occluded. (f) Dense school of sardines. Occlusions occur every-
where.

large tanks or fields as shown in Figure 7(f) are still quite difficult,
because populations of these school are comprised of thousands of
members and real fish schools are dense (That is, the distances be-
tween individuals are close). Despite these difficulties, analysis for
large and complicated collective groups is important. In fact, from the
observation of large (over 2000 individuals) flocks of European Star-
lings [22, 10], Cavagna et al. proposed a characteristic behavior type
called “scale free” behavior, which suggests that individuals change
their interaction ranges with neighbors according to the entire school
size and that this may create dynamic behaviors of flocks, as if they
were a single organism [21]. Developing measurement methods for
large and dense schools of fish is essential in order to proceed school-
ing behavior research for larger and more complicated fish schools,
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(a)

(b)

(c)

Figure 7: (a) Measuring the position of a fish with an image of fish and
their shadows (modified from [66]). (b) An overview of measuring
positions with a stereo camera. (c) Measuring the position of a fish
with a mirror (modified from [46]).
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and develop applied systems to observe health and growth of indi-
viduals of fish schools in fish farms and zoos.
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F I L M E D D ATA O F S C H O O L S O F F I S H U S E D I N T H I S
R E S E A R C H

In this chapter, we first show our recording method for schools of
fish in an aquarium 3.1. The filmed videos are used to conduct exper-
iments for the proposed methods in 4 to 6 and analyze the behavior of
schools of fish in Section 7. We present basic data of the filmed school.
We show a school of sardines with some snapshots of the filmed data
as examples in Section 3.2. In Section 3.3, the reasons why the school
and aquarium are selected in our research are also stated.

3.1 a tank in the kujukushima umikirara aquarium and

camera setup

We filmed videos of schools of sardines and anchovies in the largest
open air tank at the Kujukushima Umikirara Aquarium, Nagasaki
Japan [2]. 1 The tank is 5 meters deep. Figure 8(a) shows the open air
tank. We can see the water surface of the tank in Figure 8(a). Figure
8(b) shows the tank filmed from a side through thick glass.

We submerged commercially available video cameras (HERO2, HERO3,
and HERO4 by GoPro, Inc.) to the bottom of the tank. The cameras
were put in protective waterproof cases and trained upward. Figure
9 shows the overview of the camera setup. Note that the filmed im-
ages of the schools are projected 2D ones. We visited the aquarium
about 10 times between March 2012 and March 2015 for recordings.
We used a part of the filmed videos in our experiments and analysis
in this thesis.

3.2 filmed data in the tank

Figure 10 shows snapshots of the school of sardines in the filmed
videos. There is a large school (approximately 3000 individuals) of
sardines (Sardinops melanostictus) in the tank throughout a year.

There are not only sardines in the tank but also other various kinds
of fish, including jack mackerels, horse mackerels, chub mackerels,
and largescale blackfishes as shown in Figure 10(a). We can also find
many of the sardine’s predators such as chub mackerels and ham-
merhead sharks in Figure 10(b). The sardines are usually rotating in
a solid torus shape in the daytime as in Figure 10(c). The size of the
hole in the center of the torus changes; the hole in Figure 10(d) is

1 The videos are collected with Professor Masa-aki Sakagami at Kyoto University and
his laboratory members.
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(a)

(b)

Figure 8: (a) The open air tank at the aquarium. (b) The tank filmed from a
side through thick glass

(a)

Figure 9: Camera setup.
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small, and the one in Figure 10(e) is large. The sardines are typically
fairly flat and individuals in a school usually swim at a relatively
equal depth as shown in Figure 10(f), which was filmed from the
side.

The school of sardines in the video are often occluded by other
fishes and sharks. We show some examples of such events. In Fig-
ure 10(a), larger fishes (horse mackerels and club mackerels) are over-
lapping on the school of sardines. Figure 10(g) shows an event of a
banded houndshark covering the school. In order to measure and ob-
serve the behavior of the school of sardines, we need to exclude the
effect of the occlusions or find such events in any way. The solution
strategies for these problems are mainly shown in Chapter 6.

The shape of a school can sometimes be distorted, for example,
by the attacks of large fish (predators). Figure 11 shows a snapshot
sequence of a 60 second movie in which the school is attacked and
distorted by a hammerhead shark and recovers its form. Figure 11(b)
and 11(c) show the attack by the hammerhead shark. The forms of
the school are drastically distorted in Figure 11(d), 11(e), 11(f), 11(g).
The distorted school always returns to the solid torus shape within
some dozens of seconds after the attack, as shown in Figure 11(h),
11(i), 11(j).

3.3 the advantages of the school and the water tank

in the kujukushima umikirara aquarium

The school and water tank in the Kujukushima Umikirara aquarium
have been selected as research subjects because they have many ad-
vantages. In this section, we outline the reasons why the school and
the aquarium have been selected.

The first advantage is that the tank is suitable for recording videos.
Since it is an open air tank, we can obtain sufficient light for filming
videos. Moreover, the water in the tank in the aquarium has high
transparency and thus we can obtain clear videos.

The second advantage is the large rotating school of sardines. In
the tank, there are thousands of sardines as stated in Section 3.2. As
shown in Figure 10, the school is usually rotating in a solid torus form
and the centroid of the rotating school is stable and stays within the
visual field of the camera. Consequently, for a long time, we can take
a movie of the whole school from a fixed camera in the bottom of the
tank. Using the long movies taken from one camera, we can analyze
changes of fish behaviors over time.

The third advantage is the environment of the tank. As stated in
Section 3.2, there are many predators of sardines such as club mack-
erels and hammerhead sharks inside the tank. Moreover, birds, e.g. a
kind of Scolopacidae, sometimes catch sardines with their long bills
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 10: (a) Larger fishes in the white ellipse are chub mackerels. (b) A
hammerhead shark in the white ellipse is approaching the school
of sardines. (c) A rotating school of sardines in a solid torus shape.
(d) The hole size of the rotation center is large. (e) The hole size is
small. (f) An image of the school taken from a side. (g) A banded
houndshark is covering the school.
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(a) t=0 (sec) (b) t=5 (sec)

(c) t=10 (sec) (d) t=15 (sec)

(e) t=20 (sec) (f) t=25 (sec)

(g) t=30 (sec) (h) t=40 (sec)

(i) t=50 (sec) (j) t=60 (sec)

Figure 11: A snapshot sequence of a 60 second movie in which the school of
sardines is attacked and distorted by a hammerhead shark and
recovers its form.
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in the open air tank. Therefore, the environment of the tank is closer
to nature rather than theses of tanks in laboratories.

From these advantages, we selected the Kujukushima Umikirara
aquarium and the open air water tank in the aquarium to record the
schools of fishes in this study.
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T R A C K I N G A N D M E A S U R E M E N T M E T H O D S F O R
I S O L AT E D F I S H

In this chapter, we propose a measurement method of tail beat fre-
quency and coast phase of fish swimming for isolated fish in a RS
type school of fish. For analysis of fish swimming behaviors, fea-
tures that represent fish movements, e.g. tail beat frequency and coast
phase, have been commonly used. We propose a measurement method
for such features using particle filter and apply the method to a large
school of fish in an aquarium. Experimental results show that the tail
beat frequencies and the coast phases are measured with our method
accurately enough for further analysis of fish behaviors. The average
of the differences of the tail beat frequencies was 0.126 (Hz) and the
precision and recall of the classification for coast phase detection were
0.945 and 0.879 respectively.

The research of this chapter have been done with Prof. Hioki Hi-
rohisa and Prof. Masa-aki Sakagami at Kyoto University. The author
of this thesis designed research, developed methods, and performed
experiments.

4.1 introduction

In the field of biological research, the mechanics of fish swimming has
been investigated over many years [112]. Researchers have focused on
features that characterize fish swimming such as swimming speed,
tail beat frequency, and stride length in a beat to analyze swimming
mechanics [8, 53]. These features have been utilized to study mechan-
ics of swimming and behavior of an isolated fish or a small group
of fishes through observational experiments and theoretical analysis
[67].

Recently, behaviors of fish schools and other collective motions of
animals have been studied [111], as stated in Chapter 2. For exam-
ple, it is known that schooling behavior reduce energy consumption
[98]. However, for large and dense real schools of fish, the effects of
schooling and the interactions between individuals have not been un-
derstood well enough. To promote the research of behaviors of fish
schools, it is important to develop methods for measuring features of
fish swimming. Such measurement method could be applied to fishes
in fish farms to manage their health and growth.

In this study, as a first step to measure features of fish in a large RS
type school, we focus on tail beat frequency and coast phase among
various features of fish swimming and measure those two features

21
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Figure 12: A RS type school of sardines taken from the bottom of a tank at
the Kujukushima Umikirara Aquarium.

for isolated fish in a large school. Tail beat frequency is the number
of beats per second. Coast phase refers to one of characteristic swim-
ming states of fish in which the body is kept motionless and straight
[112].

For measuring these features, it is required to track individuals
in a school. Although much progress has been made for the object
tracking issue [34], it is still quite difficult to track all the individuals
in a large group like a school of fish shown in Figure 12. Even so, we
can still obtain useful information for analyzing fish behaviors in a
school if we can track a certain number of fish in the school. Since
tracking isolated fish is easier than occluded multiple fish, we focus
on isolated fish and measure their behaviors in this study.

To track each fish and measure tail beat frequency and coast phase,
we first extract the silhouettes of isolated fish and calculate their cen-
troids, which are tracked with a particle filter [40]. For measuring
features for each tracked fish, we locate several reference points on
a line obtained by thinning the silhouette of the fish in each frame.
Such reference points are also used to estimate the body length of the
fish, which is employed as the unit length for normalizing measured
data.

From the measured data, we calculate the movements of tail tips
and then estimate the tail beat frequencies of each fish with another
particle filter. In order to detect coast phases for tracked fish, we de-
vised a feature that represents the degree of deformation of fish body.
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In our experiments, we tracked 126 silhouettes as targets in a video,
among which 109 silhouettes were extracted as ones corresponding to
isolated fish by considering their sizes and shapes. We also manually
tracked the same 126 silhouettes and found that 110 out of them could
be tracked as isolated fish. For the 110 fish, 108 out of them were
correctly tracked by our method whereas 2 fish were missed. Aside
from them, 1 silhouette was wrongly tracked. The precision and recall
of the result of tracking were thus 0.991 and 0.981 respectively.

For the same 110 fish, we detected coast phases by our method and
by hand. The tail beat frequencies were also measured by our method
and by hand for 20 fish selected out of them. The average error of the
estimated tail beat frequency was 0.126 (Hz) and the precision and
recall of the classification of coast phase detection were 0.945 and
0.879 respectively.

From these experimental results, for isolated fish, we find that our
method can accurately track targets and our method enables us to
obtain the tail beat frequencies and detect coast phases that are accu-
rately enough for analyzing fish behavior further.

The remainder of this chapter is organized as follows. In Section
4.2, we review previous work related to tail beat frequency and coast
phase. Section 4.3 presents the dataset and the details of our method
for tracking isolated fish and measuring fish behaviors. We then show
experimental results in Section 4.4. Finally, we summarize this chap-
ter and give directions for future work in Section 4.5.

4.2 tail beat frequency and coast phase

In this section, we briefly review previous work related to tail beat
frequency and coast phase. At the same time, we give the definitions
of tail beat frequency and coast phase employed in this study.

4.2.1 Tail Beat Frequency

Bainbridge showed that swimming speed of a fish depends on the dis-
tance covered per tail beat cycle (the stride length) and the tail beat
frequency [8]. From the research, the relationships between swim-
ming speed, the stride length, body length, and amplitude and fre-
quency of tail beat have been studied by many researchers [112, 53,
67]. Tail beat frequency and other features are recently used for anal-
ysis of fish behaviors from the observational and theoretical view-
points [48]. The effect of schooling behaviors on tail beat frequency
also have been studied [98, 38, 104].

The issue of tracking multiple fish and measuring their postures
and tail beat frequency have been studied based on images [34, 57]
and sonar echoes [58, 65]. However, there is a problem in measure-
ment of tail beat frequency in most of these research. Fourier trans-
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Figure 13: The tail endpoint (blue line) along the axis perpendicular to the
line that passes through the area centroid and the head end-point
of an isolated fish. The detail is shown in Section 4.3. The orange
line is the sinusoid estimated from the first 20 position data. The
difference between the two lines are not ignorable, because the
tail beat frequency (the blue line) changes over time.

formation was simply used for computing tail beat frequency. How-
ever the tail beat frequency generally changes over time as shown in
Figure 13.

In this study, we define tail beat frequency as the number of beats
per second [53]. Figure 14(a) shows a typical tail beat cycle of a fish.
In our experiments, the tail beat frequency of a fish is estimated using
the average cycle time obtained from three tail beats.

4.2.2 Coast Phase

Burst-and-coast (or kick-and-glide) swimming behavior is commonly
observed among several species of fish [112]. It consists of cyclic
bursts of swimming and a coast phase in which the fish body is kept
motionless and straight. Figure 14(b) shows a fish in coast phase. It
is known that burst-and-coast swimming is important for fishes be-
cause such a way of swimming is superior, in respect of energy con-
sumption, to the steady swimming at the same average speed [115].
Fish et al. have measured the effect of schooling for burst-and-coast
swimming [38].

In this study, a fish is defined to be in coast phase when the fish
keeps the body motionless and straight for 0.2 seconds.
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(a)

(b)

Figure 14: (a) An example of a tail beat cycle of a fish in the school (Figure
12). (b) An example of a fish in coast phase in the school

4.3 our method

In this section, we first describe how we obtained the video data used
for our experiments. We then explain the details of our method: the
tracking method for isolated fish, the measurement method of tail
beat frequency and the detection method for coast phase.

4.3.1 Dataset

We used the recorded videos (30 fps) of a school of sardines at the
Kujukushima Umikirara Aquarium as explained in Chapter 3. The
video was taken by HERO4 video camera in March 2015. The popula-
tion of the school was approximately 3000. We selected a three second
scene from a video (90 frames) and used it for experiments. Figure 12

shows a snapshot of the scene.
For computing feature values of fish in our experiments, we use

the estimated body length (BL) of each fish as unit of measure and
normalize the feature values of the fish by the BL, because each fish
can be different in size.

4.3.2 Tracking Method for Isolated Fish

We track isolated fish in a school by particle filter [40]. Fish are ex-
tracted as silhouettes from each frame and their centroids are used
for tracking.

In order to track fish for a scene in a video, we first binarize each
frame of the scene and extract candidate regions of isolated fish by cal-
culating the area size of regions. Figure 15(a) and Figure 15(b) show
an isolated fish and its binarized image. We select the regions whose
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(a) (b)

(c) (d)

Figure 15: (a) An isolated fish in the school. (b) The binarized image of (a).
(c) The thinned image of (b). (d) The white point is the centroid
of the area. The yellow points are the endpoints of the line (c).
The red points are the three points that divide the line (c) into
quarters.

area sizes are in a range [l,m] and calculate the area centroids of them.
For specifying an appropriate range of size, we picked up a number
of isolated fish from the scene in advance and select a rather wide
range of l = 120 and m = 500 not to miss the fish.

To track the area centroids of targets, we use the sampling impor-
tance resampling algorithm introduced in [40]. We define the state
as si = (x,y, vx, vy)tr, in which (x,y) is the coordinates of the area
centroid and (vx, vy) is the motion parameters. The particle set is
S = {si | i = 1, ...,N} where N is the size of sample set. The motion
model is defined as

sit =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 sit−1 +

wCx

wCy

wCvx

wCvy

 (1)

where wCx ,wCy ,wCvx ,wCvy are noises that follows the distribution
N(0, 1). For the measurement position yt, we evaluate the likelihood
of each prior sample and obtain a normalized weight wit for each
sample sit

wit =
pO(yt | s

i
t)∑N

j=1 pO(yt | s
i
t)

. (2)
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Here, we define pO(yt | sit) as

pO(yt | s
i
t) = exp

(
−
‖ yt −Hsit ‖2

σc2

)
(3)

where observation model H extract the position of the state, that is,

H =

(
1 0 0 0

0 1 0 0

)
. (4)

We set σc = 5 from the preliminary experiment. The number of parti-
cle is 1000.

For the initial parameters of the particle filter, we search a candidate
(C1) in the first frame of the scene and the nearest candidate (C2) to
the C1 in the second frame. If the distance between C1 and C2 is less
than 15 pixels (approximately 2/7 BL), we provide the position of
C1 and the amount of shift between C1 and C2 as initial parameters
and begin the tracking process. In order to make our tracking results
stable, we track a candidate in a frame only when it is close enough to
one of centroid points that are estimated from preceding frames using
the particle filter. For each pair of the centroid of a candidate and an
estimated point in a frame, when the distance between the two points
is less than 15 pixels, we presume that a candidate is moved from the
candidate in the previous frame and then we track the candidate.
Otherwise we do not track the candidate.

The time series of silhouettes for one tracking process is called a sil-
houette sequence in this chapter. Because fish can overlap each other,
a silhouette does not necessarily corresponds to a certain isolate fish.
For this reason, we may fail to track fish correctly if we simply take
the centroids of all the silhouettes extracted. We have to extract only
silhouettes those expected to be corresponded to isolated fish. In this
chapter, a silhouette sequence is said to be valid when it corresponds
to an isolated fish. We call a silhouette sequence of an isolated fish
valid sequence.

In order to extract valid sequences and exclude invalid sequences
resulting from overlaps between fish, we introduce the following two
conditions. The first condition is that the area of the tracked isolated
fish in a frame must be in the range of 60% to 140% of that in the pre-
ceding frame. The second condition is constraints on the fish body
proportion. The area of a fish is expected to be proportional to the
square of its body length (How to estimate the body length is ex-
plained in Section 4.3.3). Therefore, when the area of the tracked im-
age is much smaller than expected, the tracked image may not be an
isolated fish. In this study, if the equation

α <
bl2

13.5
(5)
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Figure 16: The overview of the reference points.

is satisfied, we discard the silhouette as invalid one. Here, α is the
area, bl is the body length, and the value 13.5 is derived from a pre-
liminary experiment.

4.3.3 Estimations of Fish Length, Tail Beat Frequency and Coast Phase

During the tracking process, for each tracked fish, we measure pos-
ture data that are retrieved from several reference points of the fish.
We then estimate the body length, tail beat frequency and coast phase
of each fish from the posture data.

4.3.3.1 Locating Reference Points

As reference points of a fish, we extract its head point, tail point, and
other three points that are called quarter points in this chapter. The
overview of the quarter points and the reference points is shown in
Figure 16. For this purpose, we first obtain a skeleton line of the fish
by applying a simple thinning algorithm [35] to its silhouette. The
end point of the skeleton near the head is taken as the head point
and the other end point is taken as the tail point. These two points
are respectively called head endpoint and tail endpoint in this chapter.
The other three reference points are those that divide the skeleton line
into quarters. Let us denote the three points P1, P2 and P3. These are
called the quarter points in this chapter. They are located as follows.
We first compute the three points (Q1, Q2, and Q3) that divide the line
segment (l) between the endpoints into quarters. We then project the
points Q1, Q2 and Q3 respectively along the direction perpendicular
to the line l and find the intersection points with the thinned line
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Figure 17: An overview of the position of the tail endpoint.

as the points P1, P2 and P3. Figure 15(c) and Figure 15(d) show the
thinned line of the candidate area and the points on the line l.

4.3.3.2 Estimation of Body Length

We can estimate the body length of a fish from the distance between
the head and tail endpoints. Although the distance varies as the fish
beats its tail, it would become close to the body length when the body
of the fish is stretched straight and the distance takes maximal values.

Here, we do not simply take the maximum value with consider-
ing measurement error. The body length is hence computed as the
average value of top 10% of distances measured during tracking.

4.3.3.3 Estimation of Tail Beat Frequency

In order to calculate the tail beat frequency of a tracked fish, we calcu-
late the position of the tail end-point along the axis perpendicular to
the line that passes through the area centroid and the head endpoint.
Figure 17 depicts how we measure the position of the tail endpoint.
An example of the time series of the tail endpoint is shown in Fig-
ure 13. Note that the values of the position of the tail endpoint are
normalized by the body length of the fish.

From the time series of the tail endpoint position, we estimate the
tail beat frequency with another particle filter. The details of the par-
ticle filter are as follows. To capture the nonstationary frequency of
tail beats, we define the state as siF = (a, f,b,d)tr and consider that
each particle moves along the following sine curve

a sin(
2πft

30
+ b) + d. (6)
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The system model is define as

siFt = s
i
Ft−1

+


wFa

wFf

wFb

wFd

 (7)

where wFa ,wFf ,wFb and wFd are noises and wFa ∼ N(0, 0.3),wFf ∼

N(0, 0.3/π),wFb ∼ N(0, 0.1) and wFd ∼ N(0, 0.1). For the measurement
position yt of the tail tip, we calculate the weight wiFt of each particle
as

wiFt =
pF(yt | s

i
t)∑N

j=1 pF(yt | s
j
t)

. (8)

Here, we define pF(yt | sit) as

pF(yt | s
i
t) = exp

(
−
(yt − hF(s

i
Ft
))2

σ2F

)
(9)

where observation model hF is defined as,

hF(s
i
Ft
) = a ′ sin(

2πf ′t

30
+ b ′) + d ′ (10)

for siFt = (a ′, f ′,b ′,d ′)tr. We set σF = 3 in this study. We use 2000 par-
ticles. For the initial value of parameters, we fit the above sine curve
to the first 20 frame data with least squares method. The estimated
parameters of the sine curve are used as initial values. We estimate
the tail beat frequency in each frame by calculating the weighted av-
erage of frequency parameters of the particles based on the weights
of the particles. Figure 18 shows the estimated tail beat frequencies
for the data in Figure 13. From Figure 18, we can see that our method
enables us to estimate the tail beat frequencies that change over time.

4.3.3.4 Detection of Coast Phase

To detect coast phases, we introduce a feature that represents the de-
gree of the deformation of fish body. We call the feature DOD. It is
calculated by averaging the squared distances between the quarter
points P1, P2 and P3 to the line that passes through head and tail
endpoints. For a tracked fish, if moving average of a prescribed num-
ber 6 of DOD value, i.e. the average of DOD values for 0.2 seconds1,
is less than thi, the fish is supposed to be in a coast phase. In this
chapter, we set thi = 0.4 from a preliminary experiments.

1 Note that the frame rate of the recorded videos is 30 fps.
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Figure 18: The estimated results of tail endpoint positions and tail beat fre-
quencies with the particle filter for the data in Figure 13.

4.4 experimental results

We have conducted experiments to demonstrate the effectiveness of
our method. We first tracked isolated fish by our method and evalu-
ated the accuracy of the result by manually tracking the same fish. We
then measured body lengths and tail beat frequencies by our method,
for which errors were computed by comparing the results with the
data computed from manually estimated data. The results of detect-
ing changes in tail beat frequency by our method are also shown.
Finally, we present the accuracy of our detection method for coast
phase.

4.4.1 Tracking Isolated Fish

In experiments, we first applied our tracking method (Section 4.3.2)
to the three second scene (Section 4.3.1) and evaluated the accuracy
of the result.

4.4.2 Body Length and Tail Beat Frequency

For the three second scene, we tracked 126 silhouettes (i.e., fish) by
our method over 30 frames from the first frame. Out of them, 109

silhouette sequences were extracted as valid ones using the two con-
ditions described in Section 4.3.2. After that, we manually tracked the
same 126 silhouettes and checked whether all silhouettes of each sil-



32 tracking and measurement methods for isolated fish

houette sequence are isolated all through the tracking or not. We then
confirmed that 110 silhouette sequences were valid ones that could
be tracked. For the 110 valid sequences, 108 out of them were cor-
rectly tracked by our method whereas 2 valid sequences were missed.
Aside from them, 1 invalid sequence was wrongly tracked. The pre-
cision and recall of the result of tracking were thus 0.991 and 0.981

respectively.
In order to evaluate the accuracies of estimated body length and

tail beat frequency obtained by our method, we manually tracked
20 fish out of the 110 valid sequences mentioned above. During the
tracking, we measured the head and tail points as ground-truth and
computed the average body lengths from the head and tail points of
ground-truth in the same way as described in Section 4.3.3. The tail
beat frequencies from three beat cycles were also manually measured
as ground-truth.

We measured the head positions, the body lengths and tail beat
frequencies by our method (Section 4.3.3). The average and standard
deviation (S.D.) of the body length differences by our method and
ground-truth are 0.0172 (BL) and 0.0100 (BL) respectively. These re-
sults indicate that we can measure the body length of fish by our
method accurately.

To evaluate our estimation method of tail beat frequency, we com-
pared the values obtained by our method and those of ground-truth
for the periods during which the ground-truth have been measured.
For each tracked fish, we average the time series of tail beat frequen-
cies computed by our method and calculated the difference of the tail
beat frequencies between ground-truth and our method. The average
and S.D. of the differences are 0.126 (Hz) and 0.154 (Hz).

The results are summarized in Table 1.

Table 1: Measurement Results of Body Length and Tail Beat Frequency

difference between
ground-truth and our method

ave. of
body lengths 0.0172 (BL)

S.D. of
body lengths 0.0100 (BL)

ave. of
tail beat frequencies 0.126 (Hz)

S.D. of
tail beat frequencies 0.154 (Hz)
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4.4.3 Coast Phase

For the 110 valid sequences obtained in Section 4.4.1, we manually
checked whether coast phases were observed. The definition of coast
phase is as described in Section 4.2. As a result, we found coast phases
for 29 valid sequences. On the other hand, our method detected that
33 valid sequences contained coast phases. The precision and recall of
the classification result are 0.945 and 0.879. The results demonstrate
that our method can practically detect coast phases.

4.5 conclusion

In this chapter, we proposed the measurement method of tail beat
frequency and the estimation method of coast phase for isolated fish
in RS type schools of fish. For our experiments, we recorded a large
school of sardines and applied our method to a scene taken from the
movie. The average difference of the tail beat frequencies estimated
by our method and those estimated manually was 0.126 (Hz). For
estimation of coast phase, the precision and recall of the classification
result were 0.945 and 0.879. These results indicate that our method is
practical useful. We expect that our method is useful for observation
of individual behaviors in school of fish.





5
T R A C K I N G M E T H O D F O R M U LT I P L E F I S H W I T H
A N A P P E A R A N C E M O D E L

In this chapter, we propose a visual tracking method for fish schools
of the type RS, i.e., there are a certain number of isolated fish and we
can manually track most of them if occlusions of multiple fish occur
as stated in Section 1.1. The accuracy of our method is evaluated with
a scene of a school of sardines (Figure 19) filmed in the Kujukushima
Umikirara Aquarium.

Most of the results presented in this chapter have been published
in [IC1]. The research of this chapter have been done with Mr. Hongo
Koki, Lecturer Hitoshi Habe at Kinki University and Prof. Masa-aki
Sakagami. The author of this thesis designed research, developed
methods, performed experiments and wrote the paper.

5.1 introduction

Tracking multiple targets in a video arises in many important applica-
tions such as automatic surveillance, robotics, and collective motion
analysis. A lot of tracking algorithms have been proposed [69, 97, 57,
24, 25], as stated in Chapter 2. Recently, tracking methods for mul-
tiple objects in highly dense group have been proposed [116, 6, 68].
However, it becomes quite difficult to track targets when they are ho-
mogeneous and occlusions occur frequently, such as the school of fish
shown in Figure 19.

Many methods have been proposed for tracking a large number
of unmarked fish under frequent occlusion [33, 34, 89]. Several re-
searchers have measured not only the positions and directions of the
tracked fish but also their postures with parameterized deformable
models [39, 20]. However, as stated in Section 2.3, the targets in most
of these studies are fishes in a shallow tank, and consequently, two
fish at most are assumed to superimpose in occlusion cases. Viewed
from one direction, more than two fish are generally superimposed
in schools of fish, as in Figure 6(e) and 19(b).

As can be seen in Figure 19, fish overlap with each other in real fish
schools, and occlusions frequently occur as a result. Moreover, the
texture of fish is weak, and identification of individuals in the school
is difficult because they are a highly homogeneous group and their
appearances change according to their tail beats. For these reasons, it
is difficult to track multiple fish in real scenes.

In this chapter, we solve this problem by considering appearances
of occluded fish in the school. We first constructed an appearance

35
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(a)

(b)

Figure 19: (a) A school of sardines taken from the bottom of a tank at the
Kujukushima Umikirara Aquarium. (b) A magnified view of (a).

model that represents the nonrigid fish bodies. Because the members
of the school are similar, each of them can be accurately represented
by the model with suitable scaling. We confirmed that an isolated
fish can be tracked with our appearance model. For occluded fish,
we can estimate their states by matching all of the combinations of
the possible positions allowing rotation and scaling of the models if
we know the number of the fish. On the basis of the above ideas, we
propose a tracking method for multiple fish, even if more than two
member of them overlap with each other.
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For the experiments, we collected 11 scenes of swimming sardines
from a movie recorded at the Kujukushima Umikirara aquarium. In
order to compare the tracking performance of our method, we have
manually tracked the fish and have also carried out tracking using a
basic tracking method [97, 69]. For multiple swimming fish that over-
lap with each other, our method practically tracked targets (80% for
two fish and 100% for three fish) for the collected scenes, although
tracking based on [97, 69] failed owing to occlusions. For the suc-
cessfully tracked scenes, we also computed the difference in position
between the tracked results and the ground-truth to measure the ac-
curacy of our method. The average difference is less than 4% of the
mean body length of the school, and these results indicate that our
method is practical for tracking multiple fish.

This chapter is organized as follows: we first review works related
to collective behavior of fish schools and tracking methods mainly
used for fish in Section 5.2. Section 5.3 presents the dataset and the
details of our method for tracking multiple fish. We then discuss the
experimental results in Section 5.4. Finally, we summarize this chap-
ter and state the plans for future work in Section 5.5.

5.2 tracking methods for multiple objects

We briefly review tracking methods for multiple objects, in particular
schools of fish.

Tracking methods for multiple objects in a high dense group:
Tracking individuals in a highly dense group is challenging because
occlusions among individuals occur frequently, which makes it dif-
ficult to identify individuals. Recently proposed tracking algorithms
have employed individual behavior models, i.e., spatiotemporal con-
sistency models [116], global scene constraint models [6], and spatial
pattern models [68].

Tracking methods for multiple fish: Tracking methods mainly for
multiple fish have been proposed. Delcourt et al. tracked blobs in bi-
narized fish school images, identifying the individuals using three
parameters based on [59] for occlusions [33]. Butail et al. modeled the
shape of each fish as a series of elliptical cross sections and recon-
structed the full-body trajectories of eight fish with multiple cameras
[20]. Fontaine et al. tracked multiple fish, estimating their postures by
parameterized deformable model with an iterated Kalman filter [39].
Qian et al. detected the head regions with a Kalman filter and linked
the trajectory fragments under time and space constrains[89].
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Figure 20: An example of Type B scene. Two fish in the ellipses are crossing
once. Fish in each yellow ellipse are overlapping.

5.3 our method

In this section, we explain the details of our method: the dataset used
for the tracking experiments, our appearance model, and the tracking
method for multiple fish.

5.3.1 Dataset

We recorded videos of a school of sardines in March 2015, as ex-
plained in Chapter 3. We used videos in which the school is relatively
sparse as shown in Figure 19. The population of the school was ap-
proximately 3,000 individuals. The average apparent body length of
the 30 sardines in the video is 58.67 pixels. In this chapter, we use
the estimated mean body length (BL) as units of measure. The typical
speed of the sardines in the aquarium is approximately 1-2 BL/s.

For our experiments, we extracted three types (A-C) of scenes from
the movies as follows. Type A contains an isolated swimming fish
during the scene. Type B contains two fish that cross once. Type C
contains three fish that overlap with each other. We prepared one
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Figure 21: Part of the appearance model. Note that these templates are
grayscale images.

scene of Type A, five scenes of Type B and five scenes of Type C.
Figure 20 shows an example of Type B scene. The top row in Figure 24

shows snapshots from scenes of Type A, B, and C and the trajectories
of the tracked fish.

5.3.2 Appearance Model

We constructed an appearance model that represents nonrigid fish
bodies. From the sequential images of a manually tracked fish, we
extracted 20 template images whose directions, sizes, and positions
of the center of gravity are aligned. Figure 21 shows part of the ap-
pearance model. Because all of the members of the school are similar
to each other, we can approximately represent all of the fish images
with this models by rotation, scaling their size, and fitting their thick-
ness. Therefore, we can estimate the position and other states of each
isolated member of the school by matching it with our appearance
model.

5.3.3 Parameter Estimation with the Appearance Model

For an isolated fish in the school, we estimate its position, direction
angle, posture (index number of our appearance model), scale, and
thickness by applying template matching algorithm and our appear-
ance model to the image. In this study, we employed the sum of the
squared distance (SSD) as the similarity measure. Figure 22(a) and
22(b) show an example of the estimation for isolated fish. Table 2 is
the list of parameters used in our method.

For a multiple fish occluded image, we cannot estimate the parame-
ters of all of the members in the image by simply applying the above
matching method. However, if we know the number of fish in the
occluded fish image, we can also estimate the positions and other
parameters of multiple fish by matching with all of the combination
of parameters. Figure 22(c) and 22(d) show an example of parameter
estimation for occluded fish. This matching method for occluded fish
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(a) (b)

(c) (d)

Figure 22: (a) Original image. (b) Image drawn from the estimated parame-
ters of (a). (c) Image of occluded fish. (d) Image drawn from the
estimated parameters of (c) with our method

enables us to extract their states unless the entire body is occluded by
other fish.

5.3.4 Tracking Multiple Fish

We explain a multiple fish tracking procedure with our parameter es-
timation method. In this study, we first select fish to track and assign
id numbers. We calculate the initial parameters with our parameter
estimation method.

For frame t of a scene of Type A, we first estimate the position
and angle of the tracked fish in frame t from previous five frames of
data. We next apply our parameter estimation method. The position
and direction angle are explored within ±α pixels and ±β degrees
on the basis of the estimated position and angle. The thickness is
fixed through tracking. We renew the position and other parameters
of frame t and repeat these processes.

Table 2: Parameters of Our Method

parameter units value explored

position pixels the entire image

direction angle degrees omnidirectional

scale 5% 95% - 120%

thickness 25% 75%, 100%

appearance model 1 1-20
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Figure 23: Framework of multiple fish tracking

For a scene of Type B and C, i.e., in the case of multiple fish tracking,
we track them as follows. In frame t, we first estimate the temporal
positions and directions from the previous data. We calculate the fish
parameters in frame t with the parameter estimation method. Finally,
we assign the parameters estimated from the calculated parameters to
the tracked fish. Figure 23 shows the flowchart of the tracking process.
The details are as follows.

1. We estimate the position and angle of each tracked fish at frame
t from the previously estimated parameters. In this study, we
calculate the parameters with extrapolation from five previous
frames of data.

2. We binarize the t-th image and extract the fish regions. Note
that there are regions that contain multiple fish. We dilate the
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fish regions and extract regions of fish from the original t-th
image using the dilated regions as masks.

3. For the separated regions prepared in the previous step, we
assign the id numbers of the tracked fish to the regions. We
calculate the similarity with average SSD between the region
and the fish image drawn from each fish’s parameters estimated
in step 1. We assume that a region contains a tracked fish if the
average SSD between them is less than γ.

4. For each region and assigned id number, we estimate the pa-
rameters of the fish with our parameter estimation method. For
each fish of the assigned fish, the position and direction angle
are explored within ±α pixels ±β degrees on the basis of the
estimated positions and angles of the fish. The thicknesses of
assigned fish are fixed through tracking.

5. To append the estimated parameters to tracked fish data, we
define the distance dp between the parameters p and q of the
fish as follows:

dp(p,q) =
√

(px− qx)2 + (py− qy)2 + (pθ− qθ)2 + (ps− qs)2

where px, qx, py and qy are the positions, pθ and qθ are the
direction angles, and ps and qs are the scales. We assign each
estimated parameter to the nearest tracked fish data according
to the distance.

In this study, we set α to 3, β to 6, and γ to 100.

5.4 experimental results

We have conducted experiments to show the effectiveness of the pro-
posed method. In order to compare the tracking performance of the
proposed method, we manually prepared the ground-truth positions
of the targets and have also carried out tracking using a simple method
that extracts feature points[97] and tracks them using the Lucas-Kanade
method[69]. We call the simple method ’FP-LK’ for short.

FP-LK and the proposed method tracked successfully for the scene
of Type A. For the scenes of occluded fish, the proposed method
tracked targets practically (80% for Type B and 100% for for Type C),
although FP-KL failed to track in the middle of tracking. Figure 24

shows typical examples of tracking results. Each column corresponds
to a sequence of test images. The top of each column shows a ground-
truth trajectory by which we can see how fish are swimming in the
sequence. The remaining rows show the tracking results of FP-LK
and the proposed method.

In Figure 24, we note that FP-LK often failed to track the target. For
example, FP-LK cannot continue tracking until the end of sequence
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Ground Truth

FP-LK Tracking Results

Proposed Method Tracking Results

(a) Type A (b) Type B (c) Type B (d) Type C (e) Type C

Figure 24: Tracking results. The top row shows the ground-truth of the fish
trajectories. The second to the fourth rows show the trajectories of
the FP-LK method. The fifth to seventh rows show the trajectories
of the proposed method. The numbers in the images are frame
numbers. We set the number of first frame in each scene as 0.

in (b) to (e), where multiple fish are tracked, because the fish bodies
are very close to each other. On the other hand, the proposed method
robustly track the target fish even for the challenging situations as (b),
(d), and (e) in Figure 24, while the proposed method cannot correctly
track the two fish in Figure 24 (c). The tracking for Figure 24 (c) was
failed when the two fish were completely overlapped.

The errors of the tracking results are summarized in Table 3. We
computed the distances between the successfully tracked results and
the ground-truth in each frame. Their averages and variances are
listed in the table. Note that the unit is the percentage of body length(BL).
Moreover, we note that the errors of FP-LK for multiple tracking can-
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Table 3: Quantitative Comparison of Tracking Errors (Percentage of the BL)

Type A Type B Type C

FP-LK 2.83(0.66) N/A N/A

Proposed 2.66(1.21) 3.63(6.17) 3.58(3.56)

not be computed because it cannot track the targets until the end
of the sequences. On the other hand, we can see that the proposed
method provides sufficiently accurate trajectories.

5.5 conclusion

In this chapter, we proposed an appearance-based tracking method
for multiple fish. For the test scenes in which two or three fish overlap
with each other, our tracking method exhibited practical performance
(80% for Type B and 100% for Type C), although the FP-LK method
failed in all the scenes. The trajectories tracked by our method were
also accurate, because the average differences between the trajectories
of our method and the ground-truth in the three scene types were less
than 4% of the BL of the school.

Our future work includes improving the tracking performance by
introducing a parametrised appearance model of fish, a probabilistic
object tracking framework, and interaction models between fish to
estimate the states in the next frame. It is also worth accelerating our
algorithm in order to track thousands of fish in schools.
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V E L O C I T Y D I S T R I B U T I O N M E A S U R E M E N T
M E T H O D W I T H O P T I C A L F L O W F O R S C H O O L O F
F I S H

We propose a measurement method for the mean speed distribution
of collective motions of RD type schools of fish with optical flow in
this chapter. Our method is applicable to highly dense homogeneous
groups wherein individual movements are approximately uniform
locally. To measure speed distributions, we partition a group into re-
gions and estimate mean speeds in each region by extracting only
flows that are relevant to collective motions and averaging them over
a period of time. We experimentally find that our method works well
even when we cannot reliably track individuals. We specifically ap-
ply our method to schools of sardines to measure a kind of speed
distribution called rotation curve (RC). Experimental results obtained
by simulation demonstrate that our method can estimate flows and
RCs accurately. We also performed experiments with videos of real
fish. The RCs were estimated by manual tracking and by our method.
The results are approximately equal, and the average difference is
less than 4% of the mean body length of fish in the observed schools.
These results indicate that our method is practically useful for mea-
suring RCs. We also applied the proposed method to another kind of
fish school, a school of anchovies and measured another kind of ve-
locity distribution, called cake-cut distribution. These results are also
presented.

Most of the results presented in this chapter have been published
in [J1] and [IC3]. The research of this chapter have been done with
Prof. Horohisa Hioki and Prof. Masa-aki Sakagami. The author of
this thesis designed the research, developed methods, performed ex-
periments and wrote these paper.

6.1 introduction

Measuring collective motions of a group is a fundamental step in
mathematical modeling and analysis of collective behavior as stated
in Chapter 2. In principle, we can measure collective motions of a
group by tracking individuals separately. However, it becomes quite
difficult to track individuals when they are homogeneous and their
density in the group is high like RD type schools.

In this chapter, we find that estimating speed and velocity distri-
bution of collective motions is possible, even when we cannot reli-
ably track individuals of a group manually or automatically. In this

45
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chapter, we propose a method to estimate the speed distribution of
collective motions with dense optical flow from video. Our method
is applicable to homogeneous groups where individual movements
are approximately uniform locally and are stable for a sufficient time
period.

To estimate the speed distribution of collective motions from a
video, just computing a dense optical flow for the entire scene through
all video frames is often insufficient. When we record a video of a
group, we may observe noise and obstacles, i.e., objects that are not
in the target group. Therefore, we must extract only the flows that are
relevant to the target group and exclude other flows.

We can exclude the flows derived from noise and obstacles if we
know approximately typical velocities in each region. We also exclude
flows around the flows just excluded, because such flows can be af-
fected by noise and obstacles. Once the flows relevant to the group
are extracted from all frames successfully, we can compute the mean
speed in each region by deriving the mean speed from the flows in
the region for each frame and then take their mean value.

We have measured the rotation curve (RC) for rotating schools of
sardines by our method. Figures 25(a) and 25(b) show snapshots of
the schools of sardines whose RCs were estimated. RC is a kind of
speed distribution for a group in rotational motion (Figure 25(c)). RC
is defined as a plot of the mean speed of the rotational motion against
the radial distance from its center. To estimate RCs automatically, the
center point must be accurately located; therefore, we have developed
an algorithm to compute the center point from flows.

As can be seen in Figures 25(a) and 25(b), fish swim in 3D space;
thus, in the strictest sense, measuring 3D motions is required to es-
timate RCs, which is quite difficult. In this study, we estimate RCs
from projected 2D images (Figure 25(b)) because schools of fish are
typically fairly flat and fish generally swim at a relatively equal depth
(see Figure 25(a)). Measurement of speed distribution for such collec-
tive motion is useful for roughly understanding the movement and
features of groups and estimating parameters for mathematical mod-
els of group behavior that can be used to construct better models
[78, 99]. Such measurement enable us to observe automatically the
health and growth of individuals in a fish farm.

We first applied our method to a set of simulations. The correct
parameters for schools of fish are known for such simulations; there-
fore, we can quantitatively evaluate our method by simulation. We
also applied our methods to videos of schools of sardines. To identify
the correct RCs for real schools of sardines, we manually tracked as
many individual sardines as possible in a careful way. It was, however,
quite difficult to track sardines stably because individuals frequently
overlapped. This means that the RCs obtained by manual tracking are
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(a)

(b)

(c)

Figure 25: (a) Rotating schools of sardines taken from the side and (b) the
bottom of a tank at the Kujukushima Umikirara Aquarium, and
(c) an overview of the RC of the school



48 velocity distribution measurement method with optical flow for school of fish

inaccurate in the strictest sense. We estimated RCs using our method
and compared the results with the manually-tracked RCs.

The experimental results demonstrate that our algorithm is accu-
rate in simulation. For schools of sardines, the average relative errors
of the RCs estimated by our method with respect to the RCs obtained
by manual tracking were less than 4%, both RCs were thus approxi-
mately equal.

Our method was also applied to a 20 minute video of sardines.
We could automatically compute RC time series of sardines for such
a long scene. During taking a long video of a school, we cannot al-
ways expect to observe the school rotating in torus form stably. The
shape of a school can be distorted, for example, by attacks of large
fishes (predators). A part or all of the school becomes not observ-
able to us when large fishes cross over near the camera. For finding
those kinds of events automatically, we devised two features that are
derived from flows. We could successfully detect noticeable events
from the 20 minute video by those features.

In order to evaluate applicability of our method, we measured the
RC time series of rotating school of a different kind of fish, anchovies
in the same aquarium. We also detected events at the same time as
for the case of sardines. The results indicate that our method is useful
practically.

We cannot measure propagation of speed along to circumferential
direction with the RC. To detect such propagations as a kind of in-
formation transfer, we also propose another kind of division of space,
called cake-cut distribution, and measure speed and angle distribu-
tion on the division. We have conducted experiments to show the
accuracy of the velocity (speed and direction) distribution on the di-
vision. The result is also presented.

In the rest of this chapter, we briefly review results from collec-
tive motion measurement in natural science in Section 6.2. Section
6.3 presents the basic idea of speed distribution measurement with
optical flow. We present the details of our method for estimating RC
and experimental results in Section 6.4. Applications of our method,
including event detection, to a long time scene of sardines and to a
school of anchovies are shown in Section 6.5. We introduce the cake-
cut distribution and show the experimental results. Finally, we sum-
marize this chapter and give directions for future work in Section
6.7.

6.2 measurements of collective animal behaviors

In collective animal behavior research, tracking individuals of a group
has often been performed manually as stated in Chapter 2. Cavagna
et al. [22] measured the 3D positions of individual European starlings
within flocks of up to 2,600 birds using a stereo camera. Tracking in-
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dividuals in a shoal or school of fish is often more difficult than in
flocks of birds because the density of a shoal or school of fish is typ-
ically higher than that of a flock of birds. For example, the average
nearest neighbor distance of flocks of European starlings is reported
as approximately 2.6 wing spans (5.3 body length) [10], whereas the
average nearest neighbor distance of a school of sardines is approx-
imately 0.3 body length, which was determined by a single frame
from one of our videos.

In previous work, videos have been recorded in shallow tanks to
avoid difficulties caused by overlap among fish [99]. Hemelrijk et al.
[46] measured the 3D positions of dozens of mullets in a tank. How-
ever, to date, the features of collective motions of schools with thou-
sands of fish, as shown in Figure 25(b), have not been investigated.

6.3 speed distribution measurement with optical flow

Here, we propose a method to estimate the speed distribution of col-
lective motions with dense optical flow. We find experimentally that
our method is effective even when we cannot reliably track individ-
uals. We assume that the directions and speeds of individuals in a
group are approximately uniform locally.

To estimate the speed of an object, based on the dense optical flows
of a proper density, we can compute the mean speed of the flows that
are relevant to the object (Figure 26(a)). Similarly, we can estimate the
mean speed of a group of objects that may overlap when they move
together; thus, their velocities are approximately equal (Figure 26(b)).

Here, we discuss the basic idea of estimating the mean speed of
collective motions, which is stable for a time period, by computing
the dense optical flow. Assume we have T consecutive frames for col-
lective motions of a group. We partition the group into regions and
estimate the mean speeds in each region. We then estimate the mean
speed in a region between frame 0 and frame T−1 by obtaining all
flows in the region of each frame, computing the mean speed in the
region of each frame, and then taking their mean value with time as
follows:

the mean speed ∼
1

T

∑
06t<T

 1

|Ft|

∑
i∈Ft

flowi

 (11)

where Ft is the index set of the flows in the region at frame t, and
flowi is the size of the ith flow. Figure 26(c) shows the basic idea of
speed estimation for a region.

It should be noted that obstacles, i.e., objects not in the target group,
may be present in the same scene. At the same time, we usually ob-
serve various types of noises that can degrade flows. Therefore, we
need to extract only the flows that are relevant to the target group
and exclude other flows.
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(a) (b)

(c)

Figure 26: Speed measurement with optical flow: (a) measuring the speed of
a moving element, (b) the speed of moving elements that move
together and (c) measuring the mean speed of moving elements
in the blue region

We assume that individuals in the group move together in a certain
direction in a local area; therefore, if we know the direction, flows
that move in apparently different directions can be excluded. If we
know the typical speed of a measured individual, we can exclude
flows that are too slow and too fast. Flows apparently irrelevant to
the target group are thus excluded as those derived from noise and
obstacles. We also exclude flows around them, because such flows
can be affected by noise and obstacles. Under these conditions, it is
expected that we can extract only the flows that are relevant to the
target group, from which we compute the speed distribution of the
group.

In this study, we measure RCs, which are a kind of speed distri-
bution, for rotating schools of sardines to characterize the states of
fish. For example, RCs can be used to evaluate Niwa’s mathemati-
cal model [78] of fish schooling. A definition of RC and methods to
estimate it are described in Section 6.4.
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6.4 rotation curve

RC is a speed distribution defined for groups in rotational motion.
The RC for a group is given as a plot of the mean speed of rotational
motion against the radial distance from its center. RC was originally
introduced to understand the structures of disk galaxies. The RCs of
visible stars and gases in disk galaxies are useful for analyzing such
galaxies, and the results support the dark matter hypothesis [15].

In this study, we estimate RCs of rotating schools of sardines. They
are typically relatively flat, and individuals in a school usually swim
at a relatively equal depth. Therefore, we estimate RCs from 2D mo-
tions observed in video frames. We divide the region of a school into
concentric annulus-shaped areas of equal width. In this study, each
of these areas is used as a bin. The RC is then taken as a plot of the
mean speeds of fish for each bin. Figure 25(c) illustrates the RC of a
school of fish.

We use the estimated mean BL of fish as the unit of distance. The
speed is measured in BL/s. The width of each bin is set to 1 BL.
Note that BL values vary relative to the characteristics of each unique
school of fish.

6.4.1 Rotation Curve Estimation

Here, we provide an overview of the RC estimation process, which
is based on the method introduced in Section 6.3. Figure 27 shows a
flowchart of the entire process. The details of each step are presented
in the following sections.

We first estimate the center of the first frame of a scene. The center
point is supposed to be roughly located manually. The position of
this tentative center point is then adjusted by iteratively applying a
center estimation method (Section 6.4.1.3) 10 times. In the estimation
process, the tentative center point is used to compute flows and then
the position of the center point is updated using the computed flows.
This circular process is repeated enough times until the position of
the center point converge. Through simulations (Section 6.4.2.2), we
found that this iterative estimation process converges quickly, and
10 iterations are sufficient. Once the center point is estimated, we
simultaneously determine the innermost and outermost bins that are
usable for RC estimation. We include a bin for estimation if the ratio
of the flows of the school to all flows in the bin is greater than a
threshold β (Table 4).

After the center point is located, and the innermost and outermost
bins in the first frame are determined, we detect the flows of the
school in each bin for each frame (Section 6.4.1.1). We then update the
center point, innermost bin, and outermost bins for the next frame. In
this update process, rather than replacing the data with new values,
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Figure 27: RC estimation framework

we take the average values of the previous 30 frames to stabilize the
data.1 These detection and update processes are repeated frame-by-
frame. Once we have calculated school flows for each bin for all the
T frames, we then compute the RC from the flows (Section 6.4.1.2).

We can successively estimate RCs for every T frames in a long time
video by applying the above RC estimation process repeatedly. Note
that we do not have to repeat the center estimation process for second
or later RC estimation processes.

6.4.1.1 School Flow Detection

To estimate the RC of a school of fish properly, we must extract only
the motion of the school. We detect motions as flows.

Before computing flows, we first apply a bilateral filter to each
video frame to reduce block noise caused by the movie codec and
wave noise from the water surface.

We then calculate a dense optical flow between frame t and frame
t + ∆t(1 6 ∆t) and multiply 1/∆t for each flow. We do not calcu-
late flows between two consecutive frames directly because the move-
ments of fish between frames are sometimes negligible. We employ
Gunnar Färneback’s algorithm [37] to calculate dense optical flow. We
compute flows for grid points at regular intervals of p pixels vertically
and horizontally.

The obtained flows include the flows that are affected by noises
and obstacles. We extract school flows by considering their expected
conditions.

First, school flows are expected to move uniformly with the direc-
tion of rotation because the rotation direction of the school will not

1 We use the data of the first frame if data for ith frame (i<0) are required.
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change during a short period. Second, a wandering fish, such as a
sardine or tuna, always swims about its BL per second [8]. Therefore,
we assume that extremely slow and extremely fast flows should not
be considered as school flows.

From the above considerations in our work [IC3], we select flows
that satisfy the following conditions: 1) the difference between flow di-
rection and rotation direction is less than ±3π/8; 2) the speed derived
from the flow is less than 4 BL/s; 3) the speed derived from the flow
is greater than sL(n) BL/s, where n is the bin number (n = 0, 1, . . .):

sL(n) =

{
0.1+ 0.025×n 0 6 n < 20

0.6 n > 20.
(12)

Flows that do not satisfy the above conditions are excluded from
the calculation of RC. Flows around such excluded flows are also ex-
cluded because such flows may be affected by noise and obstacles.
Thus, we define a flow as being in the school only if it and its 4-
neighbor flows simultaneously satisfy the above conditions. We cal-
culate RC from the extracted flows. Figure 28 shows an example of
flows computed for scene A in Figure 32.

We have given a constant speed range for each bin as the above
speed condition (3), however, speeds of fish vary not only from area
to area and but also from time to time in rotating schools. We there-
fore need to determine adaptively the proper range of speed for each
local area of each frame to exclude flows caused by small noises and
obstacles such as large fish out of school. In our work [J1], we also pro-
posed an extraction process that consists of two stages with adjusted
speed condition.

In the first stage, we estimate the average speed of school flows
for each bin for every T frames. We select flows from T frames by
the three conditions and compute their average speed for each bin
with a fixed center point in order to stabilize the results. Among the
three conditions to be used here, we do not know the speed condition
for school flows for each bin yet, but we can still provide constant
thresholds that approximate minimum and maximum speeds for the
whole school. In [J1], we use 0.15 BL/s and 5.0 BL/s respectively as
the minimum and maximum speeds. It is expected that the average
speeds computed in this way are not affected by noises and obstacles.

In the second stage of the extraction process, we adjust the speed
condition for each bin according to the following criteria:

minimum speed = amaxs+ bmax (13)

maximum speed = amins+ bmin (14)

where s is the average speed of the bin obtained in the first stage and
amax,bmax,amin,bmin are constants. We use amax = 1.35, bmax = 1.5,
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Figure 28: Optical flows of a frame in scene C: blue lines show flows that
satisfy the conditions, red lines are flows that do not satisfy the
direction condition, and yellow lines are extremely slow and fast
flows

amin = 0.2 and bmin = 0.15 in [J1]2. We then apply the adjusted speed
condition together with the other two conditions to all the flows again
and extract school flows from them.

The accuracy of RC estimation have been slightly improved with
the extraction process in [J1]3. We show the results according to the
algorithm of [IC3] in Section 6.4.2 and the ones according to the pro-
cedure of [J1] in Section 6.5.

6.4.1.2 RC Computation from Flows

In frame t, we compute the mean speed of each bin of the school from
the mean flow in each bin. We then obtain the RC by averaging the
mean speeds in each bin for T frames. Accordingly, the mean speed
RCn of the nth bin can be computed by applying (11) to the bin as
follows:

RCn =
1

T

∑
06t<T

( 1

|Ftn |

∑
i∈Ftn

flowi
)

, (15)

where Ftn is the index set of the school flow of the nth bin at frame t
and flowi is the value of the ith flow obtained in the school.

Equation (15) should work in principle; however, if there is a frame
where we find only a small number of flows, this equation overesti-

2 Note that here we allow to take flows faster than 5.0 BL/s. Although we assume the
maximum speed in the first stage, it is given as an approximated value, and we can
observe that there are exceptionally fast fish in schools.

3 The average relative errors of RC estimation for three scenes school of sardines in
Section 6.4.2.3 have been improved from 3.4% to 3.1%.
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mates the influence of the frame, and the mean speed obtained from
the frame may result in incorrect fluctuations of the RCn value. To
mitigate such influence, we assume that we can compute RCn by first
summing all school flows found in the bin for all T frames and then
dividing the sum by the total number of flows as follows:

RCn =
1∑

06t<T

|Fnt |

 ∑
06t<T

∑
i∈Fnt

flowi

 . (16)

Table 4: parameters of our method

T 30

p 3

∆t 6

α 0.05

β 0.2

parameters of Färneback’s algorithm

scale to build image pyramids 0.5

number of pyramid layers 3

averaging window size 7

number of iterations at each layer 5

size of the pixel neighborhood 5

standard deviation for polynomial expansion 1.1

Fish in a school do not distribute over all bins evenly. Sparsely
populated bins with many obstacles may not yield reliable results.
Thus, we calculate the mean speed for a bin only when the ratio of
school flows to the total number of flows found in the bin is greater
than a threshold α.

Table 4 shows the parameters of our method. We implemented our
method using the C++ programming language with OpenCV.

6.4.1.3 Center estimation

We propose a method that estimates the center of a rotating school of
fish from flows of their movements with least-squares method. With
our method, the center point is located accurately when the form of
the rotating school is not heavily distorted.

We assume that each fish is expected to swim roughly along the
rotation direction; thus, the line li, which is normal to the flow and
goes through the origin of the flow, is expected to pass near the center
point. Therefore, we can estimate the center point by minimizing the
sum of squares of the distance from the center to line li of each flow.

For a normalized flow vector (ui, vi) at (xi,yi), the distance from
the center (x,y) to the line li is given by |ui(x− xi) + vi(y− yi)| as
shown in Figure 29. To determine the center point, we minimize the
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Figure 29: Overview of center estimation

following sum E of the distances from the center and normals of all
the flows,

E =
∑
i

{ui(x− xi) + vi(y− yi)}
2

= (x − Fc)T (x − Fc)

= xTx − 2xTFc + cTFTFc (17)

where

x =


u1x1 + v1y1

u2x2 + v2y2
...

unxn + vnyn

 , F =


u1 v1

u2 v2
...

...

un vn

 and c =

(
x

y

)
(18)

The the sum of squares is found by setting the gradients to zero.

1

2

∂E

∂c
=
1

2

(
∂E

∂x

∂E

∂y

)T
= FTFc − FTx = 0 (19)

From the above equation, we need to solve the following regular equa-
tion

FTFc = FTx, (20)

i.e., we solve the following matricial equation:( ∑
i u
2
i

∑
i uivi∑

i viui
∑
i v
2
i

)(
x

y

)
=

(∑
i ui(uixi + viyi)∑
i vi(uixi + viyi)

)
. (21)

We can estimate the center of school of fish quickly with this method
because each term in (21) is calculated at a small cost.

After the estimation of the center (x,y), we calculate the square
sum of the residuals. It seems that this value is related with the degree
of distortion of a school from torus shape. For example, if each of the
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school flows aligns exactly with rotation direction, the value becomes
zero. We call this value center estimation residuals (CER). The CER is
employed as an index to estimate the degree of distortion in school’s
shape. Since the term xTx in (17) is a constant, i.e.,

∑
i(uixi + viyi),

we can easily calculate this index according to (17). The details of how
we use this index will be explained in Section 6.5.2.

6.4.2 Experimental Results

Here, we present experimental results. We first applied our method
to 9 different simulation scenes and confirmed that it works in prin-
ciple. To estimate RCs for real schools of fish, we recorded videos
of schools of sardines at an aquarium. The process of recording the
videos is explained in Section 6.4.2.3. To evaluate our method, RCs
were estimated once by manually tracking sardines in the videos. The
details of the manual tracking process are described in Section 6.4.2.4.
We applied our method to the same videos. The results of our experi-
ments are presented in Section 6.4.2.5. We also examine the accuracy
of our method by comparing the obtained RCs with those obtained
by manual tracking. Finally, we present the results of an experiment
for a long video.

We prepared 9 simulation scenes and applied our method to con-
firm if it works in principle. Here, we describe how the scenes were
created and present the results of the simulations, i.e., the accuracies
of center estimations and RCs.

6.4.2.1 Simulation Scenes

To confirm that our method can estimate RCs under various condi-
tions, we prepared 9 virtual scenes of rotating schools by changing
RCs in three ways and the amount of obstacles (i.e., larger fishes) in
three levels. In the simulations, the populations of schools, the sizes
of fish, and the number of frames were determined so that the scenes
have approximately the same values as the videos we obtained. Sec-
tion 6.4.2.3 provides the details of the obtained videos. A school was
represented by 4,000 black ellipses. Other fish were represented by
larger black ellipses moving straight at 1 BL/s.

Table 5 details the parameters used in the simulations. RCs are
given as lines with different parameters for inclinations and inter-
cepts. The speed (BL/s) of fish in the nth bin of a school was con-
trolled according to the given line equation. The simulation scenes
are uniquely named, e.g., D-1. Scenes with the same symbol (i.e., D,
E, and F) have equal RCs. The branch numbers 1, 2, and 3 indicate
three different levels for the number of obstacles. No obstacles were
added to level 1, whereas a small number of obstacles is added to
level 2, and a larger number of obstacles is added to level 3. Figure
30 shows snapshots of simulation scenes D-1, D-2, and D-3.
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(a) D-1 (b) D-2

(c) D-3

Figure 30: Snapshots of simulation scenes D-1, D-2 and D-3

6.4.2.2 Results of simulation scenes

Table 6 shows the results of center estimation in the first frame for
each scene (Section 6.4.1.3). We repeated estimations by changing the
locations of the initial point over the regions of the school for each
scene. Note that the unit of length is always BL. The “error of center
(%)” in Table 6 shows the error between the correct center points and
estimated centers. The “ave. of conv. (1%)” and “max. of conv. (1%)”
show the average and maximum number of iterations, respectively,
when we obtained a point that nearly converged during estimation
(within 0.01 BL from the estimated center point). The “ave. of conv.”
and “max. of conv.” give the average and maximum number of itera-
tions required for the process to converge, respectively. These results
demonstrate good performance of the center estimation method. In
these experiments, we require at most 10 iterations for estimation.
This number of iterations was employed for the proposed RC estima-
tion method (Section 6.4.1).

Figure 31 shows the estimated RCs obtained by our method. To
quantify RC estimation errors, we also show the average relative er-
rors (RE) and the root mean square of the relative errors (RMSRE) of
our method in Table 7 with respect to the RCs given in Table 5. As



6.4 rotation curve 59

can be seen, both the average RE and average RMSREs are less than
2% of the BL. The “ave. of center errors” is the average error of the
estimated center points in all frames for each scene. These results in-
dicate that the proposed center estimation algorithm can locate the
center points of schools of fish stably.

According to Figure 31, Table 6, and Table 7, accuracy tends to
decrease as the number of obstacles increases. However, our method
shows practical performance for various types of RCs even in the
presence of obstacles.

Table 5: simulation scenes

scene inclination and intercept of RC obstacles

D-1 0.05n+ 0.9 none

D-2 0.05n+ 0.9 few

D-3 0.05n+ 0.9 many

E-1 1.5 none

E-2 1.5 few

E-3 1.5 many

F-1 −0.04n+ 1.8 none

F-2 −0.04n+ 1.8 few

F-3 −0.04n+ 1.8 many

Table 6: Center estimation results

center estimations

scene
error of

center(%)
ave. of

conv.(1%)
max. of

conv.(1%)
ave. of
conv.

max. of
conv.

D-1 1.41 2.71 3 5.92 8

D-2 0.66 3.00 4 5.61 7

D-3 2.27 3.04 4 6.08 9

E-1 0.63 2.62 3 5.92 8

E-2 1.18 2.98 4 5.47 7

E-3 2.77 3.05 4 5.46 8

F-1 0.49 2.68 3 5.12 6

F-2 1.59 3.01 4 5.37 8

F-3 4.97 3.05 4 6.33 8
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(a) D-1,2,3

(b) E-1,2,3

(c) F-1,2,3

Figure 31: RCs Estimated by our method for simulation scenes

6.4.2.3 Schools of fish in an Aquarium

The videos of schools of fish were recorded in the largest tank at the
Kujukushima Umikirara Aquarium, Nagasaki, Japan between March
2012 and March 2014, as explained in Chapter 3.

We submerged a commercially available HERO2 video camera to
the bottom of the tank.
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We extracted three scenes (30 frames each) wherein sardines were
rotating in a relatively stable and solid torus formation. The popula-
tion of each school was approximately equal (i.e., 3,000 individuals).
Figures 32(a), (c), and (e) show snapshots of the scenes A, B, and C,
respectively.

As stated previously, the unit of distance is measured in BL, which
can vary for each school. To estimate BL for a given school, we ran-
domly targeted 30 sardines from an image of the school and em-
ployed the average apparent BL. The left side of Table 8 shows basic
data for each scene.

6.4.2.4 RC Estimation by Manual Tracking

To evaluate our method, we measured RCs for scenes A, B, and C by
manually tracking sardines.

For each scene, we first estimated the center of the rotating school
using the method explained in Section 6.4.1.3. We randomly selected
approximately 170 sardines in each scene, recorded trajectories of
their heads, and calculated the speed of each sardine. Note that not all
sardines could be tracked in the scene because of occlusions caused
by other sardines in the school and other fish in the tank.

Table 7: RC estimation results

errors of RCs

scene
ave. of
RE(%)

RMSRE
(%)

ave. of center
errors(%)

D-1 0.99 1.42 0.82

D-2 0.82 1.44 0.73

D-3 1.39 1.90 2.47

E-1 1.37 1.44 0.43

E-2 1.17 1.40 1.92

E-3 0.94 1.19 2.20

F-1 1.32 1.55 0.34

F-2 1.09 1.29 2.48

F-3 1.61 1.79 3.86

Table 8: Basic data of schools of sardines and RC estimation results

scene date
mean of
BL(pixel)

ave. of
RC(%)

RMSRE
(%)

A March, 26 2013 31.0 3.50 4.80

B March, 27 2013 31.1 3.07 5.34

C March, 21 2014 32.7 3.44 4.81
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(a) scene A (b) scene A

(c) scene B (d) scene B

(e) scene C (f) scene C

Figure 32: Snapshots of scenes and the estimated manually-tracked RCs: (a),
(c), and (e) are snapshots of scenes A, B, and C, respectively. Red
crosses are the centers estimated by our method. (b), (d), and (f)
show the estimated RCs and number of tracked fish in each bin
for scenes A, B, and C, respectively.

Figure 33(a) shows the trajectories recorded for scene A. Figure
33(b) shows the plotted speeds, where the x-axis is the bin number
and the y-axis is speed [BL/s]. Figures 32(b), (d), and (b) show the
RCs obtained by computing the mean speed for each bin from the
tracked trajectories.

6.4.2.5 RC Estimation by Our Method

RCs were estimated using our method for the three scenes. The red
crosses in Figures 32(a), (c), and (e) indicate the estimated centers.
As can be seen, the centers are located correctly. Figure 34 shows the
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(a) manually tracked trajectories (scene
A)

(b) tracked data and RC (scene A)

Figure 33: (a) Yellow lines are the 152 trajectories of the manually-tracked
sardines in scene A. (b) Blue points represent tracked data for
each sardine from (a), and the red line shows the average speed
of each bin, i.e., rotation curve.

estimated RCs. We compared the results with the RCs obtained by
manual tracking. The right side of Table 8 shows the average relative
errors and the RMSRE with respect to the manually-tracked RCs. The
average RE values are less than 4%, and those of RMSRE are approx-
imately 5% for all scenes.

From Figure 34 and Table 8, it can be observed that the RCs ob-
tained by our method and those obtained by manual tracking are suf-
ficiently close, which indicates that our method works well for real
scenes. The differences between RCs obtained manually and those
estimated by our method can be explained as follows. Occlusions,
waves on the water surface, and movements of tail fins can generate
noise, which affect our estimations. The accuracy of RCs obtained by
manual tracking is likely to be limited because we computed these
values by sampling only approximately 5% of the fish in a school and
tracking fish manually was not always possible. Accordingly, it is pos-
sible that the RC estimated by our method is closer to the correct RC.

In addition, the number of fish in the innermost and outermost bins
was fewer than in-between bins, which may distort the estimated RCs
obtained by both manual tracking and our method.

6.5 applications of rotation curve estimation method

In this section, we show two applications of our method. We first
applied our method for a long time scene of a school of sardines.
During the scene, we occasionally found frames not suitable for es-
timating RCs. For example, if the shape of the school is heavily dis-
torted or not all of the school is observed, RCs estimated from such
frames would be unreliable. In order to continuously measure RCs
stably over a long period, it is important to automatically detect ill-
conditioned frames and exclude such ones from computation. For
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Figure 34: RCs estimated by our method and manually-tracked RCs. The
20th bin’s value of B by our method was not computed because
the ratio of the school flows was less than α.

this purpose two features of school flows have been introduced, with
which we could successfully detect the center of the school and com-
pute RCs through the long time scene. We next applied our method
to a school of another kind of fish, anchovies, and confirmed that our
method was well applicable to that school as for the case of sardines.

6.5.1 RC Estimation with a 20 minute Scene

Measuring the long time evolution of speed or velocity distribution
of fish school, such as RC, is useful for analysis of school behavior
and for analysis of the condition of them in fish farm. We recorded
the rotational motion of a school of sardines for 20 minutes on 26th
March 2013 at the Kujukushima Umikirara Aquarium. Our method
was then applied to the whole scene and we could successfully detect
the center of the school and compute RC time series through the long
time scene. The results are shown in Section 6.5.1.1.

As shown in Figure 35, we cannot always expect to observe a school
rotating in torus form stably. We occasionally find that the shape of
the school is heavily distorted, for example, because the school is at-
tacked by large fish (predators). It also happens that silhouettes of
large fish crossing over near the camera and a part or all of the school
is covered as a result. The school itself moves around and (a part of)
it may go out of frame. It is impractical to check for those kinds of
events through a long time movie by human eyes, and it is desirable
to detect events automatically. By detecting such an event, for exam-
ple, we can find that the estimated RC for a frame is unreliable.

Concerning this issue, we devise two features of school flows for
estimating the state of a school as the degree of distortion of its form



6.5 applications of rotation curve estimation method 65

(a) A banded houndshark is covering a part of the school

(b) The form of the school is distorted

(c) A hammerhead shark is attacking the school

Figure 35: (a), (b) and (c) are snapshots of the long term scene at 153s, 24s
and 898s respectively.
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(a) 20s averaged speed series at 4th, 7th, 10th and 13th bins

(b) Speed series at 4th, 7th, 10th and 13th bins from 120s to 150s

Figure 36: RC time series of sardines

from torus shape. Several results we obtained from the 20 minute
scene are described in Section 6.5.2.

6.5.1.1 RC Time Series of Sardines

As stated above, we computed RC time series for the 20 minute scene.
Several results are shown in Figure 36. In Figure 36(a), the time se-
ries of 20-second averaged speed at 4th, 7th, 10th and 13th bins are
shown respectively. It is almost impossible for us to obtains RCs from
such a long scene by tracking manually enough many fish, whereas
our method could automatically track the center of the school and
compute RCs all through the frames without interruption.

To see the detail of RC time series, we show a part of the series
in the period from 120 to 150 seconds in Figure 36(b). The shape of
the school was relatively stable but the RCs were gradually changed
during this period. The RC time series data reveal that fish at outer re-
gion of the school always swim faster than the ones near the rotation
center even when the rotating speed of the whole school vary. Such
behavioral feature of schools of sardines has never been reported, but
is interesting for considering the efficiency of collective swimming
and mathematical modeling of collective motion. Although these data
have just been computed, our data seem informative and actually we
could detect noticeable events from the data by our school flow fea-
tures as we will show in Section 6.5.2.

6.5.2 Event Detection by School Flow Features

For characterizing collective motions, statistical features such as the
group polarization and angular momentum have been invented [29,
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Figure 37: 10s averaged time series of CER and 1s averaged time series of
SDMD and differential of SDMD.

111]. However, including these ones, there are no statistical features
suitable for measuring distortion of torus shape of the school as far
as we know. Therefore, we constructed two features for estimating
the shapes and states of schools. The first one is the center estimation
residuals (CER) defined in Section 6.4.1.3. This feature represents a
degree of distortion of the school form from torus shape. The other
is also for evaluating distortion degree of the school form as a statis-
tical quantity. The latter can also be employed for detecting events in
which a part of the school is not observable. The details are explained
below.

We assume that the positions of the school flows represent the posi-
tions of fish. We first divide the disk area whose center coincides the
rotation center into 24 equal circular sectors. We then calculate the
mean distance from the center to each flow position in each circular
sector. The standard deviation of the mean distances of all the circular
sectors is called SDMD and is employed as a school flow feature.

The SDMD becomes small when the school form is near torus
shape, while it becomes large when the form is distorted, because the
mean distances are varied from a circular sector to another for such a
case. The SDMD thus represents a distortion degree from torus shape.

In Figure 37, we present the time series of CER values of our 20

minute movie. By comparing the movie and the CER time series, we
could find that the shape of school was distorted while CER values
were high. In the period from 900 to 1020 seconds, the CER values
were high because sardines were stimulated by predators and swam
in disorder. From our observations, when the value of CER exceeded
4 BL, the shape of school was heavily distorted. This can be confirmed
for the CER values of six snapshots shown in Table 9. We can see that
the CER values for Figure 35(b) and (c) were 4.07 and 7.13.

The time series of SDMD and the differential of SDMD are also
shown in Figure 37. We picked up prominent spikes in the time series
of SDMD and found that they were corresponded to events when the
school was covered by large fish. The details are as follows. We first
looked through the movie for events in which the silhouettes of large
fish such as banded hound sharks, eagle rays covered the school. The
number of such events was 32 in total. On the other hand, we detected
spikes of SDMD by taking the points for which differentials of SDMD



68 velocity distribution measurement method with optical flow for school of fish

were over 0.5 BL. We then compared the time when events happened
with the detected spikes, and obtained the precision and recall were
0.84 and 0.81 respectively. This result demonstrates that the SDMD
feature is useful.

Although our analysis of time series of RC and other features of
schools is just the first step toward the empirical investigation of col-
lective fish behavior, but the results we obtained indicate that our
method is useful for analyzing the behavior and state of schooling
fish for a long term.

6.5.3 RC Estimation of School of Anchovies

In order to evaluate applicability of our method, we measured the RC
time evolution of rotating school of different kind of fish, anchovies
in the same aquarium. Figure 38 shows the school of anchovies. An-
chovies are smaller than sardines. The mean apparent BL of anchovies
in the scene was 18.8 pixels.

We calculated RCs of the school by our method and estimated
RCs by tracking 172 anchovies manually. All the parameters of our
method were kept the same as for the case of sardines (Table 4).

Figure 39(a) shows the trajectories of anchovies we tracked. Both
the estimated RCs by our method and the one by manual tracking
are shown in Figure 39(b). The RE and the RMSRE of RC estimation
errors were 4.99% and 6.32% respectively. The results demonstrate
that our method is applicable to the school of anchovies.

We also computed the RC time evolution of the school of anchovies
(Figure 40(a)). From the observation of RC time series of anchovies,
we find that the fish in outer region of the rotating school swim faster
than the ones near the center like sardines. These results suggest that
such behavioral feature is universal for rotational collective motion
irrespective of kinds of fish.

We show the time series of the CER, the SDMD and the differen-
tial of SDMD in Figure 40(a). Figure 41 shows the events of banded

Table 9: The CER and SDMD values of the first frame of the scene A, B and
C and the snapshots

frame CER(BL) SDMD(BL)

the first frame of scene A 2.07 2.29

the first frame of scene B 2.84 3.12

the first frame of scene C 2.35 2.57

Figure 35 (a) 2.77 2.74

Figure 35 (b) 4.07 3.06

Figure 35 (c) 7.13 2.61
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Figure 38: Rotating school of anchovies from the bottom of the tank

(a)

(b)

Figure 39: (a) White lines are the 172 trajectories of manually-tracked an-
chovies in Figure 38. (b) Estimated RCs by manual tracking and
our method.
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(a)

(b)

Figure 40: (a) RC time evolution of the anchovies and (b) CER, SDMD and
differential of SDMD time series of the anchovies

houndsharks covered the school. For those events, we confirmed that
there were spikes of time series of SDMD that corresponded to the
events. These results demonstrate that the CER and SDMD features
are useful for detecting events.

In order to apply our method to other kinds of fishes and animals,
we may need, for each case, to optimize the parameters and modify
the conditions for detecting flows relevant to target motions. How-
ever, as shown for the case of anchovies, it is expected that our basic
framework works well for various cases. Measuring speed distribu-
tions of many kinds of animals with our method would enable us to
analyze the differences of collective behaviors over a long time period,
which would be valuable for animal behavior research.

6.6 cake-cut distribution

In order to detect information transfer along to circumferential di-
rection, we propose another division of space, and speed and angle
distribution estimation on the division.

6.6.1 Speed and Angle distribution on Cake-Cut Regions

We first divide the disk area into 24 equal circular sectors. We call
each region of the circular sectors a cake-cut (cut) and assign num-
bers counterclockwisely as shown in Figure 42. The center position of
the disk is calculated by our center estimation method from flows. We
also estimate the velocity distribution on the cake-cuts on the basis of
our basic idea. In addition to the averaged speed of the cake-cuts,
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(a)

(b)

(c)

Figure 41: Snapshots of the school of anchovies. (a), (b) and (c) are snapshots
of the scene at 34s, 54s and 65s respectively.



72 velocity distribution measurement method with optical flow for school of fish

Figure 42: An overview of the velocity distribution on the cake-cuts.

directions of the averaged velocities seems to be import. For each
cake-cut, the angle of the averaged velocity is defined as follows. We
consider a center axis which goes outward through the middle of the
cake-cut from the center of the torus. Then a tangential axis are set
to be perpendicular to the center axis and put toward the direction
of rotation of the torus. We define an angle of the averaged velocity
of each cake-cut to be that between the averaged velocity and the
tangential axis. This means that if the torus have complete circular
motion, the angels of the averaged velocities of all cake-cuts vanish.
Ranges of the angles are set to be [−π,π], and they are positive (neg-
ative), when the direction of the velocity are outward from the center
(inward toward the center). Furthermore the angles are divided by π
to define the normalized angles having a range [−1, 1]. We show an
example of the angle of cut 11 in Figure 42.

We have conducted experiments to show the accuracy of the veloc-
ity (speed and direction) distribution on the cake-cuts with optical
flow. We prepared the same three scenes (30 frames each) A, B, and C
in Figure 32. Figure 43(a), (c), and (e) show the same snapshots of the

Table 10: The estimation result of angles and speeds.

scene
RE of
speed

RMSRE of
speed

ave. of
angle errors

(degree)

RMSE of
angle

(degree)

A 0.079 0.102 1.670 2.043

B 0.063 0.075 1.909 2.155

C 0.087 0.112 1.412 1.807
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(a) scene A (b) scene A

(c) scene B (d) scene B

(e) scene C (f) scene C

Figure 43: Snapshots of scenes and the result of the speed and velocity dis-
tributions by hand and by our method: (a), (c), and (e) are snap-
shots of scenes A, B, and C, respectively. (b), (d), and (f) show
the estimated speed and angle in each cut for scenes A, B, and C,
respectively.

scenes. To evaluate our method, we measured the mean speeds and
directions of the cake-cuts by manually tracking. We randomly se-
lected approximately 200 sardines in each scene, tracked their heads
manually, and calculated the averaged speeds and directions of the
cake-cuts. The manually estimated speeds and directions are shown
in Figure 43(b), (d), and (f).

We have estimated the speeds and directions using our method for
the three scenes. The parameters and flow conditions are the same
as ones of our work in [IC3]. We show the results by our method in
Figure 43(b), (d), and (f). Table 10 shows the averaged RE of speeds,
the RMSRE of speeds, the average errors of angles, and the root mean-
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square error (RMSE) of angles with respect to the manually tracked
speeds and angles. The average REs of speeds are less than 0.1 (BL/s),
and the average values of angle errors are less than 2 (degree) for all
scenes.

From Figure 43 and Table 10, the speed and angle measurement
method on the cake-cuts seems to be practically useful. The accuracy
of the speeds and angles obtained by manual tracking is likely to be
limited because we computed these values by sampling only less than
10% of the fish in a school and tracking fish manually was not always
possible.

6.7 conclusion

We have proposed a speed distribution measurement method for
collective motions of RD type schools of fish with optical flow. We
applied our method to rotating schools of sardines and measured
their RCs and velocity distributions on the cake-cut. To compute
these distributions automatically, we also proposed a center estima-
tion method from the school flows. Experimental results show that
our method is accurate for simulation scenes of rotating schools and
that it works well for real scenes. Our method facilitates automatic es-
timation of RCs over a longer period of time with practical accuracy,
even when individual tracking is difficult. This measurement method
will be useful for observation of schools of fish and determination of
proper mathematical models and their parameters.



7
V E L O C I T Y S T R U C T U R E S O F R O TAT I N G F I S H
S C H O O L S A N D T H E I R E V O L U T I O N S

In this chapter, we investigate the velocity structure of a school of sar-
dines rotating in solid torus shape. We also study time development
of rotation curves with the method proposed in Chapter 6. We found
speed structure in a rotating school with analysis of a long (about
2 hours) time series data. Collective motion of the fish changes non-
stationarity and continuously in several seconds. However, if we aver-
age the rotation curves by a dynamical time required for each circling
movement in torus, universal structure of rotation curve appears.

Most of the results presented in this chapter have been published
in [IC2, DC2]. The research of this chapter have been done with Prof.
Masa-aki Sakagami. The author of this thesis designed the research,
developed methods, calculated and analyzed the time series data, and
wrote these papers.

7.1 introduction

Collective Behaviors of animal groups such as flocks of birds and
fish schools have been intensively investigated biologically, physically
and mathematically. However, for dense and large schools of fish as
shown in Figure 44 their behavior have not sufficiently been studied
as stated in Chapter 2. In this chapter, we analyze velocity structure
(rotation curve) of a large and dense rotating school of sardines (Fig-
ure 44) as a first step to study behaviors of dense and large schools
of fish.

We have estimated three RCs of schools of sardines (Figure 34) with
the proposed method and manually in Section 6.4.2.5. However, we
need to measure RCs for long term to characterize and discuss the
velocity structure of the rotating school. And we also need to measure
distribution of body length in the school, because it is well known that
the swimming speed is directly proportional to the body length at the
same tail beat frequency [8] and distribution of body length may just
cause the velocity structure of the school. Therefore, in Section 7.2,
we first measure positions, body lengths and speeds for the relatively
sparse rotating school with the methods proposed in Chapter 4. In
Section 7.3, we also measure the time series of the RC for a long
video (about 2 hours) which was recorded in March 2015. Figure 44

shows a snapshot of the video. We propose an averaging procedure
over 60 seconds to discuss the feature of time evolution of the RCs in
Section 7.4. Finally, we summarize this chapter in Section 7.5.

75
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Figure 44: A large and dense school of sardines

7.2 distributions of body length , swimming speed and

tail beat frequency in a rotating school of sardines

In this section, we measure distributions of body length and swim-
ming speed in the RS type rotating school of sardines with the mea-
surement methods proposed in Chapter 4.

We extracted a 10 seconds relatively RS type scene from the videos
of a school of sardines which were recorded in March 2015, as ex-
plained in Chapter 3. We call the scene RSS. Figure 45(a) shows a
snapshot of the RSS. Since the scene is RS type, we can measure the
features of the school with the proposed method in Chapter 4.

We first tracked isolated fish in the RSS using the tracking method
proposed in Chapter 4. Figure 45(b) shows the trajectories of the iso-
lated fish which are tracked over 30 frames (1 second) with the track-
ing method. We obtained 1507 trajectories from the RSS.1

We measured the body lengths of the tracked 1507 fish with the
body length estimation method in Chapter 4. Figure 46(a) shows the
frequency distribution of body lengths in the RSS. The mean and S.D.
of the body lengths were 57.52 [pixel] and 6.145 [pixel] relatively. We
use the mean of the body lengths as the unit of body length (BL) in
this section. Figure 46(b) shows the body length distribution against
the radial distance from the rotation center. The rotation center was
calculated with the center estimation method in Chapter 6. We also
show the plotted speeds [BL/s] against the body length [pixel] in
Figure 46(c). Figure 47(a) and 47(b) show the rotation curve of the
RSS. The unit of the speed in Figure 47(a) is the BL and the unit of
each fish in Figure 47(b) is each body length of the fish.

1 Note that the same fish were counted twice or more in the RSS.
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(a)

(b)

Figure 45: (a) A snapshot of the RSS. (b) The trajectories of the isolated fish
in the RSS obtained by the tracking method in Section 4.3.2.

From Figure 46(b), it is suggested that the rotating school does not
have clear structure of speed distribution. Figure 46(c) shows that
larger fish don’t swim faster than smaller ones, although it is known
that the larger fish always swim faster as stated in Section 7.1. Figure
47(a) and 47(b) show that outer fish swim faster than inner ones. From
these results, it was suggested that outer fish in a rotating school
of sardines really swim faster than inner ones regardless their body
lengths.
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(a)

(b)

(c)

Figure 46: (a) The frequency distribution of body lengths of the RSS. (b)
The body length distribution against the radial distance from the
rotation center. (c) The plotted speeds [BL/s] against the body
length [pixel].
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(a)

(b)

Figure 47: (a) The plotted speeds [BL/s] against the radial distance [BL]
from the center. The red line shows the averaged speed of each
bin. (b) The plotted speeds [each body length/s] against the ra-
dial distance [BL] from the center. The red line is the averaged
speed of each bin.

7.3 rotation curves of sardine’s schools and time evo-
lution of their velocity structure

We estimated three RCs of schools of sardines (Figure 32) with the
proposed method and manually in Section 6.4.2.5. The forms of the
estimated RCs in Figure 34 are briefly summarized that the mean
speed almost linearly grows with respect to the radius. Although the
RCs in Figure 34 for the three snapshots suggest that linearly grow-
ing form of RCs might be universal, we should remind that these
snapshots in Figure 32 represent a regular state of the torus. The tori
change their shape within a time scale of a few second and are sig-
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nificantly distorted from their regular state as shown in Figure 11. In
order to discuss the speed structure of the rotating school of sardines,
we need to measure and analyze RCs of long time movies.

We calculated time series of RCs for a long video by means of our
RC measurement method in Chapter 6.

In this section, we first show the time series of the averaged speed
at the 9th bin. We then show the time development of the velocity
structure of the rotating school. Finally we briefly discuss the speed
structure of the rotating school and averaged tori.

7.3.1 Time Development of Averaged Speed at the 9th Bin

In Figure 48(a), we show the time series of the averaged velocity at
the bin of radius r = 9 BL over two time scales. This bin (r = 9 BL)
locates almost middle of torus so that its velocities seems to represent
kinetic properties of the whole torus. The one second average velocity
(green) shows quite rapid change within the time scale from a few to
10 seconds. Oscillations in this time scale represent the deviations
from the regular state.

For much longer time scale (from 1 to 2 hours), fish schools exhibit
larger fluctuation as shown in Figure 48(b). We recognize that promi-
nent spikes of the one second average in Figure 48(b) correspond to
significant deviations from the regular torus shape caused by severe
predations. On the contrary, origins of small fluctuations in Figure
48(a) seem to be intrinsic dynamics of the fish schools and modest
predations.

7.3.2 Time Development of the Velocity Structure of the Rotating School

We show the long term evolutions of the averaged velocities at several
radii r = 3, 6, 9, 12, 15 BL in Figure 49(a) (60 s average) and Figure
49(b) (600 s average). Locations of inner and outer edges of the torus
significantly varies in time, especially outermost radius exceeds 20 BL
in some occasions. However the averaged velocities at radii r = 3 and
15 BL characterize kinematical nature of inner and outer parts of the
torus. These figures clearly show that the time scale for changing the
averaged velocity is rather long and its magnitude small in outer part
of the torus. In rapidly changing regimes where averaged velocities
have spikes, this insensitivity at r = 15 BL suggests the form of RC
deviates from the linearly growing shape at the outer part of the torus.
On the contrary, except the rapidly changing regimes, the averaged
velocities at several radii are co-moving simultaneously so that RCs
can keep the linearly growing shape as similar as RCs for the regular
tori shown in Figure 44.
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(a)

(b)

Figure 48: (a) A short term time series of the averaged speed at the 9th bin.
(b) The time series of the averaged speed at the 9th bin for the
long video.
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(a)

(b)

Figure 49: (a) Long term evolution of 60s averaged velocities at several ra-
dius. (b) Long term evolution of 600s averaged velocities at sev-
eral radius.

7.4 existence of averaged tori over the dynamical time

According to the discussion in Section 7.3, although the torus states of
the fish schools are far from equilibrium and have large fluctuations,
it is suggested that averaging procedure over 60 second works well
for RC to recover its universal shape as similar as the regular tori. We
note that choice of the time scale is not necessarily ad hoc, since this
corresponds to the so called dynamical time [15] within which each
fish has single rotation in the torus. Here we would like to present
two arguments which support validity of averaging procedure over
the dynamical time and the existence of the averaged torus.
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Suppose that we evaluate the time development of the averaged
velocity over the time τ. Figures 49(a) and 49(b) are typical examples
for τ = 60 s and τ = 600 s. The values of the averaged velocities dis-
tribute around their mean values. In Figure 50(a), we show how the
variances depend on the averaging time τ. It follows that the longer
averaging time we take, the smaller the fluctuation of the averaged
velocity. Furthermore the variances fall rapidly with the time scale τ
10 seconds for middle part of the torus r = 3, 6, 9, 12, 15 BL.

In Figure 50(b), we show log-log plot of the variance (r = 9 BL) with
averaging time. And the red line is a fitting by a following power low,

Variance = a(τ+ b)−c (22)

with a = 0.043, b = 3.6 and c =0.22, respectively. The rapid power law
decay of the variance terminates and slower behavior appears in the
dynamical time scale ∼ 60 seconds.

Finally we evaluate a velocity correlation function,

Correlation(τ) =
C(τ)

C(0)
, C(τ) =

1

T

∑
06t<T

(v(t+ τ) − v̄)(v(t) − v̄)

where v̄ is the averaged velocity over time T . Here v(t) is velocity
at r = 9 BL and averaging time T = 600 seconds. Figure 51 clearly
shows a decay of the velocity correlation within the dynamical time
scale. Although small oscillation remains, the behavior of the velocity
correlation suggests that v(t) became almost independent beyond the
dynamical time scale. The decay of variance (Figure 50(a) and Fig-
ure 50(b)) and the velocity correlation (Figure 51) strongly support
the validity of averaging procedure over the dynamical time and the
existence of the averaged.

7.5 discussion and conclusion

We measured the distributions of body length and swimming speed
in short term (10 second) video of the RS type rotating school of
sardines. From the results, we found that outer fish in the rotating
school swim faster than inner ones regardless their body lengths.

We have also investigated the long-term evolution and fluctuations
of the RCs of the RD type rotating schools of sardines by means of our
RC estimation method. From observations of the long-term evolution
of estimated velocity structure, we note that tori of fish schools have
the non-stationary nature which cause both of rapid (a few seconds)
and slow (an hour) changes of their velocity profiles. In spites of ex-
istence of this difficulty, the averaging procedure over the dynamical
time scale have been shown to work well in order to analyze kinemat-
ical nature of tori of fish schools. And it was suggested that RCs for
the averaged tori keep their universal form, i.e. the linearly growing
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(a)

(b)

Figure 50: (a) The variances of the averaged velocity distributions over time
τ. (b) Log-Log plot of the variance of the averaged velocity distri-
butions over time tau at r = 9 BL.

shape. Finally we also discussed the existence of averaged tori from
viewpoints of the decay of velocity correlation and the convergence
of the averaged velocity. The evolution and fluctuations of the RCs
of rotating school of sardines can be examined in more detail, includ-
ing investigations about the cause of growth of the mean rotational
velocity with respect to the radius, and by constructing mathematical
model that explains how the RCs of the schools behave.
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(a)

Figure 51: Velocity correlation function at r = 9 BL





8
C O N C L U S I O N

8.1 summary

In this thesis, we first briefly reviewed research of collective behaviors
in Chapter 2 and explained the data of schools of fish we used to mea-
sure and analyze their behaviors in Chapter 3. In Chapter 1, we set
development of measurement methods for large and dense schools
of fish as the primal goal in this thesis. For RS type schools, we estab-
lished the tracking and measuring method for isolated fish in Chapter
4 and proposed the appearance-based tracking method for multiple
fish in Chapter 5. For RD type schools, we developed the speed dis-
tribution measurement method with optical flow in Chapter 6. The
second goal of this thesis was to find and analyze characteristic fea-
tures of schools of fish. We analyzed the behaviors of a rotating school
of sardines with the proposed measurement methods and then found
the speed structure in the rotating schools and the averaged tori in
Chapter 7. We summarize each chapter as follows.

In Chapter 2, we briefly reviewed research into collective behaviors,
especially for behaviors of fish schools. Measurement methods for
collective behaviors were also summarized. We pointed out that au-
tomatic measurement methods had not been sufficiently developed,
particularly for schools of fish.

In Chapter 3, we explained the way videos of schools of fish were
recorded in the Kujukushima Umikirara Aquarium. We also stated
that the water tank and the school of sardines in the tank have a lot
of advantages, mainly because the water tank is open air and has a
large school of sardines throughout the year.

In Chapter 4, we established the tracking method for isolated fish
and proposed the measurement method for tail beat frequency and
the estimation method of coast phase for isolated fish in a school of
fish. In our experiments, we recorded a large school of sardines and
applied our method to a scene taken from the video. The average
difference of the tail beat frequencies using our method and using
manually estimated data was 0.126 (Hz). For estimation of the coast
phase, the precision and recall of the classification result were 0.945
and 0.879. These results indicate that our method is practically useful.
We expect that our method is useful for observation of individual
behaviors in school of fish.

In Chapter 5, we proposed the appearance-based tracking method
for multiple fish in a relatively sparse school. For the test scenes in
which two or three fish overlap with each other, our tracking method

87
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exhibited practical performance (80% for Type B and 100% for Type
C), although the FP-LK method failed in all the scenes. The trajecto-
ries tracked by our method were also accurate, because the average
differences between the trajectories of our method and the ground-
truth in the three scene types were less than 4% of the BL of the
school. However, our algorithm is still slow due to combinations of
parameters. We need to accelerate our algorithm in order to track
thousands of fish.

In Chapter 6, we proposed the speed distribution measurement
method for collective motions of highly dense homogeneous groups
with optical flow. The main idea was that we could measure a speed
distribution by extracting flows that are relevant to fish behaviors
with a number of proposed constraints. We applied our method to
rotating schools of sardines and measured their RCs. To compute RCs
automatically, we also proposed a center estimation method from the
school flows. Experimental results show that our method is accurate
for simulation scenes of rotating schools and that it works well for
real scenes as well. Our method facilitates the automatic estimation
of RCs over a longer period of time with practical accuracy, even
when individual tracking is difficult. This measurement method will
be useful for the observation of schools of fish and determination of
proper mathematical models and their parameters.

In Chapter 7, with the method proposed in Chapter 6, we investi-
gated the time development of the rotation curve for the solid torus
shape of fish schools. We found the speed structure in rotating schools
of fish through analysis of the long time development data. The exis-
tence of the averaged tori is also demonstrated in this chapter.

To summarize this thesis, the proposed methods enable us to an-
alyze some aspects of fish schooling behavior such as body length
distribution, speed distribution, and time development of speed dis-
tribution. As stated in Chapter 2, measurement methods for large and
dense schools of fish have not sufficiently been developed. It should
also be noted that manual measurement of the behaviors of thou-
sands of fish for hours is hard or almost impossible. Therefore, our
method opens up the possibility for a new research field into mea-
surement and analysis for behaviors of large and dense fish schools.
However, there remains problems for the analysis of the collective
behavior of fish. For example, our algorithm described in Chapter 5

has not yet tracked all members of large schools of fish because the
algorithm is still slow and not accurate for occlusions of multiple fish.
Moreover, as a fundamental problem, we measured behaviors of fish
in projected (2D) images, but in the future the 3D positions of fish
should be measured in order to analyze in detail their behaviors and
construct interaction models between neighbors.
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8.2 future work

In future, this research can be extended in the following three direc-
tions.

improvements of measurement methods

First of all, individual tracking is essentially important for mea-
surement of the behaviors of fish schools. We plan to introduce
a parametrised appearance model of fish, a probabilistic multi-
object tracking framework, a data association framework, and
a number of interaction models between fish to improve track-
ing performance. It is also worth accelerating our algorithm in
order to track thousands of fish in schools.

For relatively dense schools of fish, tracking individuals is
almost impossible, even using manual methods. Thus, meth-
ods that measure the velocity distributions of school behaviors
approximately like the proposed method in Chapter 6 are im-
portant for automatic observations. However, there are some
problems for further analysis of schooling behaviors with the
proposed method. For example, we still cannot analyze infor-
mation transfers such as agitations in fish schools, because the
spatial and temporal resolution of our method are low. We plan
to improve the accuracy of velocity distribution measurement
at high spatial and temporal resolution. It is worth speeding up
the proposed method with optical flow by calculating flows in
parallel with GPUs for monitoring systems of school behaviors
of fish in aquariums or fish farms.

In order to analyze fish behaviors in more detail, techniques
for measuring the 3D positions of the individuals of a school
is essential. We are attempting to develop such techniques in
the aquarium with a stereo camera system and our tracking
methods.

behavior analysis with measurement methods

The behavior of large and dense schools of fishes have not suffi-
ciently been studied because measurement methods for such
schools have not been developed as stated in Chapter 2. In
Chapter 7, we applied the proposed measurement method of
speed distribution to a rotating school of sardines for analysis
of the speed structure of the school and the time evolution of
the structure. This analysis is just the first step for investigating
the collective behavior of large fish schools. The proposed meth-
ods enable us to study the details of schooling behaviors such
as information transfers in schools, interaction manners with
neighborhood members, and predator-avoidance behaviors.
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applications of measurement methods

As stated in Chapter 2, a number of devices and techniques have
been utilized to measure collective motions for many kinds of
animals. We believe that the proposed measurement methods
for collective motions, especially for schools of fish, have ap-
plications in a wide range of fields. In the field of biology, ze-
brafish (Danio rerio) are widely used to examine relationships be-
tween their genome and their behaviors, or to study the effects
of medicines and drugs. Automatic measurement of zebrafish
behavior and methods for tracking individuals are essential in
the field. In the future, we plan to apply our methods to mea-
sure the behaviors of zebrafish. As another practical application,
it is expected that our method could be utilized in fish farms
to observe the health and growth of fish automatically, which
may help improve productivity. We would also like to apply
our speed distribution measurement method to collective mo-
tions other than those of rotating schools of fish, such as those
of other species of animals and dense crowds of people.
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